SEMIPARAMETRIC INFERENCE IN SEASONAL AND
CYCLICAL LONG MEMORY PROCESSES

by

Josu Arteche
University of the Basque Country, Bilbao

and

Peter M Robinson
London School of Economics and Political Science

Contents:

Abstract
1.
2.

NG W

Introduction

Seasonal/Cyclical Asymmetric

Long Memory Models
Log-Periodogram Regression
Gaussian Semiparametric Estimation
Finite Sample Behaviour

Application to UK Inflation
Conclusion

Appendix
References
Figures and Tables

The Suntory Centre

Suntory and Toyota International Centres
for Economics and Related Disciplines
London School of Economics and Political

Science
Discussion Paper Houghton Street
No. EM/98/359 London WC2A 2AE
September 1998 Tel.: 0171-405 7686

Research supporied by ESRC grant R000235892. The first author acknowledges financial
support from the Bank of Spain and UPV grant 038.321-HB039/97, and the second author a
Leverhulme Personal Research Professorship. The data were provided by the Bank of
England. We thank an associate editor and a referee for their comments.



Abstract

Several semiparametric estimates of the memory parameter in standard
long memory time series are now available. They consider only local
behaviour of the spectrum near zero frequency, about which the
spectrum is symmetric. However, long-range dependence can appear as
a spectral pole at any Nyqvist frequency (reflecting seasonal or cyclical
long memory), where the spectrym need display no such symmetry. We
introduce Seasonal/Cyclical Asymmetric Long Memory (SCALM)
processes that allow differing rates of increase on either side of such a
pole. To estimate the two consequent memory parameters we extend
two semiparametric methods that were proposed for the standard case
of a spectrum diverging at the origin, namely the log-periodogram and
Gaussian or Whittle methods. We also provide three tests of symmetry.
Monte Carlo analysis of finite sample behaviour and an empirical
application to UK inflation data are included. Our models and methods
allow also for the posssibility of negative dependence, described by a
possibly asymmetric spectral zero.
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1 INTRODUCTION

In the analysis of time series the behaviour of the spectral density (spectrum) around zero
frequency has attracted great interest, in particular with respect to the possibility of a spectral
pole or zero. For a scalar covariance stationary process, z,,f = 0,+1, £2, ..., assume absolute
continuity of the spectral distribution function so that there exists a spectrum f(A), and lag-j

autocovariance v;, satisfying
v; = E{(2y — Ex)(z¢y; — Ezy)} = f(A)cos(FA)dA. (1.1)

A standard semiparametric model for local behaviour close to zero is f(A) ~ C[A]™% as
A — 0, for 0 < C < o0, where the memory parameter d satisfies [d] < 1/2, where d < 1/2 is
inherent in stationarity and d > —1/2 ensures invertibility. When d = 0, z, is often said to
have short memory, when d > 0 long memory, and when d < 0 antipersistence or negative
dependence. Various methods of estimating d are now available. For reviews see e.g. Beran
{1994) and Robirson (1994a).

Interesting spectral behaviour is also possible at one or more other frequencies between 0

and =, corresponding to analogous concepts of memory. We can assume
flo+ M ~CAI™ as A—>0 (1.2)

for 0 <€ < oo, |d| < 1/2 and w € (0, 7). There is a spectral pole at w if d > 0 and a zero if
d < 0. (1.2) provides an alternative approach to standard methods of modelling seasonal or
cyclic behaviour, where w represents either one of the seasonal frequencies or the cycle.
Parametric and semiparametric models conforming to (1.2) and their estimation and
testing have been discussed by such authors as Andel (1986}, Carlin and Dempster (1989),
Chung (1996), Giraitis and Leipus {1995), Gray et al. (1989,1994), Hassler (1994), Hosking
(1984), Ooms {1995), Porter-Hudak (1990), Ray {1993) and Robinson (1994b). Models and
methods for the standard case w = 0 extend fairly straightforwardly to (1.2} with known
w € {0,7), but movirg from w = 0 to w € (0,n) also broadens the scope for modelling

because we can extend (1.2) to

flw+ ) ~ CA™¥ a5 4 = 0F,

flo=A) ~ CA~¥2 a5 X 0t (1.3)



where w € (0, %),

1
0 < C; < oo, [d,—]<§, i=1,2, (1.4)

and we permit

d] % d2 and/or C1 7£ CQ. (15)

Since the spectrum is symmetric about frequencies zero and 7, the possibility of (1.5} is
excluded for w = 0, x, but for w € (0, 7) anry values of C; and d; satisfying (1.4) are possible.
Clearly (1.3) and (1.4) nest (1.2) as a special case. We call a process with spectrum satisfying
(1.3)-(1.5) a Seasonal/Cyclical Asymmetric Long Memory (SCALM) process. Note that both
the intercept and the slope in the local linear relationship between log f{w + A) and log A can
differ from those pertaining to f(w — A).

The following section introduces examples of SCALM processes. Sections 3 and 4 extend
to SCALM processes some methods of estimation proposed for the case (1.2) when w = 0
(where the spectrum is symmetric), namely the log-periodogram and Gaussian semipara-
metric or local Whittle estimates, and introduce tests for spectral symmetry, d; = d,. The
behaviour of these tests in finite samples is analyzed in Section 5 through a small Monte Carlo
study. An empirical application to a monthly UK inflation series is introduced in Section 6.

