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Abstract

For linear processes, semiparametric estimation of the memory parameter, based
on the log-periodogram and local Whittle estimators, has been exhaustively examined
and their properties are well established. However, except for some speci�c cases, little
is known about the estimation of the memory parameter for nonlinear processes. The
purpose of this paper is to provide general conditions under which the local Whittle esti-
mator of the memory parameter of a stationary process is consistent and to examine its
rate of convergence. We show that these conditions are satis�ed for linear processes and
a wide class of nonlinear models, among others, signal plus noise processes, nonlinear
transforms of a Gaussian process �t and EGARCH models. Special cases where the es-
timator satis�es the central limit theorem are discussed. The �nite sample performance
of the estimator is investigated in a small Monte-Carlo study.
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1 Introduction

Consider a weakly stationary process (Xt)t2Z (abbreviated as (Xt) in what follows), which
is observed at times t = 1; 2; :::; n, with an unknown mean �, variance �2 and spectral
density f(�), such that

f(�) = j�j��0g(�); j�j � �; (1.1)

where
g(�)! b0; as j�j ! 0;

j�0j < 1 and 0 < b0 <1. When �0 = 0, we say that (Xt) has short memory. If 0 < �0 < 1,
we say that the process has long memory, whereas when �1 < �0 < 0, it is said that the
process is antipersistent.

When the spectral density f (�) in (1.1) is correctly speci�ed by a �nite dimensional
parameter, say g (�) � g(�; �0), then under some additional regularity assumptions, the
parameters �0 and �0 can be consistently estimated by the parametric Whittle estimator.
Hannan (1973) proved consistency of this estimator for a wide class of short memory linear
and nonlinear time series (Xt). In the case of Gaussian and linear processes, the Whittle
estimator is known to be n1=2-consistent and asymptotically normal. For �0 � 0, this was
shown by Fox and Taqqu (1986), Dahlhaus (1989) and Giraitis and Surgailis (1990). The
case when �0 can be negative has been recently examined by Velasco and Robinson (2000).

Semiparametric estimation of the memory parameter �0 requires less a priory known
information about the spectral density f(�). Besides (1.1), it imposes no additional para-
metric speci�cation or restrictions on f(�) (or g(�)) outside the frequency � = 0. A number
of semiparametric estimators of �0 has been developed for Gaussian and linear processes.
Among others, we can mention the well-known log-periodogram and local Whittle estima-
tors introduced by Geweke and Porter-Hudak (1983) and Künsch (1987), respectively, and
explored by Robinson (1995a, b). See also Moulines and Soulier (1999) and Hurvich and
Brodsky�s (2001) broad-band estimators and exact local Whittle estimation method by Shi-
motsu and Phillips (2005), the latter being also valid for non-stationary time series. For a
recent review on semiparametric estimators of the memory parameter and their statistical
properties see Moulines and Soulier (2003).

As a rule, semiparametric estimators have a slower rate of convergence than paramet-
ric ones and are pivotal, i.e. their asymptotic distribution does not depend on unknown
parameters. For example, if (Xt) is a fourth order stationary linear sequence with spectral
density (1.1) such that g(�) = b0+O(�

2), as �! 0, then Robinson�s (1995b) results imply
that, the local Whittle estimator b�, de�ned by (2.1) below, has an asymptotic standard
normal distribution: p

m(b�� �0) d�! N(0; 1); as n!1, (1.2)

where m = o(n4=5 log�2 n). The existing semiparametric estimation theory is based on the
assumption that (Xt) is a linear process. However, in some empirical applications, e.g.
�nancial econometrics, nonlinear models are rather common, and hence the practitioner
faces the question of to which extend results like (1.2) are still valid. For nonlinear models
some results for the log-periodogram estimator for stochastic volatility models were obtained
by Deo and Hurvich (2001), Sun and Phillips (2003) and for the local Whittle estimator by
Hurvich, Moulines and Soulier (2005) and Arteche (2004).
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The main purpose of this paper is to derive, for a wide class of time series models, gen-
eral and easy to check conditions, under which the local Whittle estimator is a consistent
estimator of the memory parameter �0 and to investigate its rate of convergence. In partic-
ular, we show that our results are valid for nonlinear transformations G(�t) of a Gaussian
process (�t), the EGARCH process and for a signal plus noise type process Xt = Yt + Zt
when the memory parameter of the noise (Zt) is smaller than the memory parameter of the
signal (Yt). The latter model extends the so-called stochastic volatility models, see Deo and
Hurvich (2001) and Hurvich, Moulines and Soulier (2005).

Furthermore, from our results we can draw two main conclusions. Firstly, for nonlinear
time series the rate of convergence of the local Whittle estimator b� to �0 is typically slower
than in linear or Gaussian models, and hence to achieve the same level of accuracy, a larger
sample is required. Secondly, the central limit theorem (1:2) with m = o(n4=5) might no
longer hold. Thus, estimation and testing procedures designed for linear processes that are
based on (1.2) might not be appropriate for nonlinear ones.

The remainder of the paper is as follows. Section 2 presents the main results of the
paper, whereas in Sections 3 and 4 we discuss various applications and examples. Sections
5 and 6 contain the proofs. Finally, a Monte-Carlo study in Section 7 examines the �nite
sample performance of the estimator.

2 Consistency of the local Whittle estimator

2.1 Consistent estimation

To estimate �0 we shall use the local Whittle estimator b�, see Künsch (1987) and Robinson
(1995b), de�ned as the minimizer

b� � b�n = argmin[�1;1]Un(�); (2.1)

of the local objective function

Un(�) = log

0@ 1

m

mX
j=1

��j In(�j)

1A� �

m

mX
j=1

log �j

= log

0@ 1

m

mX
j=1

j�In(�j)

1A� �

m

mX
j=1

log j:

Here �j = 2�j=n, j = 1; : : : ;m; are the Fourier frequencies,

In(�j) = (2�n)
�1

�����
nX
t=1

Xte
it�j

�����
2

is the periodogram of the variables Xt, t = 1; ::; n and m = mn is an integer bandwidth
parameter such that

m!1; m = o(n); as n!1.
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Note that in semiparametric models, the spectral density function has property (1.1)
and is only locally "parameterized" around � = 0 by the parameters �0 and b0. There-
fore, contrary to the parametric Whittle estimation, which employs the full spectrum of
frequencies, the local Whittle estimator uses only the �rst m Fourier frequencies.

The main aim of this subsection is to derive a semiparametric analog to Hannan�s (1973)
result, who showed that if the process (Xt) is ergodic and has parametrically speci�ed
spectral density f(�), then, under mild assumptions on f(�), the unknown parameters can
be consistently estimated by the parametric Whittle estimator.

As in the case of the parametric Whittle estimator, the local Whittle estimator is
based on the whitening principle of the normalized periodogram at the Fourier frequen-
cies. Roughly speaking, it means that the sequence

�j =
In (�j)

f (�j)
; 1 � j � m;

behaves as if �j were independent and identically distributed (i.i.d.) random variables with
unit mean, which is well-known when (Xt) is an i.i.d. Gaussian sequence. However, when
(Xt) is a non-Gaussian or a sequence of dependent random variables, then the �j�s are
neither independent nor uncorrelated random variables. In spite of that, under assumption
(1.1), Lemma 6.3 below implies that

E�j = 1 + o(1); as j !1, n!1; (2.2)

uniformly in 1 � j � m, and under some additional regularity assumptions,

Cov(�j ; �k)! 0 (2.3)

when j 6= k and j; k !1. See Lahiri (2003), for su¢ cient and necessary conditions for the
validity of (2.3).

One of the main consequences of (2.2) and (2.3) is that (�j) satis�es a weak law of large
numbers (WLLN):

m�1
mX
j=1

�j
P�! 1; as n!1. (2.4)

Note that (2.4) indicates that (�j) behaves as an "ergodic" sequence with mean 1.
Next, setting

��j =
In(�j)

b0�
��0
j

; 1 � j � m; (2.5)

it follows from (1.1) that

��j = �jb
�1
0 g(�j) = �j(1 + o(1)); as n!1,

uniformly in 1 � j � m. Therefore, (2.4) is equivalent to the WLLN property of (��j ):

m�1
mX
j=1

��j
P�! 1; as n!1. (2.6)
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Indeed, by (2.2),

m�1E
��� mX
j=1

(�j � ��j )
��� = o(m�1)

mX
j=1

E�j = o(1);

so that convergence (2.4) implies (2.6). On the other hand, it is also clear that (2.6) implies
(2.4). In addition, (2.2) shows that

E��j � C; (2.7)

uniformly in 1 � j � m; where C is a �nite constant. Note that the variables �j and �
�
j are

invariant with respect to the mean of (Xt) since the periodogram In(�j) is self-centering at
the Fourier frequencies �j , 1 � j � n� 1.

To derive the consistency of the estimator b� we introduce the following assumptions:
Assumption A. (Xt) is a weakly stationary sequence with spectral density f(�) satis-

fying (1.1).
Assumption B. The renormalised periodograms ��j , 1 � j � m satisfy the WLLN

property (2.6), for any sequence m = mn !1 such that m = o(n).

The following theorem shows that if ��j ; 1 � j � m, satis�es Assumption B then b� is a
consistent estimate of �0.

Theorem 2.1 Suppose that (Xt) satis�es Assumptions A and B. Then, as n!1,

b� P�! �0: (2.8)

Moreover, b�� �0 = �Qm(1 + oP (1)) +OP (m�1 logm); (2.9)

where

Qm = m�1
mX
j=1

(log(j=m) + 1)b�10 ��0j In(�j): (2.10)

The proof of Theorem 2.1 is based on (2.6) and (2.7). In fact, a closer look at the proof
shows that for the consistency of b� the requirement of stationarity of (Xt) is not needed,
as the following proposition indicates.

Proposition 2.1 Assume that X1; X2; :::; Xn; n � 1, is a sequence of random variables. If
there exist �0 2 (�1; 1) and b0 > 0 such that ��j ; 1 � j � m satisfy assumptions (2.6) and
(2.7), then Theorem 2.1 holds.

Proof of Theorem 2.1 is based only on properties (2.6) and (2.7) of (��j ), and therefore
the proof of Proposition 2.1 is a standard extension of that of Theorem 2.1.

