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Abstract 
 
 

Order selection based on criteria by Akaike (1974), AIC, Schwarz (1978), BIC 
or Hannan and Quinn (1979) HIC is often applied in empirical examples. They 
have been used in the context of order selection of weakly dependent ARMA 
models, AR models with unit or explosive roots and in the context of 
regression or distributed lag regression models for weakly dependent data. 
On the other hand, it has been observed that data exhibits the so-called 
strong dependence in many areas. Because of the interest in this type of data, 
our main objective in this paper is to examine order selection for a distributed 
lag regression model that covers in a unified form weak and strong 
dependence. To that end, and because of the possible adverse properties of 
the aforementioned criteria, we propose a criterion function based on the 
decomposition of the variance of the innovations of the model in terms of their 
frequency components. Assuming that the order of the model is finite, say po , 
we show that the proposed criterion consistently estimates, po. In addition, we 
show that adaptive estimation for the parameters of the model is possible 
without knowledge of po . Finally, a small Monte-Carlo experiment is included 
to illustrate the finite sample performance of the proposed criterion.  
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1. INTRODUCTION

In empirical studies, methods to select the order of a model are commonly invoked
and routinely applied. The methods are based on the minimization of a criterion
function which involves the estimation of the one-step-prediction error plus some
penalty function. Standard procedures are Akaike (1974), AIC, Schwarz (1978),
BIC, or Hannan and Quinn’s (1979), HIC, information criterion. They only dif-
fer on the employed penalty function. These criteria have been used in a context
of regression models, see for example Shibata (1981) or Pötscher (1989), in dis-
tributed lag regression models, see Geweke and Meese (1981) or in the selection
of the order of an Autoregressive or Autoregressive Moving Average model, see
Shibata (1976, 1980) and Hannan (1980), among others. See also Pötscher (1991)
and George (2000) and references therein for a review.
Although the criteria have been mainly justified in the case of weakly de-

pendent data, some work has been carried out for nonstationary (unit roots) or
explosive data in an autoregressive context, see Pötscher (1989), or for ARFIMA
models, see Beran et al. (1998) and Hidalgo (2001). However, in the context of
regression models, and in particular distributed lag regression models, the avail-
able work is mainly for uncorrelated data/errors. An exception is Wang (1993)
and Kavalieris and Hannan (1994) who allowed the error term of the regression
model to be weakly dependent, although it should be noted that Geweke and
Meese (1981) conjectured, without proof, that their results should hold when the
error term follows a weakly dependent process.
On the other hand, it appears that the situation where the regressors and/or

errors are allowed to be strongly dependent has not been examined yet. Due to the
interest and immense attention that this type of data has received in recent years,
and the possible adverse properties of the aforementioned criteria as we discuss
below, the main objective of the paper is to introduce and examine the properties
of an alternative criterion S (p) /S∗ (p), given in (3.3) / (3.4) below, which covers
both weakly and strongly dependent data in a unified framework. The criterion
is based on the decomposition of the one-step-prediction error, e.g. the variance
of the innovation of the model, in terms of its frequency components. We show
that when the dimension of the model, say p0, is finite the criterion consistently
estimates p0.
To be more specific, we consider the following distributed lag regression model

yt =

p0X
j=1

θjxt−j+1 + ut, t = 1, ..., T (1.1)

where both xt and ut are scalar processes exhibiting, possibly, strong dependence
and where p0 is known to be finite but with an unknown upper bound. The latter



seems to be of practical interest, since it is unlikely that the upper bound for the
number of lags in (1.1) will be known to the practitioner in advanced. It should
be mentioned that, although we focus on the case of yt and xt scalar, the results
follow similarly to the case where yt and/or xt are nonscalar, but at the expense
of unnecessarily notational and mathematical complication. The main objective
of the paper is to show that the value bp which minimizes the criterion S (p) or
S∗ (p) is a consistent estimator of p0 with g (T ) chosen as in the BIC and/or HIC
criteria.
We now discuss briefly the motivation to introduce a different criterion instead

of the more standard BIC and HIC criteria and one of their main problem,
in particular their inconsistency, when examining the estimator of p0 with those
criteria. We defer to Section 3 to comment on some additional technical difficulties
that this criteria have with strongly dependent data. First, recall that the BIC
and HIC are given by