Section 7 concludes. Technical details are placed in the Appendix.

2 SEASONAL/CYCLICAL ASYMMETRIC LONG MEM-
ORY MODELS

Although the stress in the present paper is on semiparametric inference based on the “local”
SCALM model (1.3)-(1.5), it is important to describe parametric models which define f(})
over the whole of the Nyqvist band while conforming to (1.3)-(1.5), thereby demonstrating
that processes satisfying (1.3)-(1.5) exist (at least under Gaussianity) and providing ways of
computer generation of such processes. We begin by describing existing models for the special
case (1.2) and then indicate how we can build on them to cover the more general behaviour
in (1.3)-(1.5).
Seasonal fractional noise is characterized by a spectral density
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and autocovariances

Ex? 2d+1
Y= 2 ’

where s is the number of observations per year (see for instance Jonas (1983), Carlin and
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Dempster (1989) or Ooms (1995)). Thus f{A) satisfies (1.2) at {(s + 1)/2] values of w, namely
at the origin and seasonal frequencies w; = 2—:'1, i=1,..,[(s-1)/2],[-} denoting integer part.
All spectral poles/zeros are symmetric in the sense of (1.2) and of the same magnitude.
Another class of seasonal or cyclic long memory models such as those in Hosking (1984},
Andel (1986), Chan and Wei (1988), Robinson (1994b}), Chan and Terrin (1995) or Giraitis

and Leipus (1995) is defined by

D(L)I; = U t= 1,2,...., (21)
where £ is the lag operator,
r—1
D(z) = (1 - 2)*{J] (1 - 2zcosw; + 2%)¥}(1 + 2)*, (2:2)
=1

and wu, is a short memory process (for instance a stationary and invertible ARMA). (2.1) and
(2.2) allow spectral poles/zeros of different magnitude at frequencies w;, j = 0,..., 7, where
wo = O0and w, = 7. If D(2) = (1-2)¢, (2.1) satisfies (1.2) with w = 0; D(2) = (142)? satisfies
(1.2) with w = 7; if D(2) = (1-22 cosw+2?)? and w € (0, 7), (2.1) is the so called Gegenbauer
process (Gray et al. (1989,1994)), satisfying (1.2) for the stated w; D(z) = (1 — z'%)? is the
seasonal model used by Porter-Hudak (1990) for USA monetary aggregates and (1.2) holds
for w; = 275/12, 7 = 0,1,....,6; D(z) = {1 — 23)%(1 ~ 2'*)%2 is used by Ray (1993) for
monthly IBM revenue data; if w; = 273/s for 3 = 1,2,...[(s — 1)/2], that is, if w; are seasonal
frequencies based on s observations per year, then (2.1} has been called “flexible ARFISMA”
(Hassler (1994)) or “flexible (seasonal) ARMA(p,d,q),” (Ooms (1995})).

One way of defining a spectrum that satisfies (1.3) and (1.5) is to extend the Gegenbauer
process of Gray et al. (1989}, considering

B(Mw)?h if w< A<,

o
A) = 25 2.3
) %B(A;w)'%? if 0<A<w, (23)



where 8(X;w) = [1-2¢" cosw+e?*|. Clearly (1.3)-(1.5) hold under (2. 3). The corresponding

7v; satisfy

- 2dp—1
v = 2\/_(251nw)2 2d2I‘(1—2dg)Pj_2% 2 (coswu)

+ (-1)

5 \/_(QSIIILJ)?_M‘I‘(I Qd,)P”l 7(~ cosw), (2.4)

where P!(z) are associated Legendre furctions and I'(-) is the gamma function. Equation
(2.4) can be obtained as in Chung (1996) for the symmetric case, applying formula 3.663.1

in Gradshteyn and Ryzhik (1980). The asymptotic behaviour of 75 is

~dy~1 ‘2da—1

v, % § sin{rd; — jw) + 7 sin{rdy + jw) as 7 — o0 (2.5)

where a ~ b if § — C, where C is a finite nonzero constant (see the Appendix). The
autocovariances (2.5) not only decrease hyperbolically as is typical of long-range dependent
data, but are also affected by the cyclic behaviour of the sine function with period depending

on w. Expression (2.4) simplifies when w = 7/2, j.e. cosw = 0:

Y = o3 L(1 - 2d3) 4 (—1y jof I(1 - 2dy)

2T~ - D1 - dr + 1) 2 T(1—dy— )00 —dy + 2)

(2.6)

J=0,%1,+2,... (see the Appendix} . Gaussian z, satisfying (2.6) can be readily generated,
using for example the algorithm of Davies and Harte (1987).

To facilitate the understanding of SCALM processes consider further the case w — /2.
When d; > d3, the spectrum (2.3) shows that cyclical components with period approaching
4 from below (frequency approaching 7/2 from above) are stronger than cycles of period
approaching 4 from above. The autocovariances (2.6) displayed in Figure 1 for 7 = 86
through j = 100 exhibit a corresponding pattern. When d; = 0.4 and d» = 0.1 (Figure 1a)
7; 1s larger just above lag 4k than just below. When dy = 0.1 and d, = 0.4 {Figure 1b) the

situation is reversed.

