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Abstract

Statistical problems in modelling personal income distributions include estimation
procedures, testing, and model choice. Typically, the parameters of a given model
are estimated by classical procedures such as maximum likelihood and least-
squares estimators. Unfortunately, the classical methods are very sensitive to model
deviations such as gross errors in the data, grouping effects or model
misspecifications. These deviations can ruin the values of the estimators and
inequality measures and can produce false information about the distribution of the
personal income in a given country. In this paper we discuss the use of robust
techniques for the estimation of income distributions. These methods behave as the
classical procedures at the model but are less influenced by model deviations and

can be applied to general estimation problems.
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1 Introduction

In this paper we discuss the robustness properties of estima-
tors of parameters and derived inequality measures in models
for personal income distributions (PID). These models and the
associated inequality measures play a central role in the field
of welfare economics and inference based on them can affect
strongly the conclusions derived from the data. Here we focus
on inference drawn from parametric models of PID.

Parametric models are only approximations to the reality and
many studies on income data come to the conclusion that the
model does not fit the data well. Common sources of devia-
tions from assumed models include outliers (such as recording
or definition errors), grouping effects (due for instance to a shift
of some observations from a class to another), and other gen-
eral misspecifications of the model; ¢f. Van Praag, Hagenaars,
and Van Eck (1983) or Cowell and Victoria-Feser (1993). These
deviations have drastic effects on the maximum likelihood esti-
mator (MLE) for the parameters of the model becomes biased
and ineflicient when the model does not hold exactly. This in
turn will affect the inequality measure computed from the es-
timated parameters. In particular, a few extreme observations
can drive this quantity by themselves. The implication of this
is for example an inequality measure which no longer represents

the overall inequality structure of the population.



It should be stressed that our statistical approach to the study
of PID is a complement to the problem of choosing the right
model. It is important for PID models not only to fulfil a set
of fundamental properties (see e.g. Dagum 1980) but also to
be well estimated. Regularly, new models are developped and
their authors show that they fit a set of data better than the
others. We don’t believe that a model that is perfectly adapted
to every set of data exists, for the reasons argued above and
for others (see e.g. Hampel, Ronchetti, Rousseeuw, and Stahel
1986). Therefore, the search for a better model fit can only be
achieved by means of a combination of theoretical and practical
considerations. Hence, estimation techniques which deal with
model misspecification should be considered.

In PID, when the data are continuous, the deviations of the
estimates can be caused by a few very high incomes. The MLE
of two-parameters model, where one of the parameters is for
the scale and the other for the shape, are very sensitive to high
incomes. That means that because in such models no account
is made for the heavy right tail, the MLE and other classical
estimators can be biased and the fit of the distribution can be
very bad. With a three or four-parameters model, the added
parameters often deal with large observations by making the
right tail more or less heavy. However, we will see that even less

parsimonious models are non robust when estimated by means



of classical estimators.

In order to illustrate the argument developed above, we fit a
Gamma distribution to simulated data in Table 1. We assume 3
Gamma model with shape parameter o = 3 and scale parameter
A = 1 and we consider the inequality measure given by the
Theil’s index (see section 3 for the definition) which has a true
value of 0.16. We simulated samples of size 200 from a “3%
contaminated Gamma model”, i.e. the data were generated with
probability .97 from the assumed Gamma(3,1) model and with
probability .03 were outliers. (These contamination models will
be discussed more in details in section 3.) Table 1 shows the
bias (estimated by 55 S, 00(6; — 6)? where &; is the estimate
for the ** sample and @ is the true parameter) of the MLE and
a robust estimator, the mean squared errors (MSE), and the
derived Theil’s index. All the values of the bias have standard
errors smaller than 0.06.

It 1s clear from Table 1 that even a small amount of contam-
ination (3%), i.e. a few outlying observations out of 200, has
the effect to introduce a large bias in the MLE, to increase the
MSE and to increase the Theil’s index from 0.16 to 0.27. For
a comparison we report the values of the robust estimator we
will introduce in this paper. We see that it has very small bias
and MSE and the Theil’s index derived from it is practically

not affected by the deviations in the data because its value is



based on the overwhelming majority of the data. Similar ef-
fects can be observed with other models and other inequality
measures. One can say that parametric models and inequality
indices should take into account all the observations. However,
we argue that the computation of classical and robust estima-
tors gives a very important indication about the structure of the
distribution. For instance, in this simulation we know that the
true value of the Theil’s index (i.e. at the Gamma(3,1) distribu-
tion) is of 0.16 and the robust estimate is equal to 0.17. Thus,
the robust estimator estimates the Theil’s index based on the
majority (here 97%) of the data and is not influenced by the 3%
of outliers. In a real case, by comparing the MLE and the ro-
bust estimator, one would draw the conclusion that the majority
of the data leads to a Theil’s index of 0.17 whereas by taking
into account the outliers, one gets a Theil’s index of 0.27. The
outlying observations can be discovered immediately by simple
inspection of the weights W,(z;;-) given by (18) below. They
are those with weights close to zero.

