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Abstract

Band spectrum regression is considered for cointegrated time series
with long memory innovations. The estimates we advocate are shown to
be consistent when cointegrating relationships among stationary
variables are investigated, while OLS are inconsistent due to correlation
between the regressor and the cointegrating residuals; in the presence
of unit roots, these estimates share the same asymptotic distribution as
OLS. As a corollary of the main result, we provide a functional central
limit theorem for quadratic forms in nonstationary fractionally integrated
processes.
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1. INTRODUCTION

Let {a:} be a covariance stationary sequence of random variables such that Fa; =
0, Ea? = v(0) < oo, Faga, = ~(7); introduce the spectral density function
satisfying i
() = / FfN) exp(@AT)dN, T=0,+1,42, ... .
-

We term the sequence {a;} short range dependent or (0) if
0< f(0) <oo; (1)

otherwise we term {a:} long range dependent, or fractionally integrated of order
dy, —% < dy < % if
ar T3 a 51

fO) ~GA 2% as A - 07, 0< G < o0, (2)

[13 2

where “ ~ 7 signifies that the ratio of the left- and right-hand side tends to one.
More precisely, the definition of long memory is adopted for the case d, > 0,
while for negative d, the process is termed antipersistent. Models with long
range dependent errors have been considered in various fields of applications, e.g.
geophysics, hydrology and economics; statistical inference under long range de-
pendence has been largely investigated in recent years, for instance by Deo (1997),
Giraitis and Taqqu (1998a), Hurvich, Deo and Brodsky (1998), and Robinson and
Hidalgo (1997).

For many applications, it is also of interest to focus on autoregressive processes
which combine long memory innovations and unit roots, as in Chan and Terrin
(1995), Hurvich and Ray (1995) and Velasco (1997). Consider the two-dimensional
observations (y;, z¢), t = 1,2, .... , where

Yyt = By + e
Nldu ) Nlde Y S]-y
{xt: T w I(d) e 1) 6] 3)

with 0 < d,d, < % We cover dependence between x; and e; allowing correlation
between u; and e;, while we allow for nonstationarity in x;, y; by including the
possibility that ¢ equals unity, i.e. x; is a partial sum of long memory innovations
(for |¢| < 1 and =; independent from e; efficient estimates of [ are provided
by Robinson and Hidalgo (1997)). When the innovations u;, e; are short range
dependent and ¢ = 1, y; and z; are integrated of order 1 (written I(1)) and the
bivariate vector sequence (yt, z:) is cointegrated of order (1,0) (written CI(1,0))
in the sense of Engle and Granger (1987), the cointegrating vector being (1, —3).
The asymptotic theory for 7(0) and (1) processes has been thoroughly analyzed
in the econometric and probabilistic literature, functional central limit theorems
for normalized functionals of such processes have been established (e.g. Phillips
(1988), Hansen (1992)), providing the basis for the asymptotic statistical theory of
the many estimates proposed for cointegrating parameters in the CI(1,0) case, see
for instance Watson (1994) for a review. Much less is known, on the other hand,



on statistical inference for cointegrated variables when the short range dependence
condition (1) is relaxed.

When the sequences e;, u; are not short range dependent, we define (¢, z;) a
cointegrated vector with long memory (or fractionally integrated) innovations (cf.
Jeganathan (1996)), if either a) ¢ =1 or b) d,, > de, or both. Indeed for |¢| < 1 it
can be verified easily that x; and u; share the same order of fractional integration,
dy = dy, and hence under both a) and b) e; has less “memory” than (y:,xt), so
that (3) characterizes a long-run equilibrium relationship which can be viewed as
a generalization of the CI(1,0) case. An alternative approach for the generaliza-
tion of cointegration analysis to fractional processes is investigated by Robinson
and Marinucci (1998), where a different definition of fractional integration is in-
troduced for the nonstationary case, such that the sequences of first differences
Axry = oy — a1, Ay = y¢ — 441 are not second order stationary; cointegration
under fractional circumstances is considered also by Dolado and Marmol (1996)
and others.