This phenomenon might help to explain a difference that might be observed in economic

time series between autocorrelation of summer and autumn observations on the one hand

and summer and spring ones on the other.



It is straightforward to extend (2.3) to a more general spectrum with asymmetric pole/zero

by taking
A = —Le Aw) M p(d) w< A<,
-ze(A w)2p(A) 0< A< w,

where p()) is a nonnegative, even function, for example the spectrum of a stationary fractional
ARIMA process. To write down a spectrum with two or more asymmetric poles/zeros on
(0,7) is more complicated. Suppose f(A) has poles/zeros at frequencies 0 < wy < wp... <

wr-1 < 7 and possibly at wp = 0 and w, = 7. Let §; = {w;_1,w;]| for 3 = 1,...,7. Write

ho{A) 1- e,

he(A) = |1+e€?™%,
hie(A) = 0w ™4, j=1.,r-1, k=12

r—1
g(A) = ho(A)hA(X)? I hja(M)hs2(N),
=t
where do, d,,djx € (~-1/2,1/2). Let g;(A), j = 1,...,7, be even, positive and bounded func-

tions in [—w, 7). Now specify

(A)g(Ayreld) if Xe S,

Apa{A)
A

(0 = gJ(A)g(,\)W%j-) if AeS;, j=23,.,7—1, (2.7)
Rr_11{}) .
gr( Mg\ 5=y if Aes,
For example consider the case r = 3 and for simplicity do = d3 = 0 so that there are two

spectral poles/zeros in (0, 7) and none at 0 or 7. Let gi(A) = ;;— fori=1,2,3. Then

TLO(Ajwr ) T220( Aswe) T 0 M) 2,8 < A Sy,

g
f(A) = 5_2;9(/\ cwp ) TG wy) 222 w1 < A< wa,
8 xw) (M) B2 8( A wa) M <A <

On the other hand if d;; = dj2 = d; and g;{A) = fu(A) for 0 < j <7 then

- fu(X) ‘
f) = 1= e [Z0]1 + e[ [T20 8% 0o)" (2.8)

which is the spectrum of the “symmetric” process (2.1} and (2.2). Note that there is not in
general actual symmetry around a non-zero and non-7 pole/zero in {2.8), except for example

when
2

- . = 2. 2.
2m8(X; w)?d’ w=m/ (29)

f) =



However (2.8) does possess the asymptotic symmetry property of (1.2)forw = 0,wy, ..., wr_1, 7.
In general it is not possible to obtain an exact expression for the autocovariances corre-
sponding to the SCALM spectrum (2.7) when there are two or more spectral poles/zeros in

(0,7). However when 0 < d; < 1/2for i = 0,1, ..., 7, asymptotic behaviour is given by

v; R j2do—1 +j2dr—l Sin(ﬂ'd,- +j'7r)
r—1
+ > {5¥* Vsin(ndry — jwr) + 12%* Lsin{ndyg + jwr))
k=1

as j} — 00, and so ; is ultimately governed by the largest of the d’s.
Because SCALM process‘es are more readily represented in the frequency domain than in
the time domain, a natural method of estimating parametric models is a discrete version of

Whittle’s method. On the basis of observations z,, t = 1,..., n, define the discrete Fourier

transform
1
w(A) = ——— 2.0t 2.10

and the periodogram

I(A) = [w(A). (2.11)

We consider I(A) for frequencies A = A; = 27j/n, j = 1,...,n— 1, where I{}A) is invariant
to location shift so that there is no need to estimate an unknown mean of z,. Denote the
parametric spectrum of z; by f(A;¢), where ¢ is an unknown p X 1 parameter vector with

true value ¢p. For example in case (2.3) ¢ = (d1,0%,ds, 03) assuming w is known. Write

' I(};)
é) = log f(A;;8) + ——22_ %, 2.12
Q(4) 2}_:{ £ /(i) f()\j;ﬁf’)} (2.12)
where Z; 15 a sum over j = 1,..,n — 1, excluding those X; coinciding with supposed

poles/zeros in f(A; ), and define

¢ = arggleig (o),

where & is some compact subset of RP. Then under suitable regularity conditions, ¢ will be
consistent for ¢p, \/H(J) — ¢p) will be asymptotically normal with mean zero and a consis-
tently estimable covariance matrix, and for Gaussian z,, # will be asymptotically efficient.

