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Abstract

We contrast two approaches to the prediction of latent variables in the model of
factor analysis. The likelihood static is a sufficient statistic for the unobservables
when sampling arises from the exponential family of distributions. Linear predictors
on the other hand can be obtained as distribution-free statistics. We provide
conditions under which a class of linear predictors is sufficient for the exponential
family of distributions. We also examine various predicators in the light of the
following criteria: (i) sufficiency, (i) mean-square error, (iii) unbiasedness and
illustrate our results with the help of Chinese date on living standards.
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Introduction
The model of factor analysis [FA] is one of several techniques which
seek to explain the correlation between a set of variables by a smaller set of

random variables. In its standard form the model can be expressed as
X =By +U (1)

where X is a p dimensional vector of observed variables known as indicators,
and U is a vector of disturbances of the same dimension as X. yis a g x 1
vector of unobserved random variables where q < p, and B is p x g matrix of
regression coefficients. As the size of the vector y is not critical to the results of
the paper, in what follows we take g=1 so that y becomes a unique

unobserved random variable.

The paper investigates conditions under which a class of distribution-
free prediciors is sufficient for the exponential family of distributions. We also
contrast various approaches to prediction in the mode! of factor analysis
according to the foliowing three criteria: (i) sufficiency, (i} mean-square error,
and (iii) unbiasedness. Our first result identifies conditions under which the
best linear predictor [BLP] is sufficient. As the best linear unbiased predictor
[BLUP] is a scaled version of the BLP, in the model of factor analysis the same
results can be used to address the relationship between unbiased predictors
and sufficient statistics. In the case of multivariate normality it is a well known
result that the best linear predictor of y coincides with the regression function
E(y|X). Then the BLP and BLUP are multiples of the sufficient statistic
underlying the model. However, while the former two statistics exhibit the
sufficiency property, the BLP is efficient (in the mean-square error sense) but

biased, while the BLUP is (by definition) unbiased but not efficient. We thus



conclude the paper by highlighting the existing trade-off between
unbiasedness and mean-square error efficiency in the general problem of

predicting the latent variables of the model of factor analysis.

The vector X of equation (1) can comprise cross-section, time-series, or
panel data. Applications of the FA model in the behavioural sciences are
many. Goldberger (1972), Everitt (1984), and Basilevsky (1994) provide good
guides to this literature. Macroeconomics applications of factor analysis
mainly fall in the domain of time-series analysis of production and financial
aggregates (see for instance Geweke, 1977 and Geweke and Singleton
1981). In time-series factor analysis equation (1) is supplemented by a law
of motion for y. X variables are oftén taken as repeated abservations on an
indicator of economic activity (say unemployment or GDP). The researcher
then wishes 1o use these data in order to extract information on agents'
expectations, the long run rate of interest etc. Garratt and Hall {1996) use the
FA model in order to construct an index of underlying economic activity, while
Mills and Crafts (1996) provide applications in the modelling of historical
growth trends. In this literature a time series on X (typically GDP) is
decomposed into a trend y and a cyclical component U. The jargon used in
this area is borrowed from engineering sciences: predictors are commanly

referred 10 as filters, and latent variabies are known as signals.

Microeconomics applications ot factor analysis include applications in
the field of income distribution. In their study on the influence of classification
and measurement error on the quantification of income inequality, Van Praag
et al. {1983) take X to be a vector of reported income at different points in time,
and y to be true (unobserved) income status. Likewise, Zimmerman (1992)
constructs a jongitudinal measurement error model in order to estimate the

intergenerational correlation between the (unobserved) permanent incomes



of a U.S. sample of fathers and sons. In his study on the identification of the
poor, Abul Naga (1994) defines y as permanent income and X contains cross-
section data on family income, consumption, and employment. Mercader
(1995) also follows a similar approach in her study on living standards in
Spain. Using a more complex specification of the FA model, Chamberlain and
Griliches (1975) examine the influence of unobserved family background on

the earnings of brothers.

Without toss of generality let y have zero mean and unit variance. Also
let E(U)=[0] where [0] denotes a vector of zeros, cov{y,U)=[0} and var(U)=Q, a
diagenal matrix. An important feature of the FA model is the additive structure

of the covariance matrix of the ocbservables:

Y =var(X)=Bp' + Q (2)

The variance of X thus consists of a component BB' of rank one originating
from the joint dependence of the indicators on y, together with a fuil rank
diagonal matrix Q arising from the presence of the disturbance terms. The
model (1) can be estimated by standard procedures such as maximum
likelihood or least squares, discussed in for example Basilevsky (1994) ch. 6,

and Wegge (1996).