S
∗
(p) = log

¡bσ2p¢+ pg (T )T
, (1.2)

where g (T ) is log (T ) and 2c log (log (T )), with c > 1, respectively, and where bσ2p
is the standard estimator of the variance of ut, that is T−1

PT
t=1 bu2t,p, with but,p

denoting the least squares residuals after a pth order distributed lag regression
model was fitted. Alternatively, as in Geweke and Meese (1981), we can employ
the criterion

S (p) = bσ2p + pg (T )T
. (1.3)

If the upper bound for p0, say P , were known and finite the standard approach
to prove the consistency of, say,

ep = arg min
1≤p≤P

S (p) (1.4)

would be based on showing that for any p 6= p0 such that p ≤ P ,
lim
T→∞

Pr
©
S (p0)− S (p) > 0

ª
= 0. (1.5)

Similarly with the criterion S
∗
(p).

The key ingredient to show (1.5) is based on the assumption that T
¡bσ2p − bσ2p0¢ =

Op (1). Note that since log
¡bσ2p0/bσ2p¢ ≤ ¡bσ2p0/bσ2p¢−1 the same applies if the criterion

function (1.2) were used. When T
¡bσ2p − bσ2p0¢ = Op (1) is the case, (1.5) holds true

whenever g (T ) increases more slowly than T , that is g−1 (T ) + T−1g (T ) → 0,
being the two more popular choices of g (T ) those corresponding to the BIC
and HIC criteria respectively. However, as we argue in Section 2, when the
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data exhibits strong dependence, since the least squares estimate (LSE) of θj is
Tα−consistent with 0 < α ≤ 1/2, it will imply that T ¡bσ2p − bσ2p0¢ = Op (T 1−2α),
and thus T

¡bσ2p − bσ2p0¢ will not be bounded in probability if α < 1/2. As a con-
sequence, the latter will imply that the left side of (1.5) will be greater than zero
if g (T ) is chosen as in the BIC and/or HIC, and thus ep will be inconsistent.
One possibility for (1.5) to hold true, and hence the consistency of the criteria,
is to choose g (T ) in such a way that it grows to infinity faster than log (T ), and
in particular to choose g (T ) = T 1−2α log (T ). However, since α can be arbitrarily
close to 0, to guarantee that (1.3) is a consistent criterion, it will require g (T ) to
have a rate of increase to infinity close to T . It is worth mentioning that a similar
phenomena occurs in the determination of the order of an AR model with all its
roots inside the unit circle. In the latter case, the penalty function g (T ) should
satisfy lim infT→∞ g (T ) /T > 0 to guarantee that the order of the AR polynomial
is not overestimated with positive probability, see Pötscher’s (1989) Theorem 3.2.
But, as Hannan and Quinn (1979) mentioned, the faster the rate of increase of
g (T ) to infinity it will make the criterion to underestimate the order p0 more
frequently in finite samples. The latter might not be surprising since the bigger
g (T ) the penalty attached by adding a new regressor can be too big compared
with the reduction on bσ2p.
One possible solution to the problem mentioned above with the BIC andHIC

is to follow an approach similar to that of Wang (1993) or Kavalieris and Hannan
(1994). That is, for our model (1.1), we could modify S (p) by

log
¡bσ2p¢+ cp logTT

or

log
¡bσ2e¢+ (5p+ h) log TT

where bσe is the residual variance of the innovations after a model with p lags and
an AR (h) for the errors ut in (1.1), respectively were fitted. However, the for-
mer modification requires that c > (2maxλ fuu (λ)) /