Asymptotic theory for parametric Gaussian estimates of long memory models has been set



down by Fox and Tagqu (1986), Dahlhaus (1989), Giraitis and Surgailis (1990), Heyde and
Gay (1993), Hosoya {1996a,b) and others, albeit for time domain estimates or the continuous
Whittle function, rather than (2.12). This theory does not directly include SCALM models,
but, undoubtedly can be suitably extended. These remarks are based on the presumption that
the location of the poles/troughs in f(A) is known, as is natural in case of seasonal processes.
Asymptotic distribution theory for Gaussian estimates allowing for unknown poles/zeros has
been considered in case of “symmetric” models such as (2.9), though rigorous proofs are not
yet available, so a theory for SCALM models with unknown spectral poles/zeros is aiso not
available. In any case, whether or not the location of the poles/zeros is known, the benefits
of parametric estimation are offset by the disadvantage of inconsistency in case of misspecifi-
cation of the parametric form. For example the d estimates, which are of principal interest in
explaining behaviour near spectral poles/zeros, will be inconsistent even if f is misspecified
only at frequencies where it is smooth. For this reason we focus on semiparametric methods
which are based on the specification {1.3}, (1.4) and allow valid inference under more general

circumstances.

3 LOG-PERIODOGRAM REGRESSION

Due to their simplicity, perhaps the most popular semiparametric methods of estimating
the memory parameter ¢ in (1.2) with w = 0 are variants of the log-periodogram regression
introduced by Geweke and Porter-Hudak (1983). Here d is estimated by a least squares
regression of log /(A;) on —2log A; with an intercept. The regression is carried out for j =

1,...,m, where m is an integer between 1 and n/2, called the bandwidth, satisfying at least

1
—+ .0 as n— . (3.1)
m  n

The original version of this approach, due to Geweke and Porter-Hudak (1983), uses instead
the regressor — log{4sin?(};/2)}, but as indicated by Robinson (1995a), use of the simpler
—2log A;, which corresponds more naturally to (1.2}, leads to equivalent first-order asymp-
totic properties.

Note that I(};) is an even function, so when w = 0 using j = £1,...,£m, is equivalent

to using just j = I,...,m. When w # 0 in the symmetric model (1.2}, use of information on



both sides of the spectral pole/zero can make a substantial difference. We estimate d by

i 1T Thviloglw )
- _5 d:mil y? (3-2)
3= 2

where v; = log|j| — L "%, log!. In the SCALM model (1.3), on the other hand, a natural

suggestion is to run separate regressions on each side of w, so

g = _'12}“:1 Vs 12%4’(:” A5) Cd, = 1Yy lzgf(f;‘ M) (33)
2 =1 2 2= Y
Thus (3.2) can be regarded as a pooling of d; and dy,
. di+d
i= 222, (3.4)

which is valid only when d; = d3 (but whether or not ' = C3).

Work on estimating (1.2) when w = 0 suggests two possible modifications to this scheme.
Due to anomalous behaviour of the periodogram very close to a spectral pole/zero, Kiinsch
{1986) and Robinson (1993a) trimmed out very low frequencies from the regression. Recent
work, under somewhat different conditions than those in Robinson (1995a), by Hurvich, Deo
and Brodsky (1998), suggests that trimming may not be necessary in order to achieve basic
asymptotic properties. However trimming seems harder to avoid in SCALM models, since,
if dy < dy, frequencies A; just before w exert a relatively serious effect on those just after,
producing some potential to contaminate d,. Since we are unlikely to know a priori whether
di < dg or d; '> dz we trim both sides of w. It is possible that this trimming might be
avoidable, specially if we replace (2.10) by a tapered discrete Fourier transform. Note also
that we might use different bandwidths m in d; and d;, and in other estimates of d; and d,
considered in this paper.

The second type of modification is an efficiency improvement suggested by Robinson
(1993a} for (1.2) with w = 0 and based on pooling adjacent periodogram ordinates. To

extend this idea to w € (0, 7 ) consider for some integer J > 1,

7 J
Loge = 3 1@ = Mkwjmg) s dugk = 3 T(w 4 Mysag)
i=l =1
and then write
. 15, v log I, s 15 v log I,
& = _§Ek k] 52 kG _§E_L’g.2__i{i, (3.5)
ok Vi 2k VE



where now Z;c isasumoverk =10+ J,i+2J,...,m,and vy =logk ~ ﬁ 5 log 7, assuming
m — ! is an integer multiple of J. Here we have implemented the trimming discussed above
by means of the user-chosen number /. The integer J describes the extent of the efficiency
improvement, when J = 1 (3.5) is equivalent to (3.3) apart from the trimming, asymptotic
efficiency improving with increasing J.

Under some assumptions similar to those in Robinson (1995a) which we state in the

Appendix we get the following result:

Theorem 1 Let Assumptions A.1-A.4 hold. Then for J > 1, as n — oo, 2\/5((3,(-']} - d;),
i = 1,2, converge to independent N(0,J¢'(J)) random variables where 9'(z) = %w(z) and

¥(z) = %log ['(z) is the digamma function. Thus under the null hypothesis of symmetry:
Ho 1 dy = dy, (3.6)

we have thaot
1

{ Jj,? J)}E (@” - df’) = N (o, 1). (3.7)

The proof of this theorem extends that of Theorem 3 of Robinson (19952) in a relatively

straightforward way, taking into account our Theorem 5 in the Appendix on the covariances
of discrete Fourier transforms, and is thus omitted. For details see Arteche (1998). If (3.6)

is not rejected we can estimate d; = dz = d by
; losny | 50
d) = (& + &), (3.8)

see {3.4).
The limit distributional properties of d) are readily deduced from Theorem 1 in a manner

that indicates both the inconsistency caused by an incorrect a priori assumption of symmetry

(3.6) and the improvement that {3.8) affords over &5‘” and (f(zJ) under symmetry.