It is worth observing that Proposition 2.1 indicates that for consistency (2.8) only the
asymptotic stationarity of (Xt) is required. The classical example of non-stationary process
(Xt) satisfying (2.6) and (2.7) is a model generated by

Xt = (1� L)��0=2 utI (t > 0) ;
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where (ut) is a weakly dependent process.
The following theorem provides an expansion for b� � �0 which is helpful for analysing

the rate of convergence and deriving the asymptotic distribution of the estimator b�. We
�rst introduce

Assumption T(�0; �). There exist �0 2 (�1; 1), � 2 (0; 2], �nite b0 > 0 and b1 6= 0 such
that the spectral density f has property

f(�) = j�j��0(b0 + b1j�j� + o(j�j�)); as �! 0: (2.11)

The parameter � characterizes the smoothness of the function g(�) in (1.1). For example,
for Autoregressive Fractionally Integrated Moving Average (ARFIMA(p; �0=2; q)) models,
(2.11) holds with � = 2.

Theorem 2.2 Suppose that (Xt) satis�es Assumption B. Then under Assumption T (�0; �),
we have that

b�� �0 = �(m=n)�(b1=b0)B� � (Qm � EQm)(1 + oP (1)) (2.12)

+oP (m
�1=2 + (m=n)�);

where B� = (2�)��=(� + 1)2:

Next, we present a simple su¢ cient condition which implies Assumption B. Denote

�m = max
1�k�m

E
��� kX
j=1

(��j � E��j )
���:

First note that (2.7) implies �m � Cm, where C denotes a generic constant in what follows.
The next proposition shows that �m = o(m) implies Assumption B, which together with
(1.1), as Theorem 2.1 indicates, is a su¢ cient condition for the consistency of the estimatorb�.
Proposition 2.2 Suppose that (Xt) satis�es Assumption A and that �m = o(m). Then
(Xt) satis�es Assumption B, and

b� P�! �0; as n!1:

2.2 Consistency rate

In this section we examine the rate of convergence of the estimator b�.
Proposition 2.3 Suppose that the spectral density function of (Xt) satis�es Assumption
T(�0; �) and �m = o(m= log2 n). Then

b�� �0 = OP

�
�mm

�1 logm+m�1=2 + (m=n)�
�
; (2.13)
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and Qm � EQm in (2.12) can be written as

Qm � EQm = Vm + oP ((m=n)
�); (2.14)

where

Vm = m�1
mX
j=1

(log(j=m) + 1)(�j � E�j):

The last proposition shows that the rate of convergence of b� is determined by the sto-
chastic order of magnitude of Qm�EQm which can be controlled by the order of magnitude
of �m.

Our next step is to �nd simple su¢ cient conditions in terms of (Xt), which imply that
�m = o(m). To that end, let (Xt) be a 4-th order stationary sequence. Denote the 4-th order
cumulant of the variables Xt1 ; Xt2 ; Xt3 ; Xt4 by cX(t1; :::; t4) := Cum(Xt1 ; Xt2 ; Xt3 ; Xt4),
de�ned by

cX(t1; :::; t4) = E[Xt1Xt2Xt3Xt4 ]� E[Xt1Xt2 ]E[Xt3Xt4 ]� E[Xt1Xt3 ]E[Xt2Xt4 ]

�E[Xt1Xt4 ]E[Xt2Xt3 ]:
Recall that without loss of generality we can assume that EXt = 0, and, by 4-th order
stationarity, cX(t1; :::; t4) = cX(t1 � t4; t2 � t4; t3 � t4; 0).

Denote

D�
n =

nX
t1;t2;t3=�n

jcX(t1; t2; t3; 0)j;

D��
n = max

jt1j;jt2j�n

nX
u=�n

jcX(t1; t2 + u; u; 0)j:

Note that for a wide class of 4-th order stationary short memory sequences (Xt), the 4-th
order cumulant satis�es the condition

D�
1 =

1X
t1;t2;t3=�1

jcX(t1; t2; t3; 0)j <1: (2.15)

For example, (2.15) holds for stationary invertible ARMA(p; q) models. Observe also that
EX4

t � C implies that
D��
n � Cn:

We shall use D�
n and D

��
n to estimate �m and in particular to derive conditions which

imply �m = o(m):

Lemma 2.1 Suppose that (Xt) is a 4-th order stationary sequence whose spectral density
function satis�es (1.1) with �0 2 (�1; 1). Then, as n!1,

m�1�m = O
�
m�1=2 +

�D�
n

n

�1=2�m
n

��0�
: (2.16)

Moreover, if 0 � �0 < 1, then

m�1�m = O
�
m�1=2 +

�D��
n

n

�1=2� n
m

�1��0
log n

�
: (2.17)
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Combining Lemma 2.1 and Proposition 2.3 we obtain the following corollary.

Corollary 2.1 Suppose that (Xt) is a 4-th order stationary sequence whose spectral den-
sity f satis�es Assumption T(�0; �). Then, as n!1,

b�� �0 = OP

�
m�1=2 logm+ (m=n)� + rn

�
;

where
(i) rn = 0, if �0 = 0 and D�

1 <1,
(ii) rn = n1=2m�1 logm, if �0 2 (�1; 0) and D�

1 <1,
(iii) rn =

�
D�
n
n

�1=2�
m
n

��0
log2 n; if �0 2 (0; 1),

(iv) rn =
�
D��
n
n

�1=2�
n
m

�1��0
log3 n, if �0 2 (0; 1),

assuming that in (ii)-(iv), m = mn, D�
n and D

��
n are such that

rn ! 0; as n!1:

Remark 2.1 In Corollary 2.1, rn ! 0 in case (ii) if m is such that n1=2m�1 logm = o(1),
and in case (iii) if D�

n = o(n= log4 n). In case (iv), rn ! 0 holds if D��
n = O(n
= log6 n) for

some 0 � 
 < 1 and m is such that n(1+
)=2m�1 = O(1):
If (Xt) has short memory, i.e. �0 = 0 and D�

1 < 1, then (i) shows that b� =

OP

�
m�1=2 logm + (m=n)�

�
, whereas (iv) indicates, that in long memory case �0 2 (0; 1),

rn ! 0 and the estimator b� is consistent provided that D��
n = O(n
) (0 � 
 < 1) and m is

chosen large enough.

Proofs of Theorems 2.1, 2.2, Propositions 2.2, 2.3 and Lemma 2.1 are given in Section 5.
We �nish the section showing how our general results hold for linear processes.

2.3 Linear process: an example

Semiparametric estimation of the memory parameter of a linear sequence (Xt) has been
well investigated, see Robinson (1995a, b). It is nevertheless of interest to show that our
general results in the previous subsection hold true for a linear sequence. It is said that
(Xt) is a linear sequence if

Xt =
1X
j=0

aj"t�j ;
1X
j=0

a2j <1; (2.18)

where the "j are i.i.d. random variables with zero mean and unit variance.

Under Assumption A, it follows from Robinson (1995b, Theorem 1) that b� P�! �0. We
now show that under these conditions, the consistency of b� is a consequence of our Theorem
2.1.

Proposition 2.4 Suppose that a linear sequence (Xt), given by (2.18), satis�es Assump-
tion A, and m = o(n). Then (Xt) satis�es Assumption B, so that

b� P�! �0; as n!1:
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Proof of Proposition 2.4. To show that (Xt) satis�es Assumption B, it su¢ ces to
examine (2.4), since under Assumption A, (2.4) implies (2.6), see Subsection 2.1. Write

kX
j=1

�j =

kX
j=1

2�I�(�j) +

kX
j=1

(�j � 2�I�(�j)) =: pn;1(k) + pn;2(k); 1 � k � m; (2.19)

where

I"(�j) = (2�n)
�1
��� nX
t=1

"te
it�j
���2:

Then (2.4) follows if, as k !1,

k�1pn;1(k)
P�! 1; k�1pn;2(k)

P�! 0: (2.20)

Under Assumption A, Robinson (1995b, Relation (3.17)) derived the bound

Ej�j � 2�I�(�j)j � C(j�1 log j)1=2;

which holds uniformly in 1 � j � m. Thus

Ejk�1pn;2(k)j � Ck�1=2(log k)1=2 ! 0; (2.21)

which implies that k�1pn;2(k)
P�! 0 by Markov inequality. Similarly, proceeding as in

Robinson (1995b, pp. 1637-1638), it can be shown that k�1pn;1(k)
P�! 1; which completes

the proof of (2.20). Since (Xt) satis�es Assumptions A and B, Theorem 2.1 implies thatb� P�! �0.

Next proposition provides bounds for D��
n and �m:

Proposition 2.5 Let (Xt) be a linear sequence (2.18) and E"40 <1. Then

D��
n � C; n � 1: (2.22)

In addition, if (Xt) satis�es Assumption T(�0; �) and (2.25) below holds, then

m�1�m = O
�
m�1=2 log1=2m+ (m=n)�

�
; as n!1. (2.23)

Proof of Proposition 2.5. First we show that D��
n � C. To that end, set av = 0 for

v < 0. Then, using the equality

cX(0; t1; t2; t3) = (E"
4
0 � 3)

1X
v=�1

avav+t1av+t2av+t3 ;

we conclude that

jD��
n j � C max

jt1j;jt2j�n

nX
u=�n

1X
v=�1

javav+t1av+t2+uav+uj

� C max
jt1j�n

1X
v=�1

javav+t1 j
1X

u=�1
a2u � C

� 1X
u=�1

a2u

�2
<1;

8



which proves (2.22).
It remains to show (2.23). Using (2.19) we can write

pn(k) �
kX
j=1

��j = pn;1(k) + pn;2(k) +Rn(k); 1 � k � m;

where Rn(k) =
Pk
j=1(�

�
j � �j): Under Assumption A,

Ej��j � �j j � j1� b�10 g(�j)jE�j � Cj1� b�10 g(�j)j � C(m=n)� (2.24)

which implies that

EjRn(k)� ERn(k)j � 2EjRn(k)j � Cm(m=n)�:

Next, proceeding as in the proof of Robinson�s (1995b) Theorem 2, it is easily seen that,
uniformly in 1 � k � m;

Ejpn;1(k)� Epn;1(k)j � Cm1=2;

whereas (2.21) implies that

Ejpn;2(k)� Epn;2(k)j � 2Ejpn;2(k)j � Cm1=2 log1=2m:

The last three estimates imply that

�m � max
1�k�m

Ejpn(k)� Epn(k)j � C(m1=2 log1=2m+m(m=n)�);

to prove (2.23).