The problem we are dealing with in this paper is concerned with the
question of predicting the unobservable y once we have observed X. We
therefore treat the structural parameters of the model (the vector § and the
matrix ) as given and instead we focus our attention on the various
approaches to the prediction of y, their similarities, and their specific strengths

and disadvantages.
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Section 1 of the paper contains the background theory on sufficiency
and the related results of Bartholomew (1984) within the context of factor
analysis. Section 2 discusses conditions under which the best linear predictor
of y can be expected to be a sufficient statistic when the joint conditional
distribution of the indicators, g(Xly), is a member of the exponential family of
distributions. Section 3 of the paper reviews the results on prediction and
sufficiency under the general normality assumption, whereas section 4
examines the relation between sufficiency and unbiased linear prediction. In
section 5 we construct and compare various predictors using living standards
data from rural China, which were the subject of an earlier study by Burgess
and Murthi (1996). The final section of the paper contains concluding

comments.

1 Sufficiency results

The aspect of factor analysis we are dealing with in this paper is the
problem of locating observations on the space of the latent variable once we
have collected related data in the form of a vector X of indicators. The task of
predicting y is 1o construct a function ¥=T(X) which satisfies some desirable
statistical criteria. An on-going debate in the tactor analysis literature has
arisen from the failure of researchers in the area to agree on the set of
properties y should satisfy. Since vy is a random variable, Bartholomew
(1981,1984) has argued that the appropriate criterion to require ony to
possess is sufficiency, rather than unbiasedness which he argues is more
relevant within the context of estimating fixed (i.e. non-random) parameters,
such as the vector B of regression coefficients in (1). Bartlett's (1937) work

places considerable emphasis on the choice of ¥ as an unbiased predictor.

By an unbiased predictor of a random variable y it is generally meant

that E('y )=E(y). In the factor analysis literature however the unbiasedness



condition takes a different meaning: a predictor 'y of y is taken to be unbiased
if for a given value yg, E[ ¥ | y= ¥o ] =Y, - We note that in general this
requirement is not equivalent to the usual definition that E(Y ) = E(y), and
through out the paper we refer it as the Unbiasedness Restriction in Factor
Analysis [URFA]. However, as the model of (1) is linear in y, we shall see in
section 4 that the two definitions of unbiasedness can be regarded as

equivalent in factor analysis.

By a sufficient statistic it is meant that the predictor exhausts all the

sample information in X contained about the latent variable y:

Definition: A statistic T(X) is sufficient for y if and only it the conditional
distribution of X given T(X} does not depend upon y.

That is, if one knows the value of a sufficient statistic, the sample can tell
nothing more about y. The following theorem is often used to characterize

sufficient statistics (Mood et al. (1974) p. 307:

Thecrem 1 (Factorisation): Let g(X|y) denote the probability density function of
X. A necessary and sufficient condition for a statistic T(X) to be sufficient for y

is that there exists a factorisation

g(Xly)= =1 [ T(x1,....xp) ; ¥]. m2(x1.... xp)

where m1 (T(x1,. . . ,xp) ;y] is a non-negative function that depends on X
only through T(X), and the second factor =2 (x1,. . . ,Xp)is also non-

negative, and is independent of y.



e

Since X and y are random variables, we can decompose their joint

density as follows:

HXL,y) = h(y]X) . g(X) (3)

Thus all the information available to us about y is contained in the conditional
distribution h(y|X). This result is due to Bartholomew (1984) where he shows
that the following two conditions suffice to guarantee the existence of sufficient

statistics for y within the context of the factor analysis mode!:
Assumption 1. The x’s are independent when y is held fixed, i.e. ,

g(x1,. .. xp[y)=gx1ly) . .... g(xply) (4)

Assumption 2. The distribution of x; when y is held fixed is a member of the

exponential family:
gilxily) = ai{xi)oi{y)explei{xi)d(y)] i=1...,p (5)

Theorem 2 (Bartholomew, 1984): Assumptions 1 and 2 above constitute a set

of sufficient conditions for the existence of a sufficient statistic for y (1) .