The purpose of this paper is to analyze the behaviour of a frequency-domain
semiparametric estimate of the cointegrating parameter 3. More precisely, for
zero-mean sequences of scalars {a;} , {0} introduce the discrete Fourier transforms

1 & 1 &
at exp(—iAt) , wp(\) = th exp(—iAt) ,

and the (cross-) periodogram I,;(\) = wa(AN)wp(A), the bar denoting complex
conjugation. For a; =y, by = 2y and —m < w < 7 we consider the statistic

we(N) =

Bl = Re fargmin [ Ky (o, (@ =0 = Busto = VPN

where for M = 1,2, ..., Kj/(\) represents a frequency-domain kernel such that
Ky (=2 = Ky(N), =7 < A <7, with M = 1,2, ... a bandwidth parameter such
that

1 M
M<n,M+;—>0asn—>oo. (4)

The statistic 3,,(w) relates to works by Hannan (1963) and others and can be
given the closed form expression

_ firﬂ KAI()‘)Iwy(W - )\)d}\

E v (w) can be interpreted as resulting from a form of continuously averaged least
squares regression of wy(.) on wy(.) around frequency w, a technique known as
“band spectrum regression” (Hannan and Robinson (1973), Engle (1974)); a dis-
cretely averaged version of (3,;(w) is considered by Robinson (1994a), Robinson
and Marinucci (1998). For short range dependent processes a well-known estimate
of the spectral density matrix at frequency w is given by

Flw) = /_ 7; Kar(\)I(w — N)dA | (6)
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whence we can rewrite 3,,(w) (formally) as 3,,(w) = fzy(w) / fez(w). Although
it is also possible to focus on cointegration at seasonal frequencies, in the sequel
we shall concentrate on the case w = 0 and write for brevity 3,,(0) = S,
Write fop(A) = (2m) 7222 Y (T)e™ ) v, (T) = Fagb,, for the cross-spectral
density of the covariance stationary, zero-mean sequences a;, b;. We have

(0 / Kt Lp(N)dA 5 a,b =,y , (7)

and it can be verified (Brockwell and Davis (1991), p.358-360) that (7) is equiva-
lent to

(0 Z kar(T)can(T) (8)
T—fn+1
where kj/(.) is the lag window defined by kps(7) = [T Kn(N)ei™d), and

c (7_) _ Z?;lT a‘tbt+T ) T 2 0
ab Z?:|T|+1 atby_r , T<0

Therefore we can rewrite for (5)

5. = S ke (T) oy (T)
M Zn—l

T=—n+1 kJW(T)CZﬂC T

, 1< M<n-1,

and adopt for E s the natural definition of Weighted Covariance Estimate (WCE).
For short range dependent (us,e;) and ¢ = 1, BM was previously considered
by Phillips (1991), where the use of other spectral regression procedures, more
efficient than BM when the CI(1,0) assumption is correct, is advocated; the
following sections analyzes the behaviour of 3 a 1n the fractional circumstances
considered in this paper.

Consider now the OLS estimates § = ¢y (0) 14y (0). For |¢| < 1 and assuming
ergodicity conditions hold on z; and e;, we have the convergence

B3— 3= (Ex?)"'Exie; asn — oo ,

and hence OLS (and indeed other procedures for cointegration analysis) are in-
consistent in the presence of non-zero correlation between x; and e;. It is likely
to be extremely difficult in practice to distinguish, on the basis of a finite sample
of observations, between a unit root process and a stationary autoregression with
long memory innovations and roots close to the unit circle; it is therefore remark-
able that in Section 2 we are able to prove consistency for B v under stationary
circumstances (cf. Robinson (1994a)). In Section 3, we go on to characterize the
limit distribution of B and B o when ¢ equals unity and wug, e; are stationary long
memory processes; companion to this derivation is a functional central limit the-
orem for a class of quadratic forms in nonstationary variables, a result which may
have some independent interest and can be extended to more general quadratic
forms; most proofs are collected in the Appendix.



Throughout this paper, we restrict our attention to the bivariate case for sim-
plicity; multivariate generalizations require in the nonstationary case extensions
of functional central limit theorems from Gorodetskii (1977) and Chan and Terrin
(1995), and these extensions are currently under investigation. In the sequel, C'
denotes a generic, positive constant, which need not be the same all the time it
is used.