Robinson (1995b) showed that if a linear sequence (Xt) satis�es Assumption T(�0; �)
with 0 < � � 2, E"40 <1 and

(d=d�)�(�) = O(j�(�)j=�); as �! 0+; (2.25)

where �(�) =
P1
j=0 aje

ij�, then

m1=2(b�� �0) d�! N(0; 1); as n!1, (2.26)

for m!1 such that m = o(n2�=(1+2�) log�2 n):
Proposition 2.5 implies that if m = o(n= log2=� n) then �m = o(m= log2m), and there-

fore our Theorem 2.2 together with (2.14) yield the expansionb�� �0 = �Vm � (m=n)�(b1=b0)B� + oP (m�1=2 + (m=n)�); (2.27)

which is valid when m = o(n= log2=� n). Moreover, EVm = 0 and by Robinson�s (1995b)
Theorem 2,

m1=2Vm
d�! N(0; 1); as n!1: (2.28)

Relations (2.27) and (2.28) imply the convergence (2.26) if m = o(n2�=(1+2�)).
On the other hand, if n2�=(2�+1)=m! 0 and m = o(n= log2=� n), they yield convergence

to a deterministic limit,

(n=m)�(b�� �0) P�! �(b1=b0)B�; (2.29)

whereas, if m = n2�=(2�+1), we then have

m1=2(b�� �0) d�! N
�
�(b1=b0)B� ; 1

�
:

9



3 Signal plus noise process

In this section we discuss estimation of the memory parameter of a stationary process
when it is observed with noise. More speci�cally, let Xt = Yt + Zt, t 2 Z where (Yt)
denotes the signal and (Zt) stands for the noise. This type of models (with an i.i.d. noise)
has drawn much attention as they arise after taking the logarithmic transformation of the
stochastic volatility model, introduced by Taylor (1994) and explored by Harvey, Ruiz and
Shephard (1994). We shall show that the local Whittle estimator of the memory parameter
of the signal, denoted by �Y , remains consistent in the presence of a noise whose memory
parameter is smaller than that of the signal. However, the noise can signi�cantly increase
the �nite-sample bias of the estimator of �Y , so that larger samples are required to achieve
the same precision as in estimation without the noise (Zt). In case of Gaussian or linear
signal similar observations were made by Hurvich, Moulines and Soulier (2005), Arteche
(2004), and by Deo and Hurvich (2001) and Sun and Phillips (2003) for the log-periodogram
estimator, assuming that the signal and the noise are independent processes.

Our approach does not assume that the signal is a Gaussian or linear process and the
noise is an i.i.d. sequence as well as it does not require that the signal is independent of the
noise, which are common assumptions in the literature.

3.1 The sum of a Gaussian sequence and an i.i.d. Gaussian noise.

We �rst start looking at the rather simple model of a Gaussian signal (Yt) and i.i.d. noise
which corresponds to the model examined by Deo and Hurvich (2001). This rather simple
example illustrates that adding a Gaussian i.i.d. noise to a Gaussian stationary sequence
(Yt) can signi�cantly increase the bias of the local Whittle estimate.

Consider the sequence (Xt),
Xt = Yt + Zt; (3.1)

where (Yt) is a Gaussian sequence satisfying Assumption T(�Y ; 2) and (Zt) is a sequence of
i.i.d. Gaussian random variables with zero mean and unit variance uncorrelated with (Yt).
Denote by fX(�), fY (�) and fZ(�), the spectral density functions of the sequences (Xt),
(Yt) and (Zt), respectively.

Assume that �Y > 0. Then, because fY (�) = j�j��Y (b0+ b1j�j2+o(j�j2)), �Y 2 (�1; 1)
and fZ(�) = 1=(2�), we obtain that

fX(�) = fY (�) + fZ(�) = j�j��Y (b0 + b01j�j�Y +O(j�j2)); as �! 0;

where b01 = 1=2�. Thus (Xt) satis�es Assumption T(�X ; �) with memory parameter �X =
�Y and smoothness parameter � = �Y . Moreover, the Gaussian sequence (Xt) with spectral
density fX can be written as a linear sequence (2:18), due to a well-known result by Cramér.
Results (2.28) and (2.29), obtained for a linear process, imply that the central limit theorem

m1=2(b�X � �X) d�! N(0; 1) (3.2)

holds whenm = o(n2�Y =(1+2�Y )) which requiresm to be small when �Y is close to 0, leading
to wider con�dence intervals, whereas if n2�Y =(1+2�Y )=m! 0 andm = o(n= log2=�Y n), then
the bias terms dominates and

(n=m)�Y (b�X � �X) P�! �(b01=b0)B�Y :
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On the other hand, if �Y < 0, then (Zt) is the signal and we can write

fX(�) = b01 + b0 j�j
��Y + o(j�j��Y );

which shows that (Xt) satis�es Assumption T(�X ; �) with �X = 0 and � = ��Y , and
expansion (2:27) implies that b�X ��X = OP

�
m�1=2 + (m=n)��Y

�
. The previous relations

show that in case of �Y 6= 0,

b�X � �X = OP

�
m�1=2 + (m=n)j�Y j

�
:

Therefore, for m such that n� � m � n1�� for some 0 < � < 1, there exists �0 > 0 such thatb�X � �X = OP (n
��0).

3.2 Estimating the memory parameter of a signal plus noise process

In this subsection we extend the results of the previous subsection to a more general situation
when the signal may be correlated with the noise which can be a stationary short or long
memory sequence.

More speci�cally, the following theorem shows that the local Whittle estimate is n��

consistent for some � > 0 for a wide class of signal plus noise processes.

Theorem 3.1 Suppose that
Xt = Yt + Zt; t 2 Z;

where (Yt) and (Zt) are covariance stationary processes. Assume that (Yt) satis�es Assump-
tions A and B with parameters b0 = cY and �0 = �Y , and the spectral densities fY and fZ
of (Yt) and (Zt) satisfy

fY (�) = cY j�j��Y + o(j�j��Y ); fZ(�) � cZ j�j��Z ; as �! 0;

with �1 < �Z < �Y < 1:
Then, as n!1,

(i) b�X P�! �Y : (3.3)

Moreover,

b�X � �Y = (b�Y � �Y )(1 + oP (1)) +OP�(m=n)(�Y ��Z)=2 +m�1 logm
�

(3.4)

where b�Y denotes the local Whittle estimator of (Yt) if the sequence (Yt) were observed.
(ii) If (Yt) satis�es Assumption T(�Y ; �) and �m � Cm
 for some 0 < 
 < 1, then

b�X � �Y = OP

�
m
�1 logm+m�1=2 + (m=n)� + (m=n)(�Y ��Z)=2

�
: (3.5)

(iii) If (Yt) is a linear process satisfying Assumption T(�Y ; 2) and m = o(n= log n), then

b�X � �Y = OP (m
�1=2 + (m=n)(�Y ��Z)=2): (3.6)

In addition,

m1=2(b�X � �Y ) d�! N(0; 1) (3.7)

if (2.25) holds and m = o(n2r=(2r+1)), where r = (�Y � �Z)=2.
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Remark 3.1 Theorem 3.1 shows that if (Xt) can be decomposed into a signal plus noise
process Xt = Yt + Zt where the signal (Yt) satis�es Assumption B and has larger memory
parameter than the noise (Zt), then under unrestricted assumptions on the noise (Zt), b�X is
a consistent estimator of the memory parameter �Y of the signal. Recall that Assumption
B is satis�ed by linear and Gaussian processes, see Proposition 2.4. Theorem 3.1 does not
impose any restrictions on the dependence between the signal (Yt) and the noise (Zt). In
particular, if (Yt) and (Zt) are uncorrelated, then the spectral density function of (Xt) can
be written as fX = fY + fZ which implies that the memory parameter �X of (Xt) equals
�Y .

Proof of Theorem 3.1. (i) By Proposition 2.1, (3.3) is shown if (Xt) satis�es
relations (2:6) and (2.7) with parameters b0 = cY and �0 = �Y . Denote wX(j) =
(2�n)�1=2

Pn
t=1Xte

it�j , IX(�j) = jwX(j)j2 and write

IX(�j) = jwY (j) + wZ(j)j2 = IY (�j) + vj ; (3.8)

where
jvj j � IZ(�j) + 2jwY (j)j jwZ(j)j:

Then, we can write

m�1
mX
j=1

c�1Y ��Yj IX(�j) := Sn;1 + Sn;2;

where

Sn;1 = m�1
mX
j=1

c�1Y ��Yj IY (�j); Sn;2 = m�1
mX
j=1

c�1Y ��Yj vj :

Since (Yt) satis�es Assumption B, then (2.6) implies that Sn;1
P�! 1. On the other hand,

by Lemma 6.3 and the assumptions imposed on fZ(�) and fY (�),

Ejvj j � C
�
EIZ (�j) + 2 [EIY (�j)EIZ (�j)]

1=2
�

(3.9)

� C
�
fZ (�j) + f

1=2
Y (�j) f

1=2
Z (�j)

�
� C�

�(�Z+�Y )=2
j ;

uniformly in 1 � j � m, because �Z < �Y . Therefore

EjSn;2j � Cm�1
mX
j=1

��Yj Ejvj j � C(m=n)(�Y ��Z)=2 ! 0;

as n ! 1, because �Z < �Y and m = o(n). Thus, by Markov inequality, Sn;2
P�! 0 and

hence Sn;1 + Sn;2
P�! 1, which shows that (Xt) satis�es (2.6) of Assumption B.