Corollary 1 Let A.1-A.4 hold. Then as n — o0,
VB - (s 1 da)) & N (0, J¥()
so that under symmetry (3.6),
VBm(dY — d) L N(0, Jy'(J))
where d = d, = ds.

10



In view of the local character of cng) and (f(;) we can similarly estimate the left and right
memory parameters at each of several spectral poles/zeros, w;, as permitted in the modelling
of Section 2. It is clear from Theorem 5 in the Appendix that the asymptotic properties
of the left and right d estimates will not vary across the w;, and moreover the estimates
will be asymptotically independent across the w;, so that we can readily construct statistics
for testing hypothesis across the w;, for example of equality of all the left or right memory
parameters. In the interests of parsimony this would be a useful preliminary to parametric

modelling.

4 GAUSSIAN SEMIPARAMETRIC ESTIMATION

To estimate 4 in {1.2) with w = 0, Robinson (1995b) showed that a local type of Whittle
estimate, which he termed Gaussian semiparametric, has a smaller asymptotic variance than
the estimates of the previous section. This estimate can readily be extended to (1.2) with w #
0, and also to SCALM models, though we have found it necessary to introduce some trimming
(not employed at all by Robinson (1995b)) of frequencies close to w in the asymmetric case.

Consider, for 0 < w < 7, the functions,

1 m ey /\Zd

(C,d} = —— {IOgC/\-Z + LT+ 2.
m_lj=Zf;1 J C J
1 i 2 A

@Q20C,d) = —— {logC’/\7 —+——-~f(u.:—/\']}.
m—~f}.=z+1 7 C ’

We estimate (Cy,d;} and {C,d2) by minimizing | and @, respectively. Eliminating C,

we have the estimates

d; = a.rgrnein Ri(d) , 1=1,2,

of dy, d,, where

- 2d &
R,(d) = log Ci(d) - — > log A;,
i+1

. 1 m _ 1 m
Ci(d) = —— 3 MI(w+ ), Cold) = —— A (w — ;) (4.1)
m—ij:l+l mﬁ{j:f—i—l

and © is a closed subset of (—1/2,1/2). Under assumptions stated in the Appendix and

similar to those in Robinson (1995b) we obtain:

53



Theorem 2 If Assumptions B.1, A.2, B.3 and B.4 hold, then as n — oc, a?,— LA d; for
¢ = 1,2. If Assumptions B.1, C.2 end C.3 and either C.4 or C.5-C.6 hold, then as
n — o0, 2y/m(d; — di), i = 1,2, converge to independent N(0,1) random variables. Thus
under symmetry (3.6},

Vam(dy — dy) & N(0, 1). (4.2)

The proof is similar to that in Rebinson (1995b) and is thus omitted; for a full proof see
Arteche (1998). Because J9'(J) > 1, it seems by comparison with Theorem 1 that d; — d,
produces a locally more powerful test of (3.6) than dﬁ‘” - (fgj} for ary J. However d; and d,
are not defined in closed form unlike (ng) and J&J)' It is possible to alleviate this problem by
means of a Lagrange Multiplier {LM) test which entails only estimation of a single parameter
under the null hypothesis. This estimation would in any case be of interest if the test based
on (4.2} fails to reject (3.6), so we discuss it first.

Define

d = arg m@in{Rl(d) + Ry(d)}. {(4.3)

Theorem 3 Let Assumptions B.1, C.2 and C.3 and either C.4 or C.5 and C.8 hold. Then

under symmetry (3.6), as n — o0,
VBm{d — d) % N(0,1).
Now consider an LM test of the hypothesis
A=0 (4.4)

based on the criterion

R(6,A) = R1(6 + A) + Ro(6),

where & here represents any admissible value of the common d = d; = dy under {4.4), which

ts thus equivalent to (3.6).

Theorem 4 Let Assumptions B.1, C.2 and C.3 and either C.4 or C.5 and C.6 hold. Then

under symmetry (3.6), as n — oo,

L2
LM = Qmi—év < x:, (4.5)

12



where Ly = 2= 57, ufz\?éf(w +A;), v; =logj — F5 2 log j and d is defined by (4.3).

The test based on rejecting (3.6) of LM > x?_ at 1000 % significance level is consistent.

5 FINITE SAMPLE BEHAVIOUR

In this section we study via Monte Carlo analysis the finite sample performance of the Wald
statistics (3.7) and (4.2) and LM statistic {4.5) for the hypothesis of spectral symmetry {3.6).
We first generated two independent Gaussian processes {€;;} and {e; ,} with zero means and

lag-7 autocovariances

2 sin{jw)
Ti; = O (63 - ?rj H
2sin{jw)
S .
723 2 __?s'_}'

7

respectively, where §jo0 = 1if j = 0 and 0 otherwise. It follows that €+ and €2, have spectra

£ 0, 0<A<w, -
¢ =1 4 3.
! 3, w<ALn, (5:1)
and
% 0<A<w
¢ A = 2r? - 1 A
fai = { B DA< (52)
Now define the processes {z;;},j = 1,2, by
{1-2Lcosw+ L)z, =€y, 5=1,2, t=0+1... (5.3)
Thus the {z;,} have spectra
f,{A) o
fz,(A) = [1— e"'\coéw+ e2ixf2d; 0<Aa<a, j=12

and in view of (5.1) and (5.2) and independence of the {¢;.:}, 7 = 1,2, z; = 71, + % has

spectrum

f(’\) = fz:l (’\) + fxz()‘)

which is seen to be identical to (2.3). In order to generate realizations of z,, from Gray et al.