2. THE STATIONARY CASE

When ¢ is in absolute value smaller than unity, we find it notationally con-
venient to specify a model for the covariance stationary sequence (z:,e;) rather
than for (u¢,e;), and to write dy for d.

Assumption A (3) holds, with |¢| < 1 and
(we,e0) = W(L)ey , U(L) =) UpLF,
k=0

where L is the lag operator, Vg = I,,, and for k = 1,2, ... Uy has (4, j)-th element
Py ~ ek g~ cpk® T ask — 00, 0< ¢y < o0, (9)

fori,7=1,2,0<d, <d < %, and where e; = (£14,e2:)' represents a zero-mean,
independent and identically distributed (i.i.d.) sequence that satisfies E|le||* <
00, ||.|| denoting Euclidean norm.

Assumption A characterizes the bivariate sequence (z¢,e;) as a linear stationary
long memory process with innovations satisfying a mild integrability condition (cf.
Davydov (1970)), and it is for instance verified if x; and e; are generated by sta-
tionary autoregressive fractionally integrated moving averages processes (Granger
and Joyeux (1980)) driven by innovations with finite fourth moments; such pro-
cesses satisfy (2). As a consequence of (9), as T — oo,

Exiwiyr ~ G720 < g, < 00, Exiepyr ~ GpeTdetdam1 (10)

where gz = 0 if Ecyie9 = 0. In the sequel, we find it convenient to set kp;(.) def

k(T/M), and to introduce

Assumption B The kernel k(.) is a real-valued, Lebesgue-measurable function
that for v € R satisfies

/11k(v)dv:1, 0<k(v) <C, k(v)=0for [v] > 1. (11)



Assumption B is common for spectral estimates, and it is satisfied by (normalized
versions of ) truncated lag windows such as the Bartlett, modified Bartlett, Parzen,
and many others; see Brillinger (1981) for a review.

Lemma 1 Under Assumptions A and B, as M — oo for M = o(n?) we have

{ Z k(— M )Vaa(T )} T:Z:Mk(%)cmz@—) = 1+op(1),

T=—M

-1
Z k(— ’yze(T) Z k(— cze = 1+4o0p(1).
T=—M
For d, > 0, the spectral density of x; has a singularity at frequencyAzero and cannot
be estimated there. For \; = 27j/n, j = 1,2,...m, denote by Fg,(A\m) the real
part of the discretely averaged periodogram, i.e. Fup(Am) = (27/1) 37701 Lap(A;)-

Assuming
1 m
m<n, —+— —0asn — o0,
m n

and regularity conditions on (x¢,e;) (such that Assumption A is covered), it was
shown by Robinson (1994a) and Lobato (1997) that for a,b = x, e,

ﬁab(Am)

———==1,asn—00, Fu\ / w 12
Fo o) b Jap(A (12)

plim
Lemma 1 is similar to (12), relating however to the case when the continuously
averaged periodogram (6) is considered.
Under Assumption A and in view of (10), (11), as M — oo we have, by the
dominated convergence theorem

M M
¥ 1

M N k(- %;m = > k(5; M ]\;;di )1M ~ Baa (13)

T=—M T=—M

M
Mdade k = (L) DeeD) L p 14
Z M ’}/xe( ) = Z M ]\/[dz+de WY ze ( )

T=—M —-M

where . 1
B:C:C = gx/ k(U)Ude_ldU s Bxe = gwe/ k(U)Uderde_ldU )
-1 4

Hence Bge can be equal to zero if Fejieor 1, in which case the left-hand side of

(14) is 0p(1).
As an application of Lemma 1 we consider the statistic

Z k(=—)cge(T)| — 2dy In M = In By + 0p(1) asn — oo,
T=—M M



whence a consistent estimate of the parameter d, can be obtained under Assump-
tions A, B and (4) by

In| 32y ks (7)Caa (7)]
2In M
This estimate is likely to be severely biased in finite samples, though, and rather

than investigating in more detail its properties we concentrate on (3), for which
we introduce the following result.

~
T

Theorem 1 Under (3), Assumptions A, B and M? = o(n), as M — oo

— BZCB
BSCCC

M43, — B) +op(1) .