Sometimes anomalous observations can be dealt with by a
preliminary screening of the data. However, in view of the
amount of data available nowadays and the automated pro-
cedures used to analyse them, robust techniques offer the ad-
vantage to take into account automatically possible deviations

without a preliminary screening of the data. Moreover, the di-



agnostic information provided by these techniques can be used
by the analyst to identify deviations from the model or from the
data.

In this paper we will derive such robust estimators and asso-
ciated inequality indices. In the past 20 years, robust statistics
has been a central area of research in the statistical literature.
Our results are based on the general theory developed in Huber
(1981) and Hampel, Ronchetti, Rousseeuw, and Stahel (1986).
Our goal is to show the usefulness of robust techniques for mod-
elling PID data.

The paper is organized as follows. For the sake of complete-
ness, we summarize in section 2 the basic ideas and techriques
based on the general theory. In section 3 we apply these methods
to PID models. We focus on Dagum’s type I, and the Gamma
and Pareto models but the same qualitative conclusions can be
drawn for other models. Section 4 presents an application of
robust methods to real data. Finally, some implications of these

techniques with some concluding remarks are given in section 5.

2 Robustness concepts

Analysing and describing the PID of a given population of eco-
nomic units involves typically the estimation of a parametric
model. Robust methods deal with such models. In this section

we summarize a few basic concepts of robust statistics for general



parametric models which will be used in our application. The
approach followed here is the one based on influence functions
originated by Hampel (1968), Hampel (1974) and developed in
Hampel, Ronchetti, Rousseeuw, and Stahel (1986).

Let z;,...,2, be n observations belonging to some sample
space X and {Fy} a parametric model with density f,, where the
unknown parameter belongs to some parameter space © C R.

The empirical distribution F(® is given by

FO@) = 23" Aus) (1)
i=1

where A, is a point mass in z. As estimators of § we con-
sider statistics T}, = T,,(21,...,Z,) which can be represented (at
least asymptotically) as functionals of the empirical distribution
function, i.e. Th(zy,...,z,) = T(F™),

One way of assessing the robustness of the estimator T is
by means of the influence function (IF) which is defined at the
model Fy by

T((1 —e)Fp + eA,) - T(Fp)
£

IF(&;T, Fy) = lim [ ] . (2)

It describes the effect of a small contamination (¢A,) at the
point z on the estimate, standardized by the mass of the con-
tamination. Thus, the linear approximation eI F(z; T, Fy) mea-
sures the asymptotic bias of the estimator caused by the con-

tamination. A desirable robustness property for an estimator is
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a bounded I'F'. Such an estimator is called B— (or bias) robust.

The I'F of a MLE is proportional to its scores function s(z, 8) =
% 1og fo(z). Unfortunatelly, most MLE for income models have
an unbounded scores function and therefore an unbounded IF.
We will see that this is the case for the Pareto, Gamma and
Dagumn’s distributions.

The IF plays a central role in robustness considerations but
can also be used to evaluate the asymptotic covariance matrix

of an estimator. For an asymptotically normal estimator T, i.e.
VA(Tn = T(Fp)) S N (0, V(T, ), (3)

its asymptotic covariance matrix can be written as
V(T,F) = f IF(z;T,F)IF(z;T,Fp) dFy(z).  (4)

Before stating the general optimality result, let us define the
class of estimators we will be working with. It is the class of
the M-estimators which are a generalization of the MLE (Huber
1964). An M-estimator is the solution 7T, of the (system of)
equation(s)

Z ’t,b(x,', Tn) =0 (5)

for some function ¥ : X x £ — RP.
It is worth mentionning that this class is rich and includes a

variety of well known estimators. For example, if 4 is the like-



lihood scores function, we obtain the MLE. Moreover, to any
asymptotically normal estimator, there exists an asymptotically
equivalent M-estimator. Hence there is no loss, at least asymp-
totically, in confining to the class of M-estimators.