Since (Yt) satis�es Assumption A, relations (3.8), (3.9) and (2.7) yield that

��Yj EIX(�j) � C

for all 1 � j � m, and hence (Xt) satis�es condition (2.7). This completes the proof of
(3.3).
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Next we show (3.4). Since (Xt) satis�es the assumptions (2.6) and (2.7) with parameters
cY and �Y , then Proposition 2.1 holds true and (2.9) implies that

b�X � �Y = �Qm(1 + oP (1)) +OP (m�1 logm); (3.10)

where

Qm = m�1
mX
j=1

(log(j=m) + 1)c�1Y ��Yj IX(�j)

= m�1
mX
j=1

(log(j=m) + 1)c�1Y ��Yj IY (�j) +OP ((m=n)
(�Y ��Z)=2);

in view of (3.8) and (3.9). Applying relation (2.9) of Theorem 2.1 to the �rst term of the
displayed equality, it follows that

Qm = �(b�Y � �Y )(1 + oP (1)) +OP�(m=n)(�Y ��Z)=2 +m�1 logm
�
;

where b�Y denotes the local Whittle estimator as if the sequence (Yt) were observed. This
and (3.10) prove (3.4).

(ii) Since �m = O(m
) and (Yt) satis�es Assumption T(�Y ; �), then b�Y � �Y =
OP (m


�1 logm +m�1=2 + (m=n)�) by (2.13) of Proposition 2.3 which together with (3.4)
implies (3.5).

(iii) If (Yt) is a linear sequence satisfying Assumption T (�Y ; 2), then in view of (2.27),
it follows that b�Y ��Y = OP (m

�1=2+(m=n)2) when m = o(n= log n), which together with
(3.4) yields (3.6), whereas (3.7) follows applying (3.2) in (3.4).

4 Applications

In this section we discuss estimation of the memory parameter of nonlinear transformations
of a stationary Gaussian sequence and of some stochastic volatility models. We show that
the latter processes can be decomposed into a signal plus noise process, so that the results
of Section 3 apply.

4.1 Nonlinear functions of a stationary Gaussian sequence

Suppose that
Xt = G(�t); t 2 Z; (4.1)

where (�t) is a stationary Gaussian sequence with zero mean and variance 1, and G : R! R
is a measurable function such that EG(�t)

2 <1 and EG(�t) = 0. Then, Xt can be written
as the sum

Xt =
1X
k=k0

ck
k!
Hk(�t); (4.2)

where Hk(�) is the k-th Hermite polynomial and ck = E[G(�t)Hk(�t)], see Dobrushin and
Major (1979) and Taqqu (1979). The minimal integer k0 � 1 such that ck0 6= 0 is called
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the Hermite rank of G. We assume that the Gaussian sequence (�t) has spectral density f�
and denote r�(t) = E[�t�0]:

Using the well-known properties of Hermite polynomials,

E[Hk(�t)Hk(�s)] = k!rk� (t� s) (4.3)

E[Hk(�t)Hm(�s)] = 0 if k 6= m; (4.4)

we have that

rX(t) := Cov(Xt; X0) =

1X
k=k0

c2k
k!
rk� (t); EX2

0 =
1X
k=k0

c2k
k!
<1: (4.5)

Therefore, because r�(t) ! 0 (t ! 1), we conclude that the covariance function of (Xt)
satis�es

rX (t) = rk0� (t)

 
c2k0
k0!

+ o(1)

!
; as t!1: (4.6)

When
P
t2Z jr�(t)jk0 < 1, the last displayed equality implies that

P
t2Z jrX(t)j < 1,

so that (Xt) behaves as a short memory process, whereas if
P
t2Z jr�(t)jk0 = 1, thenP

t2Z jrX(t)j =1 and (Xt) behaves as a long memory process.

Assumption SM. Under short memory, (Xt) has an absolutely summable autocovari-
ance function: X

t2Z
jrX(t)j <1: (4.7)

Assumption LM. Under long memory, the spectral density fX(�) of (Xt) satis�es

fX(�) = b0j�j��X (1 + o(1)); as �! 0, (4.8)

with 0 < �X < 1 and b0 > 0. In addition, we assume that the spectral density f� of the
Gaussian sequence (�t) has property

f�(�) = j�j���g�(�) = j�j���(b0;� + b1;��2 + o(�2)); as �! 0, (4.9)

where 0 < �� < 1 and b0;� 6= 0, and the covariance function of (�t) satis�es

r�(t) � c1t
�1+�� ; as t!1, (c1 6= 0). (4.10)

It is well-known that if g�(�) is a su¢ ciently smooth function, then (4.9) implies (4.10),
see e.g. Lemma 4 in Fox and Taqqu (1986) and Yong (1974), whereas, (4.9) implies (4.8),
see discussion below. Here "an � bn" means that an=bn ! 1, as n!1.

Observing that (4.3) implies that

E[Hk(�t)Hk(�0)] = k!rk� (t) = k!

Z �

��
ei�tf (�k)(�)d�;

where

f (�k)(�) =

Z �

��
:::

Z �

��
f�(�� x1 � :::� xk�1)f�(x1):::f�(xk�1)dx1:::dxk�1
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is the k-th order convolution of f�(�), we obtain that under both SM and LM assumptions,
the spectral density fX of (Xt) can be written as

fX(�) =
1X
k=k0

c2k
k!
f (�k)(�); (4.11)

(we assume that f� is periodically extended to the real line R).
Under Assumption SM, the spectral density fX(�) of (Xt) is a continuous bounded

function and
fX(�)! b0 = fX(0); as �! 0, (4.12)

so that fX(�) satis�es assumption (1.1) with �X = 0 and b0 = fX(0).
However, if f� satis�es condition (4.9) and 0 < k(1���) < 1; then it can be shown that

f (�k)(�) = k!skj�j�1+k(1���)(1 + o(1)); as �! 0, (4.13)

for some sk > 0, whereas if k(1� ��) = 1, then f (�k)(�) = k!skj log j�jj�1(1 + o(1)):
Then (4.9), (4.11) and (4.13) imply that (Xt) satis�es Assumption LM and

fX(�) =
c2k0
k0!

f (�k0)(�)(1 + o(1)) = c2k0sk0 j�j
��X + o(j�j��X ); as �! 0, (4.14)

where �X = 1 � k0(1 � ��) > 0, indicating the relationship between the long memory
parameters �X and �� and the Hermite rank k0. Note that 0 < k0(1� ��) < 1.

Theorem 4.1 Suppose that a sequence (Xt) is de�ned by (4:1).
(i) If (Xt) satis�es Assumption SM and the bandwidth parameter m ! 1 is such that

m = o(n), then b�X P�! �X = 0; as n!1:

(ii) If (Xt) satis�es Assumption LM, with memory parameter 0 < �X < 1, and m is
such that

n
 � m = o(n) (4.15)

for some 1� k�10 < 
 < 1 where k0 � 1 is the Hermite rank of G, then

b�X P�! �X ; as n!1: (4.16)

(iii) If in case (ii) k0 = 1 and (4.15) holds, then �X = �� and

b�X � �X = OP

�
m�1=2 + (m=n)r

�
(4.17)

with 0 < r < min(��=2; (1� ��)=2). In addition,

m1=2(b�X � �X) d�! N(0; 1); as n!1; (4.18)

if (2.25) holds and m = o(n2r=(2r+1)):
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Remark 4.1 We conjecture, that in part (ii) of Theorem 4.1, it can be shown that b�X �
�X = OP (n

��) for some � > 0.

Proof of Theorem 4.1 is based on the following proposition. In view of (4:2), write Xt
as a signal plus noise process

Xt =
MX
k=k0

ck
k!
Hk(�t) +

1X
k=M+1

ck
k!
Hk(�t) =: Yt + Zt; (4.19)

where M > k0 will be chosen later.

Proposition 4.1 In case (i) and (ii) of Theorem 4.1, (Xt) satis�es Assumptions A and B
with parameters b0 6= 0 and �0 = �X .

In case (ii), the process Yt = (ck0=k0!)Hk0(�t), corresponding to M = k0 in (4.19), has
memory parameter �Y = �X and satis�es Assumptions A and B with parameters b0 6= 0
and �0 = �Y .

Proof of Proposition 4.1. (i) In this case (Xt) is a short memory sequence and
�X = 0. Then Assumption A follows by noticing that by (4:12), fX(�) satis�es (1.1) with
�X = 0 and b0 = fX (0). Next, in view of Proposition 2.2, (Xt) satis�es Assumption B, if

�m = max
1�k�m

E

������
kX
j=1

b�10 (IX(�)� EIX(�))

������ = o(m): (4.20)

To show (4.20), we shall use decomposition (4.19) with largeM > k0. Using equalities (4.3)
and (4.4), we obtain that

rZ(t) = Cov(Zt; Z0) =
1X

k=M+1

c2k
k!
rk� (t);

so that
1X
t=1

jrZ(t)j �
 1X
t=1

jr�(t)jM
! 1X
k=M+1

c2k
k!
=

 1X
t=1

jr�(t)jM
!
�M � C�M

by (4.7), (4.6) and (4.5), where �M ! 0 asM !1 by the summability of c2k=k!. Therefore,
the spectral density of (Zt) satis�es the bound

sup�2[0;�]fZ(�) � (2�)�1
1X

t=�1
jrZ(t)j � C�M : (4.21)

On the other hand, the same argument shows that

sup�2[0;�]fY (�) � (2�)�1
1X

t=�1
jrY (t)j � C (4.22)

where C does not depend on n.
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Writing IX(�j) as IX(�j) = IY (�j) + vj , similarly as in (3:8), we obtain that

E

������
kX
j=1

(IX(�j)� EIX(�j))

������ � EjSkj+ EjRkj;

where

Sk =
kX
j=1

(IY (�j)� EIY (�j)); Rk =
kX
j=1

(vj � Evj):

Hence, to show (4:20) it su¢ ces to estimate EjRkj and EjSkj, k = 1; :::;m. Relations
(3:9), (4:21) and (4.22) imply that Ejvj j � C�

1=2
M , where the constant C is independent of

M and n. The latter inequality implies the bound EjRkj � Ck�
1=2
M = o (k), as M ! 1,

uniformly in k = 1; :::;m, so that (4:20) follows if we show that for any �xed M , EjSkj =
o(m) uniformly in k = 1; :::;m, as n ! 1. Applying the estimate (2:16) of Lemma 2.1 to
the sequence (Yt) and recalling that �Y = 0, we obtain that, uniformly in 1 � k � m and
n � 1,

m�1EjSkj = O(m�1=2 + n�1=2D�
n;Y

1=2) = o (1)

after observing that Giraitis and Surgailis (1985, Relation (2.9)) implies that

D�
n;Y =

nX
t1;:::;t3=�n

jCum(Yt1 ; Yt2 ; Yt3 ; Y0)j

� n�1
3nX

t1;:::;t3;t4=1

jCum(Yt1 ; Yt2 ; Yt3 ; Yt4)j = o(n):

(ii) Next, we consider the case when �X > 0. First, (Xt) satis�es Assumption A by
(4.14). To show that (Xt) satis�es Assumption B, write Xt = Yt+Zt as a signal plus noise
process (4:19) with M = k0. Then Yt = (ck0=k0!)Hk0(�t). Note that (4.14) implies that the
spectral density fY of (Yt) has property

fY (�) = b0;Y j�j��Y + o(j�j��Y ); as �! 0,

where �Y = �X = 1�k0(1���) > 0, whereas the spectral density fZ of (Zt) can be bounded
by fZ(�) � Cj�j��Z , as � ! 0, where �Z = �Y � � for some � > 0. We show below that
the sequence (Yt) satis�es relation (2:6) of Assumption B. Then the same argument as in
the proof of Theorem 3.1 (i) yields that (Xt) satis�es Assumption B.