Theorem 1 suggests that the presence of correlation between z; and e; does
not prevent consistency of B > the rate of convergence being determined by the
“strength” of the cointegrating relationship d; — d.. We delay to future research
the investigation of issues such as the determination of optimal bandwidth pa-
rameter M (cf. Robinson (1994b)), the choice of an optimal kernel k(.), the
estimation of the noncentrality parameter By./Bgz, the implementation of bias
reduction techniques, and the derivation of the asymptotic distribution for the
adjusted estimate; we focus instead on the unit root case, which is dealt with in
the next section.

3. THE UNIT ROOT CASE

The unit root case is characterized by the identification ¢ = 1 in (3), so to
obtain (after the initialization xg = 0)

t
r=> ug, t=1,2,... (15)
s=1

We consider first the C'I(1,0) case. For convenience, we write wap, = 27 f45(0),
a,b = u,e, with |wg,| < oo by (1). Let = denote weak convergence in the sense of
Billingsley (1968) and B(r,w) denote scaled Brownian motion, i.e. the Gaussian
zero-mean process with independent increments and EB?(r,w) = wr, w > 0. The
following result is proved by Phillips (1991).

Lemma 2 (Phillips (1991)) Let (3) hold for ¢ = 1, and assume that as n — oo

n

t 1
Yo u) = /OBZ(T;wuu)dr, (16)

=1 s

|
()
=+

S
M=

—_

(Z us)et = /01 B(TQWuu)dB(T;Wee) + ZVU@(T) . (17)
7=0

t=1 s=

—_

7



Assume also that Assumption B holds. Then under (4), as n — oo

n(BM - pB) = {/01 BQ(TEWuu)dr}l {/01 B(r;wuu)dB(r; wee) + io%te(ﬂ} .
. (18)

Under (1), conditions for (16)/(17) to hold are given for instance by Phillips
(1988) and Hansen (1992). On the other hand, when (2) holds, u; and e; are not
short range dependent and the asymptotics for B u depends on functional central
limit theorems for normalized partial sums of long memory innovations. Such
results have now been given under a variety of different conditions, for instance
by Davydov (1970), Gorodetskii (1977), and more recently by Chan and Terrin
(1995). For our purposes, we introduce the following

Assumption C (15) holds, where for —% < d, < 3

[ee] (o)

us = Z%Cstfk,Z|¢k\2<oo,¢kwckd“_2ask—>oo’0<C<oo’
j=0 k=0
.. 1

g = z.z.d.(O,az) , (fg < o0, E|5,5|‘5 <00, 8> a1

We have allowed here for the possibility that w; is antipersistent, i.e. d,, < 0 (the
condition on ¢ is clearly redundant if d,, > —1/4). Some of the results of this
section need somewhat stronger assumptions than C, and therefore we introduce
also

Assumption D (3) holds with ¢ = 1, and for covariance stationary sequences
ag, a = u, e, we have

“w = /7r exp(itA)faa(A)l/QdMa()‘) )

faaN) ~ [N 2%G,, a5 A — 0", 0 <Gy < 00,

where M,,(.), M(.) are complex-valued, Gaussian random measures which satisfy

AM,(\) = dMy(—N)
EdM,()) = 0

EdM,(\)dM,(\) = { 0, A1 h—ue.

Because by Wold representation theorem any (Gaussian covariance stationary se-
quence can be viewed as a linear process with 4.7.d. innovations, Assumption D
entails stricter conditions on u; than Assumption C. In the sequel, for notational



convenience we shall occasionally use the identification d, = d,,+ 1; although x; is
not covariance stationary, condition (2) can be granted a broader interpretation
in this case, see Hurvich and Ray (1995).

Lemma 3 Let u; = 372 a;&;_;, for t = 1,2,..., where

ail? < oo, Qs ~cer?® Tl 0 < e < oo, as T — 00, 19
j 3%+
j=0 j=0
E¢, = 0,FB8 <C,F8,=0,t+#s. (20)
Under (4), (15) and for k(.) such that (11) holds, we have
1 M T d
_ 2d,—1
€20 (0) = 77 > k(57 Cea(T) = 0p(n™77) .

T=—M

Because £, need not be independent, or identically distributed, or satisfy any mo-
ment condition of order greater than two, (19)/(20) are weaker than Assumption
C.

For the following result we need to narrow the focus and impose Assumption
D.