Assumption 1 is known as the axiom of conditional independence.
Stated differently, the axiom postulates that the observed correlation between
the x's is solely induced by their joint dependence on y. As Bartholomew
points out, assumption 2 is a fairly mild requirement since most distributions
used in practice (normal, multinomial, Poisson, Beta etc.) are members of the

exponential family. Note also that each distribution gj( xjjy ) could be chosen



as a different member of the exponential tamily. To derive the sufficient

statistic for y, substitute (3) into (4) to obtain

[T, gi( xil y) =ILai(xi) ¢i(y)exp[Zci xi)d(y)] (6)
The factorisation theorem can be used to decompose (6) as follows:

T [T(x1,. .. xplsyl=ILoily)exp[Zci(x)d(y)]
and

m2{(x1,. .. .Xp)=II ai( )

From theorem 1 it follows that the required predictor for y which exhibits the

sufficiency propenrty is given by

C(X) = Zai( xi) (7)

In the terminology of Bartholomew C(X) is referred to as the component
function. The term "component " is used to illustrate the similarity between (7)
and the related model of principal component analysis {cf. for eg. Abul Naga
and Antille, 1990). In more general terms, the function C(X) constitutes the

likelihood statistic for the exponential model (5).

2 Best linear prediction

An alternative route to the prediction problem is to follow a distribution-
free approach. The advantage of pursuing such a line of thought resides in the
fact that the statistical properties we postulate about the index of y will hold
regardiess of the exact distribution of X. As can be seen from (6) the sufficient

statistic for y, Z.ci( xi), is likely to differ according to the distributional

assumptions we retain for each of the conditional distributions  gi( xij| y -



The linear relation between X and y implied by the FA model {1) will in
fact turn out to be the propery which will enable us to derive a distribution-

free predictor for y. Let y* be a linear predictor of y. We can then write

The best linear predictor of y ( Amemiya (1985), p. 3) chooses b in a way as
to minimize the mean square error between y and a linear function b’X of the

indicators. The problem can thus be written as follows
min E[y-bX]? (8)
b
The optimal choice of b is given by
b= [var( X )] Tcov(X,y)

Noting from (2) that var(X)=X, and that cov(Xy)=B, we obtain the following

expression for the best linear predictor [BLP] of y:
y'=pLiX (9)

Under what type of distributional assumptions wouid the BLP constitute
a sufficient statistic for y? One first answer to the above question is that this
scenarioc would occur when the likelihood statistic induced by a set of
distributional assumptions is identical with (8). However it turns out that one
can be more specific by making use of an important property of sufficient
statistics, namely that any one-to-one transformation of a sufficient statistic is

also sufficient ({ Mood et al. (1974), theorem 3, p. 307). Since the BLP is by



definition linear, we can attempt to draw similarities in situations where the

likelihood statistic is linear:

C(X) = Zci X (10)

The proposition below provides sufficient conditions for the best linear

predictor to exhibit the sufficiency property.

Proposition 1: Make the assumptions of theorem 2. Then for any joint
conditional distribution g{X]y) such that

(i) the likelihood statistic is linear

(ii) for each i ¢j =k bj
where k is an arbitrary constant, and ¢i and bj are respectively the
coefficients on Xxj in the likelihood statistic and the BLP, the best linear

predictor is a sufficient statistic.

Proof. |f the likelihood statistic is linear, we can write C(X) as in (10).
The second requirement for the BLP to be sufficient is that for every i ¢ = k bj.

Therefore
C(X) = kK Zbixj (11)

and substituting (11) into (8) we get

I;gi( xil y) =IT;ai( xi} ¢i(y) e x p [Zpi{ xi) 8 (y )]

where 3(y)= k.d(y). By the factorisation theorem it then follows that y"=3.bj xi is

a sufficient statistic fory 7.

The conditions stated in proposition 1 are not necessary since the

class of one-to-one transformations need not be only linear. However as will



become apparent when we come to discuss the multivariate normal case, as
well as other cases of linear predictors, they turn out to be relevant in many
practical cases. Proposition 2 below is more general in that it extends the

conclusion for all one-to-one transformations of the BLP.

Proposition 2: Make the assumptions of theorem 2. Then for any joint
conditional distribution g(X|y) such that the likelihood statistic is a one-to-one

mapping of the BLP, the best linear predictor is a sufficient statistic for Y.