The corresponding functional T is the solution of the equation

/ ¥z, T)dFy(z) = 0 (6)

and Fisher consistency, i.e. T(F}) = 4 implies

/w(x, )dFy(z) =0 (7)

for all .
The IF of an M-estimator defined by + at Fj is given by

IF(z;, Fg) = M(3, F3) '4(x, 0), (8)

where

M, Fy) =~ [ (. 0dF(a). ©

Under regularity conditions (see Huber 1981), an M-estimator
1s asymptotically normal with the asymptotic covariance matrix

given by
V(T, Fy) = M(y, Fy) "' Q(3, Fo) M(9, Fy) ¥ (10)

where Q(¢, Fy) = [ 9(z,0)y(z,8) dFy(z).

To build a B-robust estimator we have to put a bound on its

8



IF. However, doing that leads to an efficiency loss at the model.
Hence, it is necessary to find a trade-off between robustness (the
model holds only approximately) and efficiency. The best trade-
off gives the optimal B-robust estimator (OBRE). It is the M-
estimator which minimizes the asymptotic covariance matrix!
(10) under the constraint that it has a bounded I'F' (8).

Since the IF' (8) is a p-vector, one can choose different norms
to measure its maximum. The most natural way is to put an

upper bound ¢ on the Euclidian norm? of the IF, i.e.
sup | LF (x5, Fo)|| < c (1)

which leads to the unstandardized OBRE. Another way is to
measure the [ F' in the metric given by the asymptotic covariance

matrix of the estimator, hence to put an upper bound ¢ on?
1
sup {IF(m; T, F)'V(T, Fy) ' IF(2: T, Fg)} : (12)
Z

which leads to the standardized OBRE. This estimator is invari-
ant with respect to scale transformations.
The following theorem gives the OBRE in the standardized

case for a general parametric model.

In fact, a solution of this problem exists only if one minimizes the trace of the asymptotic
covariance matrix; see Hampel, Ronchetti, Rousseeuw, and Stahel (1986).

2This robustness measure is called the unstandardized gross-error sensitivity.

3This robustness measure is called the seif-standardized gross-error sensitivity.



Theorem
Assume a parametric model {Fp;60 € © C RP} with likelihood

scores function s(z,0) = gglog fo(x), a real constant ¢ > VP

and denote by T°) the solution for 8 of
S ge(a:,0) = 0, (13)
i=1

where

wf’a(xs 0) = Hc(A[s(z,0) - al), (14)

H,(z) =z -min {1; ﬁiﬁ} is the Huber function and A,a (respec-
tively a p X p matriz and a p-dimentional vector) are determined

by the equations:
f w29z, 0z, 0) dFy(z) = I (15)

[ vt#(a,00aFs(z) = 0. (16)

Then T is “admissible” B-robust in the sense that there is no
M-estimator with the standardized gross-error sensitivity (12)

bounded under ¢ and a smaller* asymptotic covariance matriz.

Proof: Hampel, Ronchetti, Rousseeuw, and Stahel (1986),

p-245.

Notice that the matrix A and the vector a depend in general

4“Smaller” means that the difference of the matrices is positive semidefinite.
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on the parameter 8 and should be viewed as A(0) and a(8). The
equation (13) can be written as

n

D v(ei6) =D A(6) [s(z50) — a(0)]- WA (z:;,8) = 0 (17)

i=1 =1

where

We(e:0) = mi“{ L AG) @ 0) - a(e)m} (18)

{(18) defines the weights given by the OBRE to each observation,
and can be used to detect the outlying observations.

Let us now interpret the result of the theorem. For efficiency
reasons, the optimal estimator has to be as similar as possible
to the MLE for the values of z in the bulk of data, i.e. at
non-influential values of z. Therefore, its 3-function equals the
scores function s for those values. On the other hand, since
the I'F is proportional to the -function, in order to obtain a
bounded IF', one has to truncate the scores function where the
bound ¢ is exceeded. This is achieved by means of the Huber
function. The matrix A and the vector ¢ can be viewed as La-
grange multipliers for the constraints resulting from a bounded
self-standardized gross-error sensitivity and Fisher consistency.
Finally, the constant ¢ is the bound on the I'F' and can be inter-
preted as the regulator between robustness and efficiency: for
a lower ¢ one gains robustness but looses efficiency and vice

versa. The most robust estimator can be obtained by choosing
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the lower bound ¢ = ,/p. On the other hand, ¢ = oo gives the
MLE (the most efficient but non robust). Typically, c is chosen
as to achieve a 95% efficiency at the model. This depends in

general on the model.