Lemma 4 Under Assumption D, d,, +d. > 0, (4) and (11)
1 X T
Cze(O) — M T;Mk(M)CmB(T) = Op(ndz+de*1) ]

Let us introduce fractional Brownian motion, which we present as the Gaussian
a.s. continuous process with harmonizable representation (Samorodnitsky and
Taqqu (1994))

B(r:dy) = L % Faa N Y2dMa(N) -

Here we consider also the compound processes, for d, + dp, > 0, a,b = u,e

1

P(d) = / B(r; dy)dr |
0
1
Q(da,dy) = A B(r;da)dB(r; dy) + C(da, dy) , (21)
51 —exp(—1t

Clasd) = [ { [P )
r Lo i

The stochastic integral on the right-hand side of (21) is defined only in a formal
sense to be equal to

where

"

A , { /0 s exp(itk)w} Fuu(1) 2 foe N V2dMu () dMe(N) . (22)

i

9



where [ 1;12 signifies that the integral excludes the diagonals p = +A. (22) is a
multiple Wiener-Ito stochastic integral in the sense of Major (1981), but it cannot
be defined as an Ito integral with respect to B(r;d,) because fractional Brownian
motion is not a semimartingale.

Lemma 5 (Gorodetskii (1977)), Chan and Terrin (1995)) As n — oo, under
Assumptions C and D

(n%c.) zn:x? = P(dy) (23)
t=1

Also, under Assumption D, d, +d. > 1
1"
(= Gi2GH) S me = Q(dude) - (24)
t=1

Proof (23) follows under Assumption C from Gorodetskii (1977) and the contin-
uous mapping theorem; (24) is given in Chan and Terrin (1995).

It follows from Lemma 2 that in the CI(1,0) case (3, shares the same asymptotic
distribution as OLS; when the innovation are long memory a stronger result holds,
namely the difference between the two estimates is asymptotically op(nde ).
More precisely,

Theorem 2 Under Assumption D, (3), (4) and (11), as n — oo

dy—de (7 G/
WG 5) = ) Qo) (25)
and
B =Bl = opn*), (26)
nle By — ) = %P(d@l@(du,de). (27)

Proof (25) follows from Lemma 5 and the continuous mapping theorem. For (26)
we can rewrite (cf. Robinson and Marinucci (1998))

_ R 1 M - 1 M
Bu—0B = {M > ’fM(T)Cm(T)} {M > kM(T)Cze(T)—Cze(O)}Jr

T=—M T=—M

1 U B 1 U
{M Z kM(T)wa(T)} {Cm (0) = M Z kM(T)wa(T)} (czz(0)) ™" eze(0)

T=—M T=—M
Op(nldez )Op(ndz+defl) + Op(nldeI )Op(nlefl)Op(ndefdz )
op(nde )

10



in view of Lemmas 3 and 4, so that the proof of (26) is completed. (27) follows
immediately.

The constant C'(dy, d.) at the numerator in (25) is due to the non-zero correlation
between u; and e;. The left-hand side of (25) generalizes in an intuitive way the
rate of convergence and the asymptotic distribution of the C'I(1,0) case, which is
provided by (18).

Theorem 2 might be extended to allow for d, < 0, provided d; + d. > 1, i.e.
dy + de > 0. However we refrain from the analysis of this case here, both for the
sake of brevity and to maintain symmetry with the stationary case where d,, < 0
was ruled out. The possibility of an “antipersistent” behaviour in the innovation
sequence u; seems moreover less relevant for applications. Here as in Section 2
we leave several issues for future research; in particular from the point of view of
practitioners it seems important to analyze the case of deterministic components
n (Y, z¢), including a non-zero mean. Also, it seems possible to make asymptotic
statistical inference on f3 s Viable by nonparametric estimation of G, and fu(\),
a,b = u, e, possibly by a two-step procedure, and then by tabulation of the left-
hand side of (27). Although under (4) the asymptotic distribution of 3,,; does
not depend on the bandwidth parameter M, some guidance must be provided for
applied research, cf. Robinson and Marinucci (1998).