To prove (2:6), in view of Proposition 2.2, it su¢ ces to show that

�m;Y = max
1�k�m

b�10;YE

������
kX
j=1

��Yj (IY (�j)� EIY (�j))

������ = o(m): (4.23)

Applying the estimate (2:17) of Lemma 2.1 to the sequence (Yt), we obtain that

m�1�m;Y = O
�
m�1=2 +m�1n1=2D��

n
1=2(m=n)�Y log n

�
;
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where �Y = 1� k0(1� ��). It remains to estimate D��
n . In case k0 = 1, (Yt) is a Gaussian

sequence, Cum(Yt1 ; Yt2 ; Yt3 ; Yt4) = 0 and D
��
n = 0, so that (4.23) holds. Let k0 � 2. Using

cumulant formula (2.10) of Giraitis and Surgailis (1985), we have that���Cum(Yt1 ; Yt2 ; Yt3 ; Yt4)j = C
���Cum(Hk0(�t1);Hk0(�t2);Hk0(�t3);Hk0(�t4))���

� C
�
r2� (t1 � t3) + r2� (t1 � t4) + r2� (t2 � t3) + r2� (t2 � t4)

�
:

By (4:10), jr�(t)j2 � Cjtj�2(1���), where 2(1���) < 1 because k0 � 2 and �X = 1� k0(1�
��) > 0. Therefore,

D��
n � C

nX
t=1

r2� (t) � C
nX
t=1

t�2(1���) � Cn2���1

and hence

m�1�m;Y � C(m�1n��(m=n)�Y log n+m�1=2)

� C
�
[(n=m)k0n�1]1��� log n+m�1=2

�
! 0;

as n ! 1, because assumption (4:15) assures that (n=m)k0n�1 � Cn�� for some � > 0
which yields (4.23).

Proof of Theorem 4.1. We showed in Proposition 4.1 that in case (i), and (ii), (Xt)

satis�es Assumptions A and B which imply b� P�! �X by Theorem 2.1.
In case (iii), to derive (4.17) we shall use part (iii) of Theorem 3.1. Because k0 = 1, we

can write Xt as a signal plus noise process Xt = Yt + Zt, (4.19), with Yt = c1H1(�t) = c1�t
and Zt =

P1
k=2

ck
k!Hk(�t): Let �X ; �Y and �Z be the memory parameters of (Xt), (Yt) and

(Zt), respectively. Then �X = �Y = �� since (�t) is uncorrelated with (Zt), in view of
(4.4). We show below that fZ(�) � Cj�j��Z , as �! 0, with �Z � 0 such that

�Y > �Z =

8><>:
0; if 2�� < 1

2�� � 1; if 2�� > 1

�; if 2�� = 1

(4.24)

for any � 2 (0; aY ).
Indeed, if 2�� < 1, then (4:6) applied to the sequence (Zt) together with (4:10) imply

that 1X
t=1

jrZ(t)j � C
1X
t=1

r2� (t) � C
1X
t=1

t�2(1���) <1:

Therefore the spectral density fZ(�) of (Zt) is a continuous function and �Z = 0 < �� = �Y .

If 2�� > 1, then from equality fZ(�) =
P1
k=2

c2k
k! f

(�k)(�), (4.14) and (4.9) it follows that
that

fZ(�) � Cf (�2)(�) = c���Z + o(���Z ); as �! 0,
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where �Z = 1� 2(1� ��) = 2�� � 1 > 0 and c > 0. If 2�� = 1 then

fZ(�) � Cf (�2)(�) � Cj log(�)j�1 � Cj�j��

for any � > 0. This proves (4.24), since �Z < �� = �Y .
Thus (4.17) follows from (3.6) of Theorem 3.1, because Gaussian process Yt = c1�t can

be represented as a linear sequence (2:18), the spectral density f� satis�es condition T(��; 2)
and the conditions on m assures that m = o(n= log n), whereas (4.18) follows applying (3.2)
in (3.4) of Theorem 3.1.

4.2 Estimation of the long memory parameter of a stochastic volatility
model

In this section we consider the stochastic volatility model

rt = "t�t; t 2 Z;

where ("t) is an i.i.d. noise with zero mean and �nite variance and (�t) is a stationary
volatility process independent of ("t). We shall analyse the long memory properties of the
process

Xt = jrtju = j"tjuj�tju; t 2 Z (4.25)

with some u > 0. Assume that the process j�tju has long memory and satis�es (1.1) with
parameters b0 > 0 and �Y > 0. Then we can decompose Xt into a signal plus noise process

Xt = aj�tju + (j"tju � a)j�tju =: Yt + Zt; (4.26)

where a = Ej"tju. Since (Zt) are uncorrelated variables, the spectral density function of
(Zt) is a constant and �Z = 0, whereas the signal (Yt) has long memory. If the process of
the u-th power j�tju of the volatility �t satis�es Assumptions A and B with some b0;Y > 0
and �0 = �Y , then �X = �Y and by Theorem 2.1,

�̂X
P�! �Y = �X :

Example: EGARCH process. Assume that the volatility �t = f(�t) > 0 is a function
of a stationary process (�t) which is independent of ("t). Robinson (2001) showed that a
wide class of stochastic volatility models with Gaussian (�t) allow long memory behaviour in
volatility. This type of models includes Exponential Generalized ARCH (EGARCH) model,
suggested by Nelson (1991). A special case f(�t) = exp(�t), where (�t) is a linear sequence
was discussed in Breidt et al. (1998), Harvey (1998) and Surgailis and Viano (2002). Harvey
(1998) examined the long memory properties of the process Xt = j"tju exp(u�t), when (�t)
is a Gaussian sequence and showed, that for any u > 0,

rX(t) = Cov(Xt; X0) = (EX0)
2(eu

2r�(t) � 1) � (uEX0)2r�(t); as t!1, (4.27)

where r�(t) = Cov(�t; �0) is the autocovariance function of (�t): Relation (4.27) implies that
the autocovariances rX(t) and r�(t) have the same rate of convergence to zero, as t ! 1.
Surgailis and Viano (2002) obtained similar result when (�t) is a linear sequence.
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We assume below that �t = exp(�t) where (�t) is a long memory Gaussian sequence
with slowly decaying autocovariance

r�(t) � cjtj�1+�� ; as t!1;

where 0 < �� < 1 and the spectral density f� of (�t) satis�es (4.9).
In that case the sequence Yt = a exp(u�t), t 2 Z is a nonlinear transform of a Gaussian

sequence (�t) and has Hermite expansion Yt � EYt = c1H1(�t) + ::: with Hermite rank
k0 = 1 (since c1 6= 0). Therefore, by (4.14) of Section 4.1, the spectral density fY of (Yt)
has property

fY (�) = b0;Y j�j���(1 + o(1)); as �! 0, (4.28)

which implies that

fX(�) = fY (�) + fZ(�) = b0;Y j�j���(1 + o(1)); as �! 0:

Hence, the sequences (Xt), (Yt) and (�t) have the same memory parameter

�X = �Y = �� > 0:

The next theorem shows that the local Whittle estimate b�X is a consistent estimate
of the long memory parameter �X of an EGARCH sequence (Xt) and satis�es the central
limit theorem.

Theorem 4.2 Assume that rt = "t exp(�t) is an EGARCH model, (Xt) follows (4.25),
0 < �� < 1; and m satis�es n
 � m = o(n= log n) for some 0 < 
 < 1. Then, as n!1,

b�X � �X = O
�
m�1=2 + (m=n)r

�
(4.29)

for any 0 < r < min(��; 1� ��)=2: Moreover,

m1=2(b�X � �X) d�! N(0; 1); (4.30)

if (�t) satis�es (2.25) and m = o(n2r=(2r+1)):

Proof of Theorem 4.2. In the decomposition Xt = Yt + Zt given in (4.26), the
memory parameters of the sequences (Yt) and (Zt) have property �Y > �Z = 0. Proposition
4.1 and (4.28) imply that (Yt) satis�es Assumptions A and B with parameters b0;Y and
�Y = ��. Therefore by (3.4) of Theorem 3.1,

b�X � �X = (b�Y � �Y )(1 + oP (1)) +OP ((m=n)�Y =2 +m�1 logm) (4.31)

where b�Y denotes the local Whittle estimator of (Yt) as if the Yt�s were observed. By (4.17),b�Y � �Y = OP (m
�1=2 + (m=n)r), which implies (4.29). Convergence (4.30) follows from

(4.31) and (4.18).