Proof. if the likelihood statistic is a 1-1 mapping of the BLP, we have
C(X) = D(Thi xi) (12)
and substituting (12) into (6) we get

[T gi(xily) =IT ai(xi) ¢i(y)exp[®(Z bixi)d(y)]

Using the factorisation theorem we can decompose 9{X]y) as a product of two
functions, g{X|y)= m1 [Z0i(xi) ;¥]. m2(x1.. . . Xp) where

r1=TL0i(y) . {AEpi(x))] 9 (¥)
where A(.)= exp[®(.})], and
n2(x1,. .. xp)=TI, ai( xj)

As required, n1 depends on X only through 2.bixj. Once again it follows from

the factorisation theorem that the best linear predictor is a sufficient statistic

fory 1.



3 Prediction and sufficiency under normality

In many practical applications of the FA model normality of the random
variables is assumed. Though the structural parameters of the model can be
estimated using least squares procedures, exact tests of hypotheses and
maximum likelihood estimation will usually be carried out using the general
normality assumption because of its tractability. In order to contrast
Bartholomew's component function (the likelihood statistic) with the BLP, we
construct the sufficient statistic for the latent variable model under normality
(Bartholomew 1981, 1984). As this statistic turns out to be a constant multiple
of the BLP, proposition 1 applies, and we may therefore readily conclude that
the BLP will also be a sufficient statistic under the general normality

assumption.

Under normality we have that y~N(0,1) and U~N(0, Q). From this it
follows that

Xly~N [By, Q] {13)
and

yIX~N[BZIx, gatp+1)y1] (19

The distribution of X when y is held fixed can be written as

g (Xl y) = (2m)° P2 [det (@) 12 exp{- %(X'sw X)}

expi- %y'B'Q"B y}.exp{(X Q-1 y)}

Going back to (6), we can express g(X|y) as a member of the exponential

family with:
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a(X) = (2n) P2 [det(2)] /2 expi- 15 (X' Q-1X))

o(y) = exp{- ;—y' B Q1B y)

and

C(X)=pQ1X (15)

Bartholomew’s component function is this latter C(X) function. It is important to
note that as in the case of the BLP, under normaiity C(X) is tinear.

Furthermore, from Basilevsky (1994) lemma 6.5, p. 375 we have that
[1+p Q- 1p1prz-1= B Q1
in other words C{X) =k y* , where y* is the best linear predictor of y, and
ki=[1+B ' Q" *p] (16)

It follows from proposition 1 that under normality the BLP y* is a sufficient
statistic for y. Another well known feature of the normal distribution is that the
regression function, E(y|X)=B'Z'1X, is linear and coincides with the

expression of the BLP. Therefore under normality y* is also the Best Predictor

of y (cf. Amemiya (1985), p. 3}.

The above example is an illustration of a result well known to Bayesian
statisticians, namely that knowledge of the statistic C(X) is equivalent to

working with the conditional distribution h(y|X) ().



4 Unbiased linear prediction and sufficiency

The purpose of this section is to extend our discussion in order to
explore the common ground between unbiased linear prediction and
sutficiency. The Rao-Blackwell and Lehmann-Scheffé theorems (Mood et al,,
pp. 321-26) constitute the butk of the results in parametric statistics linking
unbiasedness and sufficiency. Qur approach here is somewhat different: we
wish to inquire when would a distribution-free linear unbiased predictor
exhibit the sufficiency property for the exponential class of distributions. As the
best linear unbiased predictor [BLUP] of y happens to be a scaled version of
the BLP, the same conditions of proposition 1 can be used to answer the

above guestion.

Our starting point is to observe that the BLP is generally biased. This

can be seen by noting that the inverse of X has the form
1= o -olppel/a+pa’p) (17)
and from substituting (1) into y* for a given realisation y, of y:
E(y*| y=yo)=E[B 2 T (Byo+U)] = O

Bartlett (1937) suggested treating y as a fixed effect, specific to each
observation, as opposed to its earlier treatment as a random variable. If
through prior estimation of the FA model one possesses knowledge of B and

Q, one can use this information to write down the following least squares

estimation problem for y:

miny [ X-Byl' @ 1(X-By] (13)
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From Generalized Least Squares theory, it follows that the Bartlett estimator
y=B'Q 11" 1p' Q- 1X (19)

is the best linear unbiased estimator [BLUE] for y in the minimisation of the
sum of squares of standardized residuals in problem (18). It is important to
note that ¥ is derived as an estimator rather than a predictor , since it treats y
as an unknown parameter rather than a random variable. Note also that
under the normality assumption the Bartlett estimator is a sufficient statistic
when the axiom of conditional independence holds. Define the following

constant:
ko=[B Q-1p]-1 (20)

We can thus write ¥ as a muitiple of the likelihood statistic (7) of the normality

model:
Y=ko C(X) (21)

On the basis of proposition 1 the sufficiency of the Bartlett estimator follows

from (21).