As a final point, recall that from Lemmas 3-5 we learn, under (4),

n f: F(2 ) au (1) = GuP(dy) + 0p(1) (28)
M 2= "
and
nl—dz—de M .
W X Kl = GG QUL o) (9

In view of (8), (28)/(29) provide the asymptotic distribution of the weighted
covariance estimate of the (cross-) spectral density at zero frequency for the vari-
ables z; and e; when the former is nonstationary. This result can have some inde-
pendent applications, for instance for estimates of the differencing parameter d,
under the same circumstances as in Hurvich and Ray (1995), and Velasco (1997).
Moreover, the same argument as in Lemmas 3 and 4 can be exploited in the anal-
ysis of the behaviour of more general quadratic forms in nonstationary variables
(for the stationary case, cf. for instance Giraitis and Tagqu (1998b) and the refer-
ences mentioned therein). Consider the quadratic form >~ | >0 baspn (t—5) 225,
where by n(7) = K*(7/M) (say), for k*(.) such that Assumption B holds and x;
satisfying Assumption D; hence

n—|7

n n
ZZ n(t — 8)zpxs = Z barn(T Zwtwmﬂ

t=1s=1 T—fn+1
= Z E*(— cm T).
T=—M

11



Then under (4) we have

*de 1 n

n
ZbMvnt—sxtxsiG / B?(r;dy,)dr , as n — oo .
t=1s=1

As a consequence of nonstationarity the weight function b(.) is not invariant with
respect to n and M.

4. APPENDIX

Proof of Lemma 1 Recall that

p
EE:k—cm = § k(- )Vaz ()
M ey M
&l P Mop P
E k ace = k(=—)(1 -~ R
Z (37)¢ p:ZM (7)1 = ) VaeP)

where, under (4), (13) and (14)

Z[])w:—kl( n)k(%)'yww(p) _ n)k(%)'ywe(p) _
M—oo 71\[ k(%)ymm(p) M—o0 *1\[ k(%)yme(p) ’

(30)
by the dominated convergence theorem. Hence it is enough to prove that under
Assumption A we have

> KO o) = (1= Dnaa)} = oy (31)
Z k(37 {Cze p)— (1—%)%8(19)} = op(M=Tle) . (32)

For (31)/(32), it is sufficient to show that

M-1 M-1

Z Z |Cov(cza(D), cza(q))| = o(M?d=+2de) g = 1 ¢

=—M+1q=—M+1

From Hannan (1970), p.209, we have that Cov(cza(p), cza(q)) is equal to

1 T
- (1 - u)(%m@“)%a(r + q— p) + fYaca(T + q)’yaz(’)“ o p) (33)
n T‘:—’I’L-‘rl n
1 n—1 n—r
+ﬁ Z Z Cumwama(sas"’—pﬂs—’—ns—’_r—’_q) (34)

r=—n+1s=1—r

12



where cumzaza(q, r, 5,t) represents the fourth-order camulant of x4, a,, xs,a;. Now
for (33), when d + d, < 3

S Pl D= ) sl PPVl -0 € €S [12(r) + 72}

r=—n+1 r=—00
because (r)y(s) < 1 {+%(r) +~2(s)}, r,s = 0,41, £2, ... and hence

n—1
Z Z Z %) {’}/xw(r)’yaa(/r +p- Q) + ’}/xa(r +p)7aw(r - Q)} |

—M gq=— r=—n+1

2
_ 0(%) —o(1) .

n
For d, 4+ d, > %, and in view of (10),

n—1
T
Z Z _| Z 1 %)Vw;c(?d)'yaa(qd +p - q)|
p=—M q=— r=—n+1
M—1 n—1 M M-1 n—1

Y Y bt Waar +7) <C— 37 D7 =+

T=M—-1r=—n+1 T=M—-1r=—n+1

— O(%M2d1+2da) — 0(M2d¢+2da) ]

IN

Also, by Cauchy-Schwarz and elementary inequalities

1
IS 7]

Z > Y = Dyl +D)vaalr — )

Mq—71\[ r=—n+1
2 n—1
% 2, 2dz+2dq—2Y\ __ 2d,+2d,
S C Z ’Yaca - M n ) - O(M ) N
r=—n-+1

For (34), by Hannan (1970), p.211 and Assumption A we have that
CUMgaza(p, 4,7,5) < C > g(p+d)g(d+q—p)g(d+r —p)g(d+s5—p)
d=0

with g(u) = (Ju| + 1)%=~1. Hence (34) is bounded by

n—1 n—r oo
% > g(d)g(d+p)g(d+r)g(d+7+q)
r=0 s=1—rd=0
n—1 oo
< £ Y gl rgldrg
r=—n+ld=—o0
C n—1 0o A
< ¢ > 4g'd) =0(1)



where the last inequality follows from ABCD < A*+ B* + C* + D*, which holds
for real-valued A, B,C, D.