Remark 4.2 In the short memory case, proof of consistency seems to be more technically
involved. We conjecture that if (Xt) has short memory, then using similar techniques it can

be show that b�X P�! �X = 0. Simulations support this result, see Tables 5 in Section 7.
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Remark 4.3 Theorem 4.2 shows that the local Whittle estimator allows to estimate the
long memory parameter of the powers jrtju of an EGARCH model rt. On the other hand,
the logarithms Xlog(t) = log jrtju can be written as a signal plus noise process

Xlog(t) = Yt + �t; (4.32)

where Yt = u�t and �t = u log j"tj are i.i.d. shocks, so that the memory parameter of the
sequence (�t) can be estimated applying the local Whittle estimator b�log to Xlog(t). In
case of a linear process (�t), consistency and asymptotic distribution of the local Whittle
estimator b�log were analysed in Hurvich, Moulines and Soulier (2005) and Arteche (2004).

Note that the model (4.32) is a particular case of a signal plus noise process discussed
in our Theorem 3.1 which allows unrestricted mutual dependence of (�t) and the noise
("t). Theorem 3.1 (iii) shows that if (�t) is a linear process with the spectral density
f�(�) = j�j���(b0;� + b1;��2 + o(�2)) and 0 < �� < 1, then the estimator b�Xlog satis�es

b�Xlog � �� = OP (m
�1=2 + (m=n)��=2): (4.33)

If (�t) is a Gaussian sequence, the processes log(r
u
t ), (�t) and (r

u
t ) have the same long

memory parameter �� which in view of (4.33) and Theorem 4.2 can be consistently estimated
by the local Whittle estimator applied to (jrtju) or (log jrtju).

5 Proofs of Theorems 2.1, 2.2, Propositions 2.2, 2.3 and
Lemma 2.1

Proof of Theorem 2.1. 1. Proof of consistency (2.8). It su¢ ces to show that for any
� > 0, there exists � > 0 such that

P
n

inf
�2[�1;1];j���0j��

(Un(�)� Un(�0)) � �
o
! 1; as n!1, (5.1)

where

Un(�) = log

0@ 1

m

mX
j=1

(j=m)�In(�j)

1A� �

m

mX
j=1

log(j=m):

Because m�1Pm
j=1 log(j=m) = �1 + o(1), we have that

Un(�)� Un(�0) = logLn(�)� logLn(�0) + �� �0 + o(1);

where

Ln(�) = m�1
mX
j=1

(j=m)���0��j

and ��j is de�ned in (2.5).
We assume that the variables ��j satisfy (2.6). Observe that E�

�
j � C for all 1 � j � m

by (1.1) and (6.10) of Lemma 6.3 below. Thus, by Lemma 6.1 below, for any �0 > 0,

sup
�2[�1;1];���0�1+�0

jLn(�)� L(�)j
P�! 0,
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where

L(�) =

Z 1

0
x���0dx = (1 + �� �0)�1:

Hence, as n!1, with probability tending to 1, uniformly in � 2 [�0�1+�0; 1]; j���0j � �,

Un(�)� Un(�0) = logL(�)� logL(�0) + �� �0 + o(1)
= � log(1 + �� �0) + �� �0 + o(1) � �� > 0; (5.2)

since � log(1 + x) + x > 0 for x > �1.
On the other hand, uniformly in � 2 [�1; �0 � 1 + �0],

Un(�)� Un(�0) � logLn(�0 � 1 + �0)� logLn(�0) + �� �0 + o(1)
� � log(�0)� 1� �0 + o(1) � 1 (5.3)

when �0 > 0 is small. Estimates (5.2) and (5.3) imply (5.1).

2. Proof of (2.9). Suppose that 0 < � < min(1 � �0; �0 + 1). Since by (2:8) b� P�! �0,
then, as n ! 1, 1(jb� � �0j � �) = 1 + oP (1) and 1(b� � �0j > �) = oP (1), where 1(A) is
the indicator function. We shall show below that

(b�� �0)1(jb�� �0j � �) = �Qm(1 + oP (1)) +OP (m�1 logm): (5.4)

Assuming, that (5:4) holds true, we conclude that

b�� �0 = �Qm(1 + oP (1)) +OP (m�1 logm) + (b�� �0)1(jb�� �0j > �)

= �Qm(1 + oP (1)) +OP (m�1 logm) + (b�� �0)oP (1);
which implies that

b�� �0 = �Qm(1 + oP (1)) +OP (m�1 logm); (5.5)

to prove (2:9).
We now show (5:4). First, we notice that

@

@�
Un (�) =

Tn (�)

Vn (�)
;

where

Tn (�) =
1

m

mX
j=1

(j=m)���0�j�
�
j ; Vn (�) =

1

m

mX
j=1

(j=m)���0��j � 0; (5.6)

with �j = log j �m�1Pm
k=1 log k and �

�
j given by (2:5). From Lemma 6.1 below, it follows

that

Vn(b�) � 1

m

mX
j=1

(j=m)���j
P�!
Z 1

0
x�dx > 0: (5.7)

Observe that assumption jb� � �0j � � implies that b� 2 (�1; 1). Therefore @
@�Un(b�) = 0

which yields that Tn(b�) = 0. By the mean value theorem,
Tn(b�)� Tn (�0) = @

@�
Tn (�

�) (b�� �0); (5.8)
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where �� is an intermediate point between b� and �0. To complete the proof of (5.4), it
remains to show that

Tn(�0) = m�1
mX
j=1

(log(j=m) + 1)��j +OP (m
�1 logm) = Qm +OP (m

�1 logm) (5.9)

and
@

@�
Tn (�

�)
P�! 1; (5.10)

which together with (5:8) imply (5:4).
Using relation

�j = log(j=m) + 1 +O(m
�1 logm);

see Robinson (1995b, Lemma 2), which holds uniformly in 1 � j � m, we can write Tn(�0)
as

Tn(�0) = m�1
mX
j=1

(log(j=m) + 1)��j +Rm = Qm +Rm;

where, in view of (2.7),

EjRmj = O(m�1 logm)m�1
mX
j=1

E��j = O(m�1 logm);

which implies that Rm = OP (m
�1 logm) and proves (5.9).

It remains to show (5.10). To that end, write

@

@�
Tn(�

�) = m�1
mX
j=1

�j(j=m)
����0 log(j=m)��j

= m�1
mX
j=1

�
 (j=m;�) + rm(j=m;�)

�
��j

where  (j=m;�) = log(j=m)(log(j=m) + 1) and

rm(j=m;�) = �j(j=m)
����0 log(j=m)�  (j=m;�):

Note that

jrm(j=m;�)j =
����log(j=m) + 1 +O(m�1 logm)

�
(j=m)�

���0 log(j=m)�  (j=m;�)
���

� j (j=m;�)jj(j=m)����0 � 1j+ j(j=m)����0 log(j=m)O(m�1 logm) +O(m�1 log3m)j:

We now show that the function rm(j=m;�) satis�es assumptions (6.7)-(6.8) of Lemma 6.2.
For any 0 < 
 < 1, uniformly in 
 � j=m � 1, it holds that

jrm(j=m;�)j � C
���
�j����0j � 1���+ oP (1) = oP (1);
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because �� P�! �0 which implies (6.7). On the other hand, uniformly in 0 < j=m � 
,

jrm(j=m;�)j � C(j=m)��j log(j=m)j2;

so that rm(j=m;�) satis�es (6.8). Then, by Lemma 6.2 below, we conclude that

@

@�
T (��)

P�!
Z 1

0
log x(log x+ 1)dx = 1;

to prove (5.10).

Proof of Theorem 2.2. Expansion (2.12) follows from relations (2.9)-(2.10) using
the following expansion of EQm which is derived applying (6.10) of Lemma 6.3 below:

EQm = m�1
mX
j=1

(log(j=m) + 1)b�10 g(�j)E�j

= m�1
mX
j=1

(log(j=m) + 1)
�
1 + (b1=b0)�

�
j + o(�

�
j )
��
1 +O(j�1 log j)

�
= (m=n)�(b1=b0)(2�)

�

Z 1

0
(log x+ 1)x�dx+ o

�
m�1=2 + (m=n)�

�
= (m=n)�(b1=b0)B� + o

�
m�1=2 + (m=n)�

�
:

Proof of Proposition 2.2. It su¢ ces to show that (Xt) satis�es Assumption B.

Since (Xt) satis�es assumption (1.1), then the convergence b� P�! �0 follows from Theorem
2.1. Note that from (1.1) and Lemma 6.3 below, it follows that E��j = 1 + o(1), uniformly
in 1 � j � m, as n!1, which implies that

m�1
mX
j=1

E��j ! 1: (5.11)

On the other hand, in view of assumption �m = o(m),

E
���m�1

mX
j=1

(��j � E��j )
��� � Cm�1�m ! 0;

which together with (5.11) proves (2.6).

Proof of Proposition 2.3. To show (2.13), set Sk =
Pk
j=1(�

�
j � E��j ): Summation

by parts implies

Qm � EQm = m�1
m�1X
j=1

�
log(j=m)� log((j + 1)=m)

�
Sj +m

�1Sm:
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Thus,

EjQm � EQmj � m�1
m�1X
j=1

j�1EjSj j+ Cm�1EjSmj � C�mm
�1 logm; (5.12)

because EjSkj � �m, which together with expansion (2.12) implies (2.13).
To prove (2.14), it su¢ ces to show that

EjQm � EQm � Vmj = o((m=n)�): (5.13)

Note that

Qm � EQm � Vm = m�1
mX
j=1

(log(j=m) + 1)(b�10 � g(�j)�1)(��j � E��j )b0,

where, by Assumption T(�0; �) and (1.1),

b�10 � g(�j)�1 = (b1=b20)�
�
j + o(�

�
j );

uniformly in 1 � j � m. Thus, by triangle inequality,

EjQm � EQm � Vmj � E
���m�1

mX
j=1

(log(j=m) + 1)(b1=b
2
0)�

�
j (�

�
j � E��j )

���
+ m�1

mX
j=1

j log(j=m) + 1jo(��j )E�
�
j =: R1 +R2:

Write pj = (log(j=m) + 1)(j=n)�. Then,

jpj � pj+1j � j log j � log(j + 1)j(j=n)�

+ j log((j + 1)=m) + 1jj(j=n)� � ((j + 1)=n)� j � C(m=n)�j�1 logm

and summation by parts yields

R1 = CE
���m�1

m�1X
j=1

(pj � pj+1)Sj +m�1pmSm

���
� C(m=n)�

�
m�1 logm

m�1X
j=1

j�1EjSj j+m�1EjSmj
�

� Cm�1�m(m=n)
� log2m = o((m=n)�);

because �m = o(m= log2m): On the other hand, using (2.7) we obtain that

R2 = o((m=n)�)m�1
mX
j=1

j log(j=m) + 1j = o((m=n)�);

to prove (5.13).
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Proof of Lemma 2.1. Denote

vX(�j) = (b0�
��0
j )�1=2(2�n)�1=2

nX
t=1

Xte
it�j : (5.14)

Then ��j = jvX(j)j2 and we can write

Cov(��j ; �
�
p) = Cov(vX(�j); vX(�p))Cov(vX(�j); vX(�p))

+Cov(vX(�j); vX(�p))Cov(vX(�j); vX(�p)) + Cum
�
vX(�j); vX(�j); vX(�p); vX(�p)

�
:

Thus,

E
� kX
j=1

(��j � E��j )
�2
=

kX
j;p=1

Cov(��j ; �
�
p)

�
kX

j;p=1

�
jCov(vX(�j); vX(�p))j2 + jCov(vX(�j); vX(�p))j2

�

+
��� kX
j;p=1

Cum(vX(�j); vX(�j); vX(�p); vX(�p))
��� =: in;1(k) + in;2(k):

Therefore,

�m � max
1�k�m

�
in;1(k) + in;2(k)

�1=2
� max
1�k�m

(in;1(k)
1=2 + in;2(k)

1=2): (5.15)

Now, by (6.12) of Lemma 6.3,

in;1(k) � C
X

1�j�p�m
(j�j�0jp�2+j�0j log2m+ 1fj=pg) � C(log3m+m) � Cm: (5.16)

On the other hand, uniformly in 1 � k � m,

in;2(k) �
kX

j;p=1

��0j �
�0
p b

�2
0 (2�n)

�2
��� nX
t1;:::;t4=1

ei(t1�t2)�jei(t3�t4)�pCum(Xt1 ; Xt2 ; Xt3 ; Xt4)
���

� Cn�2(
kX
j=1

��0j )
2

nX
t1;:::;t4=1

jcX(t1; t2; t3; t4)j

� Cn�1(m=n)2�0m2
nX

u1;:::;u3=�n
jcX(u1; u2; u3; 0)j

� Cm2(m=n)2�0n�1D�
n;

which together with (5.16) and (5.15) imply the bound (2.16).
To show (2.17), note that in;2(k) can be written as

in;2(k) =
��� nX
t1;:::;t4=1

Bk(t1 � t2)Bk(t3 � t4)Cum(Xt1 ; Xt2 ; Xt3 ; Xt4)
���;
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where

Bk(t) = (2�n)
�1

kX
j=1

b�10 ��0j e
it�j :

Then,

in;2 =
��� nX
t1;:::;t4=1

Bk(t1 � t2)Bk(t3 � t4)cX(t1 � t2; 0; t3 � t2; t4 � t2)
���

�
���n nX

u1;u2;u3=�n
Bk(u1)Bk(u2)cX(u1; 0; u2 + u3; u3)

���
� n

� nX
u=�n

jBk(u)j
�2
D��
n :

We show below that in the case �0 � 0,

jBk(t)j � C(m=n)�0 jtj�1+ ; (5.17)

where jtj+ = max(jtj; 1), which implies that

in;2 � Cn(m=n)2�0 log2 nD��
n

and together with (5.15) and (5.16) proves (2.17).
To check (5.17), set sp =

Pp
j=1 e

it�j : Summation by parts yields that

Bk(t) = Cn�1��0
�k�1X
j=1

(j�0 � (j + 1)�0)sj + k�0sk
�
:

Because
jspj = jei�t(1� eip�t)=(1� ei�t)j � 2=j1� ei�t j � Cn=jtj+;

we obtain that, for �0 � 0,

jBk(t)j � Cjtj�1+ n��0
�k�1X
j=1

jj�0 � (j + 1)�0 j+ k�0
�
� Cjtj�1+ (m=n)�0 ;

to prove (5.17).

6 Lemmas

Lemma 6.1 Assume that a triangular array of random variables yj � yj;m; 1 � j � m is
such that

Ejyj j � C (6.1)

holds for all 1 � j � m, m � 1; and for any 0 < � � 1,

[�m]�1
[�m]X
j=1

yj
P�! 1; as m!1. (6.2)
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Suppose that a function w(x;�), 0 � x � 1, � 2 [a1; a2] � R has the following properties:
for any 0 < b < 1,

sup
b�x�1

sup
�2[a1;a2]

j(@=@x)w(x;�)j � C <1 (6.3)

and there exists 0 < 
 < 1 and c > 0 such that

sup
�2[a1;a2]

jw(x; �)j � cx�
 ; as x! 0: (6.4)

Then, as m!1,

sup
�2[a1;a2]

���m�1
mX
j=1

w(j=m;�)yj �
Z 1

0
w(x;�)dx

��� P�! 0: (6.5)

Proof of Lemma 6.1. Let 0 < b � 1. Under assumption (6.3), the function w(x; �),
x 2 [b; 1] can be approximated by a step function w�(x;�) in x 2 [b; 1] uniformly in
� 2 [a1; a2]. Since the convergence (6.2) implies that for any 0 � �1 < �2 � 1,

([�2m]� [�1m])�1
[�2m]X

j=[�1m]+1

yj
P�! 1; as m!1,

a straightforward argument shows that

m�1
mX

j=[bm]+1

w(j=m;�)yj
P�!
Z 1

b
w(x;�)dx; (6.6)

uniformly in �. Setting

Jm(�) = m�1
[bm]X
j=1

w(j=m;�)yj ;

from (6.4) and (6.1), it follows that uniformly in m � 1,

E sup
�2[a1;a2]

jJm(�)j � cm�1
[bm]X
j=1

(j=m)�
Ejyj j � Cm�1
[bm]X
j=1

(j=m)�


� C

Z b

0
x�
dx! 0; as b! 0:

Hence, as m!1 and b! 0,

sup
�2[a1;a2]

jJm(�)j
P�! 0;

which together with (6.6) completes the proof of (6.5).

Lemma 6.2 Assume that the random variables yj � yj;m; 1 � j � m, and a function w(x;�)
satisfy assumptions of Lemma 6.1. Suppose that the random variables rm(x; �);m � 1 are
such that for any 0 < b < 1; as m!1,

sup
b�x�1

sup
�2[a1;a2]

jrm(x; �)j = oP (1) (6.7)
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and there exist 0 < 
0 < 1 and c > 0 such that

sup
�2[a1;a2]

jrm(x; �)j = OP (x
�
0); as x! 0: (6.8)

Then, as m!1,

sup
�2[a1;a2]

���m�1
mX
j=1

�
w(j=m;�) + rm(j=m;�)

�
yj �

Z 1

0
w(x;�)dx

��� P�! 0: (6.9)

Lemma 6.2 is a straightforward generalization of Lemma 6.1.

The next lemma deals with properties of the discrete renormalized Fourier transforms
vX(�j); de�ned by (5.14).

Lemma 6.3 (Robinson (1995a)). Let assumption (1.1) be satis�ed. Then uniformly in
1 � k < j = o(n), as n!1,

E(In(�j)=f(�j)) = 1 +O(j
�1 log j); (6.10)

EvX(�j)vX(�j) = O(j�1 log j); (6.11)

jEvX(�j)vX(�k)j+ jEvX(�j)vX(�k)j = O(k�j�0j=2jjj�1+j�0j=2 log j): (6.12)

This result was derived by Robinson (1995a), but in the actual statement of his Theorem
2, (c) was replaced by the weaker bound k�j�0j=2jjj�1+j�0j=2 log j � k�1 log j:

7 Monte-Carlo experiment

To investigate the performance of the local Whittle estimator b�X in �nite samples, we have
conducted a set of Monte-Carlo experiments employing 10000 replications with sample sizes
n = 1024 and 2048; and bandwidth parameters m = [n0:5]; [n0:6]; [n0:7] and [n0:8].

In Table 7 we report the bias and, in parenthesis, the mean squared error M.S.E. of
the local Whittle estimator when (Xt) follows a Gaussian ARFIMA(0; �0=2; 0) process with
memory parameter �0 = �0:8;�0:4; 0; 0:4; 0:8, and generated by Davies and Harte (1987)
algorithm. The results are similar to those reported in Robinson (1995b). The estimatorb�X seems to have negative bias when the process has short or long memory, whereas in
case of antipersistence the bias tends to be positive. For a given n and m, M.S.E. does not
depend on �0. The optimal bandwidth m minimizing the M.S.E. is of order [n0:8] which
con�rms the �ndings by Henry and Robinson (1996).

Table 1 gives the bias and M.S.E. of b�X for the signal plus noise process Xt = Yt + Zt,
where (Yt) and (Zt) are Gaussian ARFIMA(0; �Y =2; 0) and ARFIMA(0; �Z=2; 0) processes
with memory parameters �Y = 0; 0:4; 0:8 and �Z = �0:8;�0:4; 0; 0:4, respectively, and such
that �Y > �Z : The signal (Yt) and the noise (Zt) are independent and have unit variance.
Table 1 and Table 7 show, that, as the theory predicts, the noise signi�cantly increases the
bias of the estimator. The bias tends to decrease when the di¤erence �Y � �Z increases,
and it remains always negative when the signal and the noise are independent. For a �xed
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n and m; the M.S.E. varies across �X ; and the bandwidth minimizing M.S.E. depends on
�Y and �Z . Overall, it appears that the bandwidth parameter m = [n0:6] results to the
lowest M.S.E.

Tables 2 and 3 summarize the performance of b�X when Xt = G (�t) with G (�t) =
exp(�t) and G(�t) = �2t , where (�t) is a Gaussian ARFIMA(0; ��=2; 0) process with �� =
�0:4; 0; 0:4; 0:8: The bias is again bigger than in the linear case except when �� = 0: The
estimator performs better in case Xt = �2t ; while in most cases the bias tends to be negative.
For a �xed n and m; the M.S.E. varies across ��; indicating that the optimal bandwidth
parameter depends on ��. Overall, the tables suggest that m = [n0:7] � [n0:8] gives the
lowest M.S.E..