(1989) we can rewrite (5.3} as

o0
> Ci(cosw)aj s = 60, G=1,2, £=0,%0, ., (5-4)
s=0

13



where the Gegenbauer polynomials Cid)(n) are of the form

S (C1FT(s - k — d)(2n)5%
2 T(k+ D)I(s - 2k + DI(=d)

i) =

We truncate the sum in (5.4) so that actually our generated z;, are
1500 &)
zja ==, Cs7(cosw)ayus + €, (5.5)
s=1
where z;, = 0 for t < 0. We prefer an autoregressive truncation over the moving average

one of Gray et al. (1989) because autoregressive coefficients decay faster. The Gegenbauer

functions are obtained via the recursion
—d+s—1 d —2d 45— 2
Cim = 20 (=) e - (222 ey,

(see formula 8.933.1 in Gradshteyn and Ryzhik (1980)). This method permits the approxi-
mate generation of processes with an asymmetric spectral pole/zero at any frequency between
0 and =. For w = 7/2 an exact procedure is possible by means of the algorithm of Davies
and Harte (1987). Comparison of exact and approximate procedures on the basis of sample
autocovariance plots indicated little difference in performance.

We carried out simulations for w = 7/4,7/2,37/4 but report results only for w = 7/2
because these are fairly typical. We took di,d; = {-0.4,-0.2,0,0.2,0.4} and o2 = o2 =
¢ where ¢ was taken to be 1 with no loss of generality. Differing o and ¢2 would not
affect our results as our earlier comments concerning robustness to differing C;, C; indicate.
Assumptions A.1 with oo = 2, C.2(A.2), C.3 and C.5 since ¢;; and ¢3; are Gaussian, are
satisfied. The Gaussian semiparametric estimates needed to construct (4.2) and {4.5) were
obtained by a simple golden section search on the first derivative of the objective function.
The minimization was carried out over © = [-0.499,0.499]. The log-periodogram estimates
were calculated with J = 1. Two sample sizes were analyzed, n = 256 and n = 312. For
each three different bandwidths were used, m = n/16, n/8 and n/4. If one of the ¢;, were
replaced by a short range dependent process with a peak near w, the choice of m would become
more delicate {see Robinson (1995b)). Performance was found to worsen with exclusion of
frequencies close to w, because although trimming seems hard to avoid in asymptotic theory

it can worsen estimates in finite samples, unless the difference between dy and d, is very large
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(see also Arteche (1998)). The tables contain sizes {along the NW-SE diagonal) and powers
at nominal 5% significance level. The number of replications was 1000 and all calculations
were done using GAUSS-386i.

Tables 1 and 2 concern Wald tests based on log-periodogram estimates with J = 1 (within
parentheses} and Gaussian semiparametric estimates, introduced in Theorems 1 and 2 Tespec-
tively. We performed two-tailed tests, squaring the test statistics in Theorems 1 and 2, and
comparing them with the x% 5% critical values. As expected power tends to increase with
m and n. Monte Carlo size is always larger than nominal size but tends to it as m and =
increase. It is also noticeable that size is smaller for extreme values of dy and ds.

The behaviour of the LM test introduced in Theorem 4 is described in Tables 3 and 4.
Power and size tend to increase with d; and d, reflecting a2 more conservative behaviour
of this test under antipersistence than under persistence. The LM test tends to be more
conservative than the Wald, with markedly lower powers for the smaller n and m, and sizes

that are always less than nominal ones, though they increase with m and n.

6 APPLICATION TO UK INFLATION

In this section we apply the techniques introduced in this paper to a monthly UK inflation
series. The series analysed is z; = log p; - log p;_; from May 1815 to April 1996, where p; is
the logged Retail Price Index. Thus » = 972. All calculations and figures were done using
S-Plus 3.1.

Figure 2 displays the periodogram of z,. Of course this is not a consistent estimate of the
spectral density, but the sharp peaks at the origin, and to varying extents at seasonal frequen-
cies, suggest the possibility of low-frequency as well as seasonal long memory. We extract
the same conclusion from the plot of the first 150 sample autocorrelations in Figure 3. Oscil-
lations decay very slowly, like those ercountered in the theoretical study of seasonal/cyclical
long memory models in Section 2.