There is a conceptual problem however in treating y's in the sample as
fixed parameters since as the sample size goes to infinity, the number of
parameters in the model which require estimation increases at the same rate.

Thus, Anderson and Rubin (1956) have shown that when B and Q have 1o be

estimated jointly with the y's, the maximum likelihood estimator is undefined.

As the Bartlett approach appears to be conceptually problematic, it is

worth investigating whether one may be able to derive a best linear unbiased
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predictor of y under the assumption that the latent variable is random. The
problem is a straightforward extension of the derivation of the best linear
predictor considered in section 2. Lawley and Maxwell (1971) ch. 8, have
studied this problem, where they have shown that the Bartiett statistic can be
chosen as the minimum mean-square error predictor of y constrained to

satisty the unbiasedness condition [URFA)].

The prediction problem may be stated as one of choosing a parameter

vector o in a way as to minimize the mean square error
Ely-oaX]?
subject to the unbiasedness restriction [URFA]
E[dPy-y[ y=¥o]=0
The Lagrangean of the-above problem can be written as:
L{c,A:B.Q)= Efy- wX]2 +A{1-o’P) (22)
which yields for solution
yu=[B'2-18]-1p z-1X (23)
See Lawley and Maxwell (1971) pp. 109-111 for a derivation.
Thus, the effect of restricting the choice of predictors to the class of

unbiased statistics in the URFA sense has the consequence of scaling the
BLP of problem (8) by the constant ( ' Z—! B )~!. Whereas the statistic



B'Z-1X is the minimum MSE linear predictor, { ' Z-1 § }~I p' Z-1X constitutes
the minimum mean square error unbiased predictor of y under the

unbiasedness restriction adopted in the factor analysis literature.

It is worth noting that the BLUP is the GLS estimator of y, viz the Bartlett

Statistic (19). To see that this is the case, note from (17) that

prl =pol -palppalia+palp)

and that

prip =[1-p'pra+poip]palp
=B IB/A+PQIB)

The argument generalizes to the case where y is a g-dimensional vector
(g=>1), through the inversion of an additive form [BB'+ Q ], where Bisapx q

matrix.

Note that the predictor y*; is also unbiased in the conventional sense
that E(y*y)=E(y). Since the FA model is linear, for any unbiased linear
predictor y=b'X such that E{¥)= E(y) we have E(¥) = E (b'By) . Therefore the

unbiasedness condition in the conventional sense takes the simple form

b =1 (24)

This condition is identical to the way unbiasedness is enforced in the [URFA]
sense (see the Lagrangean (22) ). Thus in the linear FA model the distinction

between the two concepts of unbiasedness is not fundamental.
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The condition (24) can in fact be used to generate unbiased predictors

fory. Forinstance, forb'=(B'B) 1B, we can define the predictor
Yo =2Bixi /2Bi2 (25)
1 |

which provides an example of an unbiased, but not sufficient predictor for vy,
since it cannot be expressed as a one-to-one mapping of the likelihood
statistic (15). Only in the specific case where Q =x. | (where x is a positive
scalar}, will y*o be sufficient and best linear unbiased. By analogy with least

squares estimation theory we refer to (25) as the OLS predictor.

5 A numerical exampie
The preceding discussion can be illustrated by means of an empirical
example which has been the subject of a more detailed study by Burgess and

Murthi (1996). We consider a tactor analysis model with three indicators:

xi: log per capita income in the household
x2 : log per capita calorie intake in household
x3:. log household size.