3 Application to personal income distribu-

tions

In this section we discuss the computation of the OBRE and
present an application to three models of PID. It should be
stressed that the results of section 2 can be applied to any income
model.

To compute the OBRE, one requires solving (13) under the
conditions (15) and (16). We propose here an algorithm based
on the Newton-Raphson method. The main idea is to compute
the matrix A and the vector a for a given ¢ by solving (15) and
(16). This is followed by a Newton-Raphson step for (13) given
these two matrices, and these steps are iterated until conver-
gence.

More precisely, the algorithm can be defined by the following

four steps:

Step 1: Fix a precision threshold #, an initial value for the param-

eter 0 and initial valuesa =0 and A = J %(9)_T where

J(8) = / s(z,8)s(z,0) dFy(z)

-



is the Fisher information matrix.

Step 2: Solve the following equations with respect to ¢ and A:

ATA = M
and
_ [ s(z,0)W.(z, 0)dFy(z)
YT T WAz, 0)dFy(z)
where

My = / [5(z,8) —a][s(z, 8) — ] W.(x, 6)FdFy(z) . k =1,2.

The current values of 8, a and A are used as starting values

to solve the given equations.
Step 3: Compute M; and A9 = M7 {237 [s(zy,0) —a]We(z;,6)}.
Step 4: If |A8| > 5 then  — 6+ A8 and return to Step 2, else stop.

The algorithm is convergent provided the starting point is
near to the solution. In the first step, we can take for instance
the MLE as initial value for the parameter. However, it can
be argued that, a more robust starting point like a trimmed
moment estimator or a moment estimate based on the median
and MAD?® would be preferable. An alternative is to still use the
MLE as the starting point but then compute an OBRE with a

SMAD denotes median absolute deviation and is often used as a robust estimator of the
standard error in a normal model.
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high value of the bound c and then use the estimate as starting
point for another more robust (lower value of ¢) estimator.

The choice of the initial values for the matrices A and « in
the second step is due to the fact that these values solve the
equations for ¢ = oo (corresponding to the MLE). Notice that
integration can be avoided in Step 2 by replacing Fj by its em-
pirical distribution function. This means replacing the integrals
with averages over the sample.

We now study the robustness properties of the MLE for the
Dagum’s, Gamma and Pareto model. The density (f3) and the

scores functions (s) are

i) Pareto law:

fo(z) =ax™@ g8 0<zp <2 <

s(2i) = | ~ Jog(a) + log(a0)

ii) Gamma distribution:

Q

far(z )“I‘(a) 2% e™ 0<z< o

log(A\) = T{a) + log(z
oz, ) = g(A) — [(a) + log(z) |

o
3 x

where o, A > 0, (@) = f° e v lduand ['«) = £ logI'(«).



iii) Dagum model type I:

1
Bf1, 4]

f(z) = A6z~ (1 4 /\:c"‘s)“ﬁ_l ,0< < 0

where 8,A > 0, 6§ > 1 and B|p,q] = fol 711 — )97 14t is
the Beta function.

e L=
—

~B[1, 8] — log(1 + Az~9%)
s(z;8,),68) = F— B+ Vg (19)
i s+ B+ 1))\%:(% — log(z) |

where

25 BIL Bl _ ) ¥ log(t)dt
B[1, 8] Jy t9-1de

It is easy to see that the MLE for these three models is not

é[laﬁ] =

robust. Indeed, when we compute for example the gross-error
sensitivity, we need the expression of the IF for the MLE of
these models. But since the IF' is proportional to s, we just
have to study the behaviour of the scores function to see that
the MLE is not robust (for the Dagum’s model see Victoria-
Feser 1993a). That means that one single point can carry the
MLE arbitrarily far. This is also the case for most of other PID
models.

In order to study the behaviour of the OBRE compared to
the MLE when the data are contaminated, we performed a sim-
ulation study. We chose to study the Pareto and the Gamma,

distritbution. To give a clearer picture of the effect of contam-
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ination on the analysis, we also compute an income inequality

measure. We consider here Theil’s index given by

IThea = E [E log (_x_)]
poo\p

where ¢ = E[z]. It is computed by taking the expectation at
the model with the estimated parameter.