Seasonality has usually been treated either by including seasonal dummies or seasonal
differencing. The unsuitability of the former treatment, so far as UK inflation is concerned,
has been pointed out by Hassler and Wolters (1995). Figure 4 shows the periodogram of

the seasonally differenced series (1 — L'?)z,. The deep troughs at the origin and at seasonal
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frequencies suggest possible overdifferencing, so a milder, fractional, differencing could be
more appropriate. Moreover Figure 2 suggests that peaks may be of differing magnitudes,
and thus the possibility of different persistence parameters at the origin and across seasonal
frequencies. Table 5 shows the untrimmed Gaussian semiparametric and log-periodogram
(J = 1) estimates of the memory parameters at the origin and at seasonal frequencies.
We use a small bandwidth, m = 30, to avoid the influence of neighbouring spectral peaks.
Since the asymptotic standard deviations of log-periodogram and Gaussian semiparametric
estimates of dy and dp, both with m = 30, are 0.117 and 0.091 respectively (see Theorems
1 and 2), no significant differences from zero at the 5% level are found for frequencies 57 /6
and w, whereas the origin and remaining seasonal frequencies have at least one significant
right or left estimate. We analyse the possibility of asymmetric spectral poles by testing
(3.6). Table 6 displays the log-periodogram Wald (Wlp), Gaussian semiparametric Wald
(Wgs) and LM test statistics with m = 30 for w; = 275/12, 7 = 1,2,3,4,5, where Wip and
Wgs are the squares of the statistics in Theorems 1 and 2. On the basis of our asymptotic
theory we do not reject spectral symmetry at the 5% level for any of the w;. Of course the
exact values of Wlip, Wgs and LM depend on m. Figures 5, 6 and 7 show the various test
statistics with m = 11, ..., 50, for the hypothesis of spectral symmetry at /6, 7/3 and 27 /3,
these implying cycles of periods 12, 6 and 3 respectivély. We do not find strong evidence
of spectral asymmetry, although the null hypothesis tends to be rejected at frequency = /6
for small m and at #/3 for large m, in the latter case rejection only occurring using the
log-periodogram Wald test. We observe again the relatively more conservative behaviour of

the LM test found in the Monte Carlo analysis of Section 5.

7 CONCLUSION

Most research done to date on long memory focuses on spectral behaviour at zero frequency.
The various attempts to extend this concept to seasonal or cyclical long memory tend to
assume, with loss of generality, an asymptotic symmetry around spectral poles/zeros. Con-
sequently tests of spectral symmetry seem relevant as a prior step to parametric modelling,
while semiparametric estimates which incorrectly assume symmetry will be inconsistent. In

this paper we introduce three such semiparametric tests against an alternative SCALM class
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of processes, whose properties and generation are also discussed.

Many parametric seasonal long memory models impose also an equality of the memory
parameters at the origin and seasonal frequencies (e.g. Porter-Hudak (1990) or Ray (1993)).
Tests between memory parameters across different frequencies can be defined similarly, which

might also be a useful preliminary to parametric modelling.

8 Appendix

The asymptotic behaviour of 4; in (2.5) is obtained by applying equation 8.721.3 in Grad-
shteyn and Ryzhik (1980), namely

Pl{cos@) =

and Stirling’s formula in (2.4). To deduce v; in (2.6) we apply equation 8.756.1 in Gradshteyn
and Ryzhik (1980), namely

P(0) = 2VE

It 4+ NT(=extEly’

Assumptions for log-periodogram regression:

A.1: For a frequency w € (0, r) there exists a € (0,2] such that, as A — 0F,

Ho+d) = GaT4 (14 00%),

flo=A) = C2a7%3(1+ 0(A)),

where C,Cq € (0,00) and dy,d; € (—1/2,1/2).
A.2: In a neighbourhood (—6,0)U (0,8} of w f(A) is differentiable and, as A — 0%,

d . . Ary-1-2di
|ﬁf(w+f\)| = O(A717%),

d —1-2d,
[ -N| = opie),

H

A.3: {z;,t =0,%1,%2, ...} is a Gaussian process.

A.4: Asn — oo,

vmn#d—%llos m N I(log n)? 4 m*tza

J1+2]d1—da | m n__ 0.
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No assumption on f(}) outside a neighbourhood of the frequency w is imposed, apart
from integrability implied by covariance stationarity. Assumption A.l strengthens (1.3) by
imposing a rate of convergence of f{w + A)/(C1A72%Y) and f(w — V)/(C2A~%%) to 1. We
could have generalized A.1 allowing for different o’s before and after w but this would have
complicated the notation and the results obtained would have been similar. To see the

implications of A.4 take m ~ n® and I ~ n®. Thus A.4 entails
1 1
2ldy — do| + §9—¢(1+2|d1—d2|)< 0,e<8, 9(1+_—2;) < 1. (8.1)

The first two conditions imply 8 > ¢ > 4|d; — d3|/(1 + 4|d1 — d2}), and incorporating the last
condition in (8.1} indicates that we must have a > 2|d; — da|. Because |dy —dy} < 1, A4
can be satisfied for any d;, da if @ = 2. Under (3.6), Assumption A.4 is the corresponding
condition of Robinson (1995a) (indeed it may be shown that the latter condition suffices for
the limit distributional properties of tfg‘}) if d; > d;).