Tables 4 and 5 contain the estimation results for r2t and log(r
2
t ), where rt follows the

EGARCH model rt = "t exp(�t), generated by an i.i.d. Gaussian sequence ("t) and an
ARFIMA(0; ��=2; 0) Gaussian process (�t) with memory parameter �� = 0; 0:4; 0:8. More-
over, ("t) and (�t) are independent sequences with unit variance. The tables indicate that
the estimation of the memory parameter is more accurate when it is based on the sequence
(log(r2t )) than that based on (r

2
t ); especially when the process (�t) has long memory. Notice

that the processes
�
log(r2t )

�
and

�
r2t
�
can be written as signal plus noise model. In both

cases, the signal is uncorrelated with the noise, which induces a negative bias, as the results
of Table 1 would suggest. In addition, in the signal plus noise decomposition of r2t ; the
nonlinear signal E["2t ] exp(2�t) adds further negative bias, see Table 2. Tables 4 and 5 show
that the estimator performs considerably better under short memory dependence and that
the M.S.E. is not uniform across ��: The tables suggest that the bandwidth parameters
m = [n0:6]� [n0:7] give the best �nite sample performance.

Unsurprisingly, in all cases, the bias and the standard deviation (not reported here)
decrease as n increases. Simulations show that for a �xed sample size n; as the bandwidth
m increases, the standard deviation decreases, but overall the bias tends to increase which
is in line with the theoretical results. In general, the standard deviation of the local Whittle
estimator is on a similar level in linear and signal plus noise models but varies across �
in �2t , exp(�t) and EGARCH models. Various bias reduction methods for linear and signal
plus noise models were discussed by Sun and Phillips (2003), Hurvich, Moulines and Soulier
(2005) and Andrews and Sun (2004).

To conclude, both theoretical results and simulations suggest that the local Whittle
estimator remains consistent also for nonlinear time series. However, the presence of a
noise or nonlinearity worsens the behaviour of the estimator in �nite samples and a larger
sample size is needed to achieve a satisfactory accuracy. Although the choice of the optimal
bandwidth parameter remains an open problem, for practical applications the simulation
results suggest the use of m = [n0:6] for signal plus noise models, m = [n0:7] � [n0:8] for
nonlinear processes and m = [n0:6]� [n0:7] for the EGARCH model.

Bias and M.S.E. of �̂, Xt is ARFIMA(0; �0=2; 0)
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n = 1024 n = 2048
�0 m = [n0:5] [n0:6] [n0:7] [n0:8] [n0:5] [n0:6] [n0:7] [n0:8]

�0:8 0:041 0:021 0:015 0:026 0:031 0:017 0:013 0:021
(0:038) (0:019) (0:009) (0:005) (0:027) (0:012) (0:006) (0:003)

�0:4 �0:011 �0:006 �0:002 0:008 �0:007 �0:003 0:000 0:007
(0:049) (0:021) (0:009) (0:004) (0:032) (0:013) (0:005) (0:002)

0 �0:019 �0:012 �0:008 �0:004 �0:014 �0:007 �0:004 �0:002
(0:050) (0:021) (0:009) (0:004) (0:032) (0:012) (0:005) (0:002)

0:4 �0:016 �0:009 �0:008 �0:013 �0:011 �0:005 �0:004 �0:009
(0:049) (0:021) (0:009) (0:004) (0:032) (0:012) (0:005) (0:002)

0:8 �0:023 �0:005 �0:004 �0:017 �0:010 0:001 0:001 �0:012
(0:038) (0:018) (0:009) (0:005) (0:027) (0:012) (0:005) (0:003)

n = 1024 n = 2048
�Y �Z m = [n0:5] [n0:6] [n0:7] [n0:8] [n0:5] [n0:6] [n0:7] [n0:8]

0 �0:8 �0:082 �0:105 �0:146 �0:197 �0:060 �0:083 �0:124 �0:179
(0:056) (0:032) (0:031) (0:043) (0:035) (0:019) (0:021) (0:034)

0 �0:4 �0:107 �0:114 �0:129 �0:143 �0:090 �0:102 �0:118 �0:137
(0:060) (0:034) (0:026) (0:025) (0:039) (0:022) (0:019) (0:021)

0:4 �0:8 �0:056 �0:086 �0:152 �0:222 �0:035 �0:061 �0:119 �0:222
(0:053) (0:028) (0:032) (0:068) (0:033) (0:016) (0:019) (0:051)

0:4 �0:4 �0:092 �0:121 �0:171 �0:234 �0:067 �0:097 �0:145 �0:213
(0:057) (0:035) (0:038) (0:059) (0:036) (0:022) (0:026) (0:047)

0:4 0 �0:115 �0:124 �0:142 �0:165 �0:097 �0:111 �0:130 �0:156
(0:062) (0:036) (0:029) (0:031) (0:041) (0:024) (0:022) (0:026)

0:8 �0:4 �0:092 �0:144 �0:251 �0:389 �0:055 �0:105 �0:204 �0:347
(0:051) (0:042) (0:073) (0:156) (0:032) (0:024) (0:047) (0:123)

0:8 0 �0:143 �0:188 �0:259 �0:341 �0:104 �0:155 �0:226 �0:315
(0:065) (0:056) (0:076) (0:121) (0:041) (0:037) (0:057) (0:101)

0:8 0:4 �0:152 �0:163 �0:187 �0:219 �0:130 �0:149 �0:175 �0:208
(0:068) (0:047) (0:044) (0:052) (0:047) (0:035) (0:036) (0:045)

Table 1: Bias and M.S.E. of �̂X , Signal plus Noise Process Xt = Yt + Zt, Yt is Gaussian
ARFIMA(0; �Y =2; 0), Zt is Gaussian ARFIMA(0; �Z=2; 0)
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n = 1024 n = 2048
�X �� m = [n0:5] [n0:6] [n0:7] [n0:8] [n0:5] [n0:6] [n0:7] [n0:8]

0 �0:4 �0:134 �0:145 �0:157 �0:170 �0:115 �0:128 �0:144 �0:161
(0:063) (0:041) (0:033) (0:032) (0:043) (0:028) (0:026) (0:028)

0 0 �0:020 �0:013 �0:006 �0:004 �0:014 �0:007 �0:003 �0:002
(0:047) (0:020) (0:008) (0:004) (0:031) (0:012) (0:005) (0:002)

0:4 0:4 �0:096 �0:100 �0:106 �0:118 �0:082 �0:089 �0:098 �0:112
(0:059) (0:032) (0:022) (0:020) (0:039) (0:021) (0:016) (0:016)

0:8 0:8 �0:112 �0:108 �0:112 �0:131 �0:095 �0:095 �0:104 �0:122
(0:056) (0:036) (0:026) (0:025) (0:041) (0:025) (0:019) (0:019)

Table 2: Bias and M.S.E. of �̂X , Xt = exp(�t), �t is Gaussian ARFIMA(0; ��=2; 0)

n = 1024 n = 2048
�X �� m = [n0:5] [n0:6] [n0:7] [n0:8] [n0:5] [n0:6] [n0:7] [n0:8]

0 �0:4 �0:020 �0:010 0:002 0:017 �0:015 �0:006 0:002 0:015
(0:048) (0:020) (0:009) (0:004) (0:032) (0:012) (0:005) (0:002)

0 0 �0:022 �0:013 �0:006 �0:003 �0:015 �0:008 �0:004 �0:001
(0:048) (0:020) (0:009) (0:004) (0:032) (0:012) (0:005) (0:002)

0 0:4 0:030 0:049 0:069 0:085 0:032 0:051 0:068 0:085
(0:051) (0:025) (0:016) (0:013) (0:033) (0:016) (0:011) (0:010)

0:6 0:8 �0:133 �0:097 �0:070 �0:056 �0:115 �0:080 �0:055 �0:042
(0:102) (0:059) (0:034) (0:021) (0:080) (0:043) (0:024) (0:014)

Table 3: Bias and M.S.E. of �̂X , Xt = �2t , �t is Gaussian ARFIMA(0; ��=2; 0)

n = 1024 n = 2048
�r2 �� m = [n0:5] [n0:6] [n0:7] [n0:8] [n0:5] [n0:6] [n0:7] [n0:8]

0 0 �0:011 �0:007 �0:003 �0:002 �0:012 �0:006 �0:003 �0:001
(0:032) (0:013) (0:006) (0:002) (0:021) (0:008) (0:003) (0:001)

0:4 0:4 �0:317 �0:322 �0:328 �0:336 �0:314 �0:321 �0:330 �0:338
(0:139) (0:122) (0:118) (0:119) (0:126) (0:115) (0:115) (0:118)
�0:454 �0:489 �0:525 �0:567 �0:428 �0:469 �0:513 �0:558

0:8 0:8 (0:262) (0:273) (0:299) (0:336) (0:229) (0:247) (0:281) (0:323)

Table 4: Bias and M.S.E. of �̂r2 , rt = "te
�t , �t is Gaussian ARFIMA(0; ��=2; 0), "t is

Gaussian i.i.d.(0; 1)
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n = 1024 n = 2048
�log r2 �� m = [n0:5] [n0:6] [n0:7] [n0:8] [n0:5] [n0:6] [n0:7] [n0:8]

0 0 �0:018 �0:009 �0:006 �0:003 �0:016 �0:006 �0:003 �0:002
(0:049) (0:021) (0:009) (0:004) (0:031) (0:012) (0:005) (0:002)

0:4 0:4 �0:131 �0:143 �0:161 �0:184 �0:116 �0:128 �0:148 �0:175
(0:066) (0:042) (0:035) (0:038) (0:045) (0:029) (0:027) (0:033)

0:8 0:8 �0:165 �0:218 �0:293 �0:376 �0:126 �0:181 �0:258 �0:349
(0:074) (0:070) (0:095) (0:146) (0:047) (0:045) (0:072) (0:124)

Table 5: Bias and M.S.E. of �̂log r2 , rt = "te
�t , �t is Gaussian ARFIMA(0; ��=2; 0), "t is

Gaussian i.i.d.(0; 1)
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