The estimates of Theil’s index are given by

194

. 1 2
Irhei(&) = =— ~log ( )

& -1

for the Pareto distribution, and

ITheiI(&) = — 1 f‘(&) — log(d')

R

for the Gamma distribution. Moreover, for any parametric model
Fy, it can be shown that the I F' of the Theil’s index is propor-
tional to the IF of the estimators of the parameters (see Cowell
and Victoria-Feser 1993). Therefore, an unbounded IF of the
estimators of the pr:irameters implies an unbounded IF' of the
Theil’s index.

In order to compare numerically the MLE and the OBRE
when the models do not hold exactly, we performed a simula-
tion study by generating samples of size 200 according to the
following distributions. Data were generated with the random

number generator of Splus on SUN 3/60.
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1. Gamma model 1: non contaminated model {F, ,}, with

a=3and A =1.

2. Gamma model 2: model with 1% of very “bad” contami-
nation; the upper 1% of the observations is multiplied by
10.

3. Gamma model 3: model with 5% of contamination given

by {0.95F,x + 0.05F, 512}

4. Pareto model 1: non contaminated model {F, ., }, with o =

3 (and z¢ = 0.5).

9. Pareto model 2: model with 5% of contamination given by

{0.95Fa,20 + 0-05Fa,10xn}

In Tables 2 and 3, we give the bias (E[§ — 6]), the MSE
(E[f ~ 6]%) and the corresponding Theil’s index for the MLE
and the OBRE (with different values of ¢). The true values
of the Theil’s index are 0.095 for the Pareto distribution and
0.16 for the Gamma distribution. Al the computations were
performed on a VAX 8700 (with VMS operating system). All
the values of the bias in Table 2 have standard errors smaller
than 0.06. For those in Table 3, the standard errors are smaller
than 0.02.

As expected, the MLE is badly biased in the presence of a
small amount of contamination introduced in the model. For

instance the bias of & in the Gamma model becomes substantial
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with only 1% of contamination and the Theil’s index rises from
0.155 to 0.32. This is of course the worst type of contamination
for the MLE. However, the picture is the same in the more re-
alistic cases, namely the Gamma model 3 and the Pareto model
2. These situations represent the real case of a recording error
of some percentage of the observations (comma error).

On the other hand, we can see thé.t when the model holds
exactly, the OBRE shows the same performance as the MLE.
When an amount of contamination is introduced, the OBRE
is stable and much less influenced than the MLE. Its MSE are
much smaller than the one of the MLE (by a factor 10 in the
Gamma model and by a factor 5 for the Pareto law). Conse-
quently, the Theil’s index based on OBRE is also stable.

The sensitivity of the OBRE to contamination depends on the
choice of the bound c¢. As the results show, the lower the bound
c, the less is the OBRE sensitive to contamination. However,
lowering the bound c leads to an efficiency loss at the model. If
we measure the efficiency at the model by the ratio between the

traces of the asymptotic covariance matrices of the OBRE and

the MLE i.e.,

tr [J(G)_]]
tr [ [IF(z,0, H))IF(z,0, H)TdFy (:c)d:c]

the OBRE has 95% efficiency for a bound ¢ of about 3.5, and

18



60% efficiency for ¢ = 1.5 in the case of the Gamma model.
For the Pareto distribution, the OBRE has 95% efficiency for
¢ = 3.0 and 75% efficiency for ¢ = 1.5. These results pratically
do not change with respect to §. In our simulations we have
used different values for the bound ¢ to show the behaviour of
different OBRE. In an application, one can use a bound ¢ such

that 95% of efficiency is achieved.

4 Application to real data

In order to illustrate the usefulness of OBRE in the study of PID,
we apply the techniques presented in the former sections to a
real data set. Actually, we want to fit a Gamma model to the
empirical distribution of total family income in 1981 in the USA
using the Panel Study of Income Dynamics (PSID). We compare
the Gamma distribution with the Dagum’s model which has one
more parameter. The total family income is defined as the sum
of the total taxable income of head and spouse, the total transfer
income of head and spouse, the total taxable income of all other
members in the family unit and the total transfer income of all
other members in the family unit. Since the Gamma variable
is positive, we consider only the positive incomes. The sample
size is 5199,

As with the simulations, in order to give a more realistic inter-

pretation of the results, we also calculated an income inequality
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measure. This time we chose the Gini index. For the Gamma,
distribution (see Salern and Mount 1974) and the Dagum model
(see e.g. Dagum 1985), the Gini index is given by respectively

B[0.5;&, & + 1]

and i ) )
__LBres+1/6)
ot = AT B+ 1/3) 1)

where the incomplete Beta function is given by
to
Blto; , 8] = / el -l 0<ty <1 (22)
0