R π

−π fuu (λ) dλ, where fuu (λ)
denotes the spectral density function of ut, which becomes infinity for strongly
dependent processes. On the other hand, for the latter modification, no theory
is yet available to know how well an AR (h), with h→∞, approximates fuu (λ),
albeit that in our framework ut needs to be estimated and the number of regres-
sors is allowed to increase with the sample size at a rate log T . Moreover, the
asymptotic properties of a GLS type estimator for θj using an AR (h), h → ∞,
as an estimator of fuu (λ) remains an open problem, although from the work of
Hidalgo and Robinson (2001) it appears far from trivial.
Therefore, in view of the previous comments, it seems to be desirable to imple-

ment a procedure with g (T ) as in BIC and/or HIC, for example, independent
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of the value of α and at the same time allowing for possible correlation on the
errors of unknown form, as a correct parameterization of fuu (λ) can be difficult
to obtain in applied work. Note that on the contrary to weakly dependent data,
with strongly dependent data, an incorrect parameterization of fuu (λ) will not
guarantee to obtain a T 1/2−consistent estimator of the parameters θj. See Hidalgo
and Robinson (2001).
We now describe our second objective of the paper. As inefficient estimators of

θj, see (2.6) below, are used when evaluating S (p) or S∗ (p) given in (3.3) or (3.4),
it will be of interest to illustrate how an adaptive estimator (in the Gauss Markov
sense) of the parameters θj can be obtained without knowledge of p0. That is,
the (adaptive) generalized least squares (GLS) estimator of the parameters of the
model. This is motivated by recent results of Hidalgo and Robinson (2001), who
obtained adaptive estimation of θj assuming that the number of lags p0 in the
model (1.1) is known a priori.
The remainder of the paper is organized as follows. In the next section, we

describe the statistical framework and also the (inefficient) estimator of the pa-
rameters θj denoted as the HI estimator. Section 3 describes and examines the
criterion for the order selection of (1.1). Moreover, we indicate how the GLS
estimator of θj is obtained when p0 is replaced by its estimator. In Section 4,
a Monte-Carlo experiment examines the finite sample performance of S (p) and
S∗ (p), as well as that of S (p) and S

∗
(p). Finally, Section 5 gives the proof of our

main results.

2. STATISTICAL FRAMEWORK AND THE HI ESTI-
MATOR OF THE PARAMETERS θj

Let wt = (yt, xt)
0 be a covariance stationary linear process, with absolute con-

tinuous spectral matrix distribution, so that its spectral density matrix, denoted
fww (λ), is defined as

E
¡
(w1 − Ew1)

¡
w0j+1 − Ew01

¢¢
=

Z π

−π
fww (λ) e

−ijλdλ, j = 0,±1,±2, .... (2.1)

In the frequency domain, the lag structure given in (1.1) is described by the
frequency response function Θ (λ) =

Pp0
j=0 θje

−ijλ, so that θj is interpreted as the
jth Fourier coefficient of Θ (λ) = fyx (λ) f−1xx (λ), that is

θj = (2π)
−1
Z 2π

0

Θ (λ) eijλdλ, j = 0,±1,±2, ..., (2.2)

where fyx (λ) and fxx (λ) are the indicated elements of fww (λ) in (2.1). Due to
this interpretation of θj, Hannan (1963) proposed to estimate θj by the sample
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(discrete) analogue of (2.2), that is denoting λj = (2πj) /T for integer j

eθj = 1

2M

2M−1X
`=0

bΘ (λ2m`) eijλ2m` , (2.3)

where bΘ (λ2m`) = bfyx (λ2m`) bf−1xx (λ2m`) and bfyx (λ2m`) and bfxx (λ2m`) are the indi-
cated elements of the estimator of the spectral matrix fww (λ), M = [T/4m],
with m a bandwidth parameter which increases more slowly than T , that is
m−1 +mT−1 → 0 as T → ∞. In this paper we have chosen to estimate fww (λ)
by the average periodogram estimator

bfww (λ) = 1

2m+ 1

mX
j=−m

Iww (λj + λ) , (2.4)

with

Iww (λ) = (2πT )
−1
Ã

TX
t=1

wte
itλ

!Ã
TX
t=1

w0te
−itλ
!