As shown by Robinson (1995a,b), the asymptotic properties of log-periodogram and Gaus-
sian semiparametric estimates are substantially dependent on those of discrete Fourier trans-
forms. Put v; = wj;(w) = wlw + ’\.‘-")/(Cl%)‘;dl)a vy; = vai{w) = wlw - Aj)/(Cé)*}d“),
gni(j) = nd’*“d*'j%*d“d“, t=1,2, h =1,2,m, where d,, = max{d],d>), and denote #;; the

complex conjugate of v;;.

Theorem 5 Let assumption A.1 and A.2 hold. Then for any sequences of positive integers

j =3(n) and k = k(n) such that § > k and L — 0 as n — 0, fori= 1,2,
a) Elvyl? = 140 (log jgmi(3)? + (£)°)

b) Ev}; = OflogjgZ,(5))

¢) Evijti = O(log jgmi(7)gmi(k)))

d) Evjvig = O(log jgmi(J)gmi(k))

e) Evi;0; = O(log j(g12(3) + g21(5))

f) Ev,ve; =0 (l%g—j—)

8) Evi;og = O(log j(ga1(7) + g12(k)))
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h) Evy;ver = O(log j{921(7) + gi2(k))) -

The proof of Theorem 5 is omitted because it is based on that of Theorem 2 in Robinson

(1995a), but it can be seen in Arteche (1998).

Assumptions for Gaussian semiparametric estimation:

B.1: A1 holds withd; € ©,i=1,2.

B.3: z, - Bz, = ¥52 0565 and T2 a? < co where Ele|F_i) = 0, E[}|F,_1] = 1
a.s. fort = 0,%1,+2,..., F; is the o-field generated by ¢;, s < t, and there exists a random
variable € such that Ee? < oo and for all 5 > 0 and some & < 1, P(|e;] > ) < xP(|¢] > 7).

B.4: As n — oo,
ngidl“fb}

3
m(log m) — 0.

m !
— + —logm +
noom

C.2: In a neighbourhood (—6,0)U (0,6) of w, a(A) = 22, are** is differentiable and

;—/\a(wj:/\) =0 (M) as A — 0%,

C.3: Assumption B.3 holds and
E(S|F_)) = ps and E(Fy) = pg, t=0,41,...,

for finite constants uz and u4.

C.4: Asn — oo,

nzid; —-d;l m1+2cr

logm)® | 13
(log m)® logm + nT(log m)? — 0.

4
B + ;(log m)* + T2, —d;]

Taking m ~ n?, { ~ n? as before, it follows that because [d, — da] < 1,1 > 8 > ¢ > 2/3
will suffice to satisfy B.4 for all d;, d,. Condition C.4 is more restrictive and can only be
satisfied if |d; — d2{ < a/(3 + 4a) where the upper bound is 2/11 for @ = 2. However we can
relax C.4 by strengthening C.3. We thus consider:

C.5: The fourth cumulant of ¢, is zero for all t.

C.6: As n — o¢,

(logm)3 12 2 nz’dl—dﬂ m1+2a 2
‘-'—'—*ﬁ'*"—— + E(log m) + mlogm + 2o (log m) -~ {.

Assumption C.5 is implied by Gaussianity, and C.6 entails |d; — da| < a/(2 + 2a) where

the upper bound is 1/3 when o = 2. This requirement is not much stronger than |d; — dy] <
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1/2 which is implied if there is both a left and a right spectral pole at w. If d; > d;
then, as in Robinson (1995b), no trimming is in fact needed for the asymptotics of d;, and
1/m+m/n — 0and m~! + m**t?*(logm)?/n?> — 0 as n — o0, suffice for consistency and

asymptotic normality respectively of d;.

Proof of Theorem 4: Consider

9
oA

_ 9
(g,g] 6&

R(8,A) By(6+ A)

D1(d) 1
(ﬁnﬂz{cd@ m — Elng} (8.2)

J=i41
where d is given by (4.3), C1(d) by (4.1) and we define

Di(#)= — lz:AwﬂogA)Hw+-A) Dy(8) = — IE:A”UogA)Hw A)).

+1 1+1
By the mean value theorem (8.2) is

Dyd) 2 ONE
T@ —z%l "““{cl(a)H 49

for |d—d| < {d—d|. Proceeding as in the proof of Theorem 2 of Robinson {1995b), as n — oo,
d { Dh(é) }
510G S s

;o VmiDid)  Dofd) 2
vm(d—d) = 4 {Cl(d)+Cg(d) m—!}zl_:'_llog’\} 1+ 0p(1)).

P
—

and

Thus we have, again as in Robinson (1995b}) (see also Arteche (1998}),

Dy(d 1 D,(d 1
\/E{CI(( ) _ EZIOg)u} {Cz((d) _IZ]ogA}+op(l)

={+1 =Il+1

ij
aa

Vmo—R(8,A)

(d.0)

4 N(0,2) as n— oo, (8.3)

since the terms in braces are asymptotically independent (see Arteche (1998)) and each of
them converge to ¥(0,1) random variables as shown in Robinson (1995b). Noting that
2L,/Ly = dR(d.0)/8A and (8.3) the proof of (4.5) is straightforward. We omit the proof of

consistency to save space. For details see Arteche (1998).
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