For the Gamma distribution, we first computed the MLE and
obtained the estimates & = 0.32 and A = 1.4 - 10-5. Figure 1
gives the histogram of the empirical distribution and the plots of
the estimated Gamma distribution by the MLE and the OBRE.
MLE not only estimates a zeromodal distribution but also gives
a very bad fit. The reason is that the MLE is almost completely
determined by the highest observations that represent only a
very small proportion of the data set. One could say that the
Gamma model is not the best choice for this particular example
and that a model with more than two parameters could deal with
heavy tails. However, when we compute the OBRE (¢ = 3.0)
we obtain the estimates & = 1.67 and A = 7.8 - 105 and this

produces an excellent fit.
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For the Dagum model, we found a small difference between
the MLE and the OBRE (¢ = 2.0). Actually, the MLE of B,A b
are respectively 0.41, 1.18-10" and 3.15, whereas the OBRE are
respectively 0.36, 1.22-10' and 3.13. If we look at the histogram
and the plot of the estimated densities (see figure 2) we see no
great difference in the fit: both estimators lead to & good fit.

If we compare the estimated Gini indexes, we remark that
the ones computed from the MLE are radically different for the
two models (0.320 for the Gamma and 4.120 for the Dagum
distribution). If however we look at the Gini index computed
from the OBRE, we find for the Gamma distribution a value of
0.4035 which is comparable the the value for the Dagum model.

So what can be concluded from this numerical example? First
we showed that the MLE can lead a statistical analysis to false
conclusions (especially, in our case, with the Gamma distribu-
tion). However, with the sample we have analysed, it seems that
the estimated (MLE) Dagum model fits the data quite well. It
should also be stressed that this model has one more parameter
which permits the model to accomodate the large observations.
But is it worthwhile to estimate one more parameter to accomo-
date a few observations? Perhaps not, especially when we know
that more parsimonious models estimated robustly give the same
results (at least with respect to the fit of the distribution and

when comparing derived inequality measures). Moreover, as we
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have seen in section 3, the Dagum model is not robust when es-
timated by the MLE, so that, with some data samples, it could

be that a robust estimator has to be preferred.

5 Conclusion

In this paper we show that robust methods can be used suc-
cessfully in the estimation of income distribution models. These
techniques still give reliable parameters estimates and inequal-
ity measures in the presence of deviations from the assumed
model. We limited our discussion to continuous data. However,
these methods can also be applied to truncated data and to
grouped data where truncation and grouping effects play an im-
portant role in misspecification. These cases have been treated

in Victoria-Feser (1993b) and are the subject of different papers.
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Parameter Bias MSE Theil’s
Index
MLE a -1.33 1.89 0.27
A -0.56 0.32
Robust o -0.20 0.11 0.17
A -0.09 0.02

Table 1: Effects of deviations from the model on MLE and a robust
estimator

Bias(MLE) | Bias(OBRE) | Bound ¢ | MSE | Theil’s
Index
« 0.05 0.07 | 0.155
(1) A 0.01 0.01
no conta-
mination o 0.06 c=4.0 | 0.07 | 0.155
A 0.02 0.01
a -1.62 2.65 | 0.320
(2) x| -0.64 0.41
1% con-
tamination | & 0.01 ¢c=50 | 007 | 0.157
A 0.01 0.01
a 0.12 c=1.5 | 0.17 0.152
A 0.04 0.02
o -1.72 3.09 0.342
(3) A -0.70 0.5
5% con-
tamination | « -0.63 ¢c=4.0 | 0.51 6.196
A -0.28 0.09
o -0.22 c=15 | 0.16 | 0.169
A -0.11 0.03

Table 2: Numerical comparison between the MLE and the OBRE for
the Gamma model



Bias(MLE) | Bias(OBRE) | Bound ¢ | MSE | Theil’s

Index

(4) a -0.01 0.05 | 0.095
no conta-

mination o -0.01 e=20 | 0.05 | 0.095

(5) a -0.75 0.61 | 0.212

5% con-
tamination | o -0.47 ¢c=3.0 | 0.28 | 0.151
o -0.24 ¢=15 | 0.11 | 0.118

Table 3: Numerical comparison between the MLE and the OBRE for
the Pareto law



[1] MLE for the Gamma distribution {-.-)
[2] OBRE for the Gamma distribution {_)

Figure 1: MLE and OBRE of the Gamma distribution on PSID data
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[2] OBRE for the Dagum mode! type | {_)

Figure 2: MLE and OBRE of the Dagum model on PSID data