(2.5)

as the periodogram of wt. The estimator eθj in (2.3) was coined by Sims (1974)
as Hannan’s inefficient (HI) estimator in contrast to Hannan’s (1963) efficient
estimator, e.g. the adaptive GLS estimator of θj.
However, similar to technical problems encountered with many other semi-

parametric estimators, since bfxx (0) tries to estimate fxx (0) which may possibly
be infinity in our framework (see Assumptions A.1 and A.3 below), the estimator
given in (2.3) is quite difficult to analyze as it stands. Thus, as in Hidalgo (2000),
we modify (2.3) by

bθj = 1

2M

2M−10X
`=1

bfyx,2m` bf−1xx,2m`eijλ2m`, (2.6)

where
P2M−10

p=1 ape
ijλ2mp means

P2M−1
p=1 ape

ijλ2mp + a1 and where henceforth gj de-
notes g (λj) for a generic function g (λ). Intuitively, what we have done is to usebΘ2m as an estimator of Θ (0).
The asymptotic properties of the estimator given in (2.6) were first established

by Hannan (1967) for a finite, possibly unknown, distributed lag regression model
where the spectral density functions of both xt and ut were bounded and bounded
away from zero, and Brillinger (1981) for the infinite distributed lag regression
model. More recently, Hidalgo (2000) has shown that the same holds true under
the presence of strong dependence, see Theorem 2.1 below which we present for
expositional purposes.
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The motivation of the estimator in (2.6) is threefold. First is its ability to
estimate the coefficients θj irrespective of the number of lags specified in (1.1),
which will be relevant when analyzing the properties of S (p) defined in (3.3) below.
Second, since there is no gain by exploiting the information of the covariance
structure of the errors ut, as Sims (1974) showed, the HI estimator becomes as
efficient as the GLS estimator. This motivates the LSE of θj given in Robinson
(1979), although under stronger assumptions than those we want to impose in
this paper. The third, and perhaps most important motivation comes from the
observation that when the joint strong dependence in the regressor xt and error
term ut is sufficiently strong, that is the product of the spectral density functions
of xt and ut is not integrable, the LSE is no longer root-T nor asymptotically
normal, see Robinson (1994).
Motivated by the last observation, Robinson and Hidalgo (1997) showed that

a class of frequency-domain weighted LSE, including GLS (with parametric error
spectral density function) as a special case, is root-T consistent, asymptotically
normal and Gauss-Markov efficient in model (1.1) when p0 is known. The in-
tuition why the estimator in Robinson and Hidalgo (1997) is root-T consistent
and asymptotically normal is because the weighted function possesses a zero suf-
ficiently strong to compensate for the singularity of the spectral density function
induced by the joint strong dependence of xt and ut. So, since f−1xx (λ) possesses
a zero at λ = 0 when d > 0, see Assumption A.2 below, we can expect that bf−1xx,p
becomes (asymptotically) a weighted function satisfying the conditions of Robin-
son and Hidalgo (1997). Thus, the modified HI estimator given in (2.6) is indeed
a desirable estimator.
Let us introduce two definitions:

Definition 1. K (d,α) is the set of functions, g (·), such that g (λ) > 0 for all
λ ∈ [0, π] satisfying

g (λ) = Cλ−2d (1 +O (λα)) as λ→ 0+

where C ∈ (0,∞), d ∈ [0, 1/2) and α ∈ (0, 2], and twice continuously differentiable
in any open set outside the origin.

Definition 2. L is the set of, possibly, complex functions η (·), such that |η (λ)| >
0 for all λ ∈ [0,π], (∂/∂λ) |η (λ)| = O (|η (λ)| /λ) as λ → 0+, and twice continu-
ously differentiable in any open set outside the origin.
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Let us introduce the following assumptions:

Assumption A.1 (i) {wt} =
©
(yt, x

0
t)
0ª and {ut} are two covariance stationary

linear processes defined as

wt =
∞X
j=0

τ jξt−j,
∞X
j=0

kτ jk2 <∞ and (2.7)

ut =
∞X
j=0

ψjεt−j,
∞X
j=0

¯̄
ψj
¯̄2
<∞,

where τ0 is the identity matrix, ψ0 = 1 and kDk stands for the norm of the
matrix D.

(ii) The functions Λ (λ) =
P∞

j=0 τ je
ijλ and Ψ (λ) =

P∞
j=0 ψje

ijλ, λ ∈ [0, π],
belong to L.
(iii) {xt} and {ut} are two mutually independent sequences of random vari-
ables such that |xt|4 and |ut|4 are uniformly integrable.