Proof of Theorem 1 We can rewrite

M 1oy
By -8 = { > k(%)cm@)} > k(7 cac(p)

= A%
for
- p P p
A= S 0D w3 kD) et -0 Do)
p=—M p=—M
X p - P p
b= X ARG+ 3 b H{erelp) = (1= Dt}
p=—M
Now by Lemma 1 and Assumption A
M o
—_ = - -1 =
Z (1 n)k(M)mem(p)A 1 + Op(l) ’
p=—M
M D D -1
Z (1 - ﬁ)k(ﬂ)vwe(p) b =1 +Op(1) )
p=—M

and hence the result follows by Slutsky’s theorem and (30).

Proof of Lemma 3 Because by Assumption B M~ 1M | k(1/M) ~ 1 as
M — o0, it is sufficient to prove that

— Z k(— {cm — (1)} = 0p(n?%=71) (35)

The right hand side of (35) is equal to 2/M times

t=7+1
- iﬁl‘,ui)iﬁ (36)
T oon - M’z t
T= t=1
1 M T n
- E(—— —x
+nz:1 (M)t;ﬂxt(mt T—7) (37)

For (36), we have easily

M M . M
> Sl <cus .
t=1 7=t

t=1
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where

M M t oo 2 M t t oo oo
doap=)" {ZZ%J} =D D 0> D ol € -
T=1

t=1 | s=1;=0 t=1s=1 k=1 j=0i=0
To bound the expected value of the above (non-negative) random variable, we use
(19)/(20) to obtain

t

M t oo M t t
YD) 3D B SLTNIEEINC) 3 3 PSP
t=1s=1k=1

=1k=1j=0 t=1s=1k=1

?

_ Z g |U| p2u=l < O

whence it follows that >"M, 2? = 0,(n??%). By Cauchy-Schwarz inequality, (37) is

bounded by
1 n 1/2 pm T n 1/2
. {Zf”z} 2 M 2 et

t=7+1

The last element has stochastic order of magnitude

1/2 M 1/2
1 n T n
Op(— {; ivf} )Op(E;k(M) { > (w - th)Q} )

t=7+1

M n 1/2
= Op(ndlilEz { Z (J’Jt — l‘t_T)Q} ) 5 (38)

7=1 \t=7+1

2}1/2 _

in view of Assumption B and because {n=! "7 27
previous calculations. From Jensen’s inequality

N 1/2 n 1/2
CZE{ Z xt—xt7)2} <CZ{ Z wt—ﬂftr)Q} )

t=7+1 t=7+1

Op(nd==1) follows from

where

z”: E(mt—xt_T)Q = z”: E{ Z us}

t=7+1 t=7+1 s=t—7+1

n t t [o SRNe]
= 2 E > > D) ayoiby b
t=7+1 s=t—7+1k=t—7+1j=0i=0
n T—17—1 o0

S S ) D) LI

t=741 s=0 k=0 j=0

n 7—1
Cr Z Zde“_l < Opr2d=—1

t=7+1v=0

IN
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It follows that

M n 1/2 M 1/2
Z { Z E(xt - mt—7)2} < CZ {nTdeil} = O(nl/QMd”C+1/2) ;

7=1 | t=741

hence in view of (38), (37) is 0,(n??), which completes the proof of Lemma 3.