The data pertain to a sample of 5380 rural households in the Chinese
province ¢of Sichuan for the year 1990. The uncbserved variable is interpreted
as the family's long run income. The purpose of the example is to contrast

predictors of the latent variabie. The sample correlation matrix is the foliowing:

1
S= [ 0477 1 }
0194 -0266 1

Parameter estimates of the model obtained by the method of moments, are

reported in table 1:



parameter  B1 B2 B3 011 w22 ©33
estimate  0.593 0.807 -0.327 0.649 0.356 0.893
se. 0.022 0.027 0.017 0.025 0.041 0.018

statistic x1 X2 x3

C(X) 0.914 2.306 -0.366
BLP 0.259 0.656 -0.104
BLUP 0.363 0.915 -0.145
OLS 0.534 0.726 -0.294
y*(0) @ 0.441 0.786 -0.125

Note: (a) Computed at the value 8=0.5.

The goodness of fit index defined as 1 - det (Q )/ det (S) takes the value

0.716. Replacing 8 and by their parameter estimates, we calculate
Bartholomew's component function using (14), the BLP using (9), the BLUP
(the Bartlett statistic) using (19), and the OLS predictor using {25). The

coefficients of the various predictors are given in table 2.

The coefficients on the BLP are the coefficients of the component

function scaled down by a factor approximately equal to 3.5. Likewise, the




coefficients on the BLUP are those of the component function scaled down by
a factor approximately equal to 2.5. For the sake of ranking families in the y
space the three approaches will produce identical conclusions. However, if
one wishes to obtain absolute rankings, i.e. distances between observations,
as opposed to just ordinal rankings, the data analyst will be confronted with
the usual problem of trading off prediction mean square error against
unbiasedness. If unbiased predictions are deemed to be the most important
requirement, the choice of the BLUP is to be recommended. If this is not the

case, one can opt for the minimum MSE linear predictor, viz the BLP.

The OLS predictor while being unbiased will in general not rank
households identically with the component function, the BLP, or BLUP. As it is
not a sufficient statistic, it coefficients in general cannot be expressed as
multiples of those of the compeonent function. Compared to the BLUP for
instance, OLS assigns a higher weight on income but a smaller weight on

calorie intake. The last line of table 2 will be discussed in the next section.

6 Concluding comments

The purpose of this paper was to contrast several approaches to the
problem of prediction in the model of factor analysis. Throughout the
discussion we have focussed on three properties of predictors, namely
sufficiency, MSE optimality, and unbiasedness. None of the predictors
considered here meets simuitaneously all three requirements - see table 3.
Unbiasedness is only met by the BLUP and OLS, the first of these only being
sufficient. The minimum MSE predictor, the BLP, is sufficient, but on the other
hand biased. The situation in the FA model is therefore less clear-cut than in
other statistical models such as the Gauss-Markov regression model where all

three properties can be met by a single statistic.



predictor unbiased minimum MSE sufficient

C(X) no no yes
BLP no yes yes
BLUP yes no yes
OLS yes no no

As the mean-square error of a predictor can be decomposed into the
sum of its variance and its square bias, the MSE criterion can be put into good
use in ranking biased and unbiased predictors. From the definitions of the
BLP and BLUP (and also by noting that the Lagrange multiplier A in (24) is in
general not equal to zero), we note that the BLP will dominate any other linear

predictor according to the MSE criterion.

It is possible however to explicitly take into account the existing trade-off
between prediction bias and mean-square error. Consider the following class

of linear predictors:

F(O)= 0y + (1- 0) yu 0<9 <

Then at one end, when =1, we obtain the BLP, and at the other end, for 6=0
we have the BLUP. Intermediary values of 8 in the range [0;1] allow us 1o trade

off prediction bias against accuracy, with increasing values of 8 reducing the



MSE and increasing the bias of the predictor. Furthermore, by writing ¥(6) in

the form
¥©) =[e(1+pQIp! + -0y QB ]IpalX

we note that when the axiom of conditional independence holds such a

statistic will be sufficient for the normal distribution.

When 0=1/2, 'y(8) is simply an average of the BLP and BLUP. This is
the value computed in the last line of table 2 of our numerical example. There
we have a predictor which is sufficient, and which possesses a smaller bias

than the BLP, as well as a lower mean square error than the BLUP.



Footnotes

(1) The exact set of sufficient conditions given in Bartholomew (1984) is
weaker: in assumption 2 it is only required that p - 1 of the x’s be chosen as

members of the exponential family.

(2) See for instance the discussion around property 4.2 in Gourieroux and

Monfort(1995), pp. 103-4.
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