Proof of Lemma 5 In the sequel, we repeatedly use the inequality
Babs < O(1+ [t —s) ™1 a,b =u,e, (39)

which holds under Assumption D. We have

1 M T 1 M T
e - o5 k(— e = I k Te — Cge
carl0) = 57 30 Kgpealn) = g7 3K fenel0) — car(r)}
1 T
+_ Z k( ){Cxe( ) — Cae(T)}
+cze(0 Z k(—
{ T=—M M }
= II)+ (I11) + (IV) 4+ (V)
with
1 M n 1 M T
L= m ZkM(T)t;ft(et —er), 1= Mn 4 ZkM(T)ZL’”tet
1 n
Il = M Z k‘]\[ Z (.’Et —ZL't_T)et, IV— Z k]V[ theta
L —; t=7+1 "=
R T
V = C;ce(o) 1-— M T:Z]V[k(ﬂ) .
Define

M M M M

PIEDIH I

t=1s=1v=s 7=t

In view of Isserlis formula (Brillinger (1981), page 21) which for zero-mean Gaus-
sian variables gives

E$1$2$3ZL’4 = E$1$2E$3$4 + E$1£L'3E£L'3$2 + E£U1$4E$3ZL'2 5
the expected value of the square of (I7) is bounded by
M 2
C C
{; {Z k(T }xtet} E Ezﬂftetﬂfses = W {1 +T2+T3},
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for
I = ZEwtetExSes , 'y = ZEwtxsEetes , I's = ZEwsetExteS .

Now in view of (39), I'; is bounded by
— t s —
ZEZUjetEZUies < Cztdu+desdu+de — O(MQdu+2de+4) _ 0(M2n2d2+2de) 7

and I'y is bounded by

M M
C’MQZZ |t — 8| +1)%%~ 1ZZEUZUJ
t=1s=1 =1 j=1
M M
< OMPY D (|t s|+12de_1MZ|k|2d“_1
t=1s=1 k=1
2d +1§:§: |+1 2d—1) (M2 2d. +2d)
— M w —s e =0 z ),
t=1s=1

As far as I's is concerned we have that

M M M M

s < CJWQZZZZUS_ﬂ+1)d“+d671(|t—i|—|—1)d“+d271

t=1s=1j5=11=1
— O(]V[Qdu+2de+4) — O(]\/[2n2dz+2de) )

Hence T; = o(M?n?d=12de) j = 1,2 3, and (II) is op(ndeTde~1); same argument
can be applied to (IV). For (I), we can rewrite

M n n
Zk(%){ Z xiep — Z Tt — Tt—r et T Z Lt—r€t— T} =A1—-A2—Agz,
T=1

t=T+1 t=T+1 t=r+1

where

M n M T
T T
Al = Z k(M)t nz;r—i_l Ti€y AQ = 7; kZ(M) ;xtet 5

Ag = Zk M Z xt,T)et,T.

t=7+1

Now A; and Ay are, apart from a change of index, proportional to (I7) which we
analyzed before. On the other hand, A can be dealt exactly as (I17), again with
a change of index; therefore we analyze (II1). In view of (15), we have

n

S (w—wr)e = Z Z uiey .

t=7+1 t=7+1i=t—7+1
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Also
2
n t
SN wmey =Y e
t=7+1i=t—7+1
with

— n n t s
2= 2.2 > )
s=7+1t=74+1i=t—74+1 j=s—7+1

Hence we obtain Eietuiesuj = 01 4+ O, + O3, for

= ZEetesEuiuj, 6, = ZEetuiEesuj, O3 = ZEetquuieS .

Thus
n n t s
©: = FE Z Z eres B Z Z UiUj
s=T7+1t=7+1 i=t—7+1 j=s—7+1
= O(n(n —7))0 (73 ) = o(n22e)
n t n s
0y = Z Z Eeyu; Z Z Eegu,;
t=7+1i=t—7+1 s=7+1 j=s—7+1
n t
< C Z Z (|t — | 4 1)%utdet Z Z (|s — j| 4 1)dutde1
t=7+1i=t—7+1 s=7+41 j=s—7+1

= O({(n - T)Td“+de}2) = o(n2dat2de)

n

s n t
O3 = Z Z Eeiu; Z Z EBu;eg

t=7+1 j=s—7+1 s=7+1i=t—7+1
= O({(n=m)rteri}) = onictate)

Because the expected value of the square of (I17) is bounded by Cn=2 {01 + ©5 + 03},
we have easily (I11) = op(nd=tde=1),

Finally, from Assumption B we have (V) = 0p(cze(0)) = 0p(nd=Fde=1) the last
equality following from (24).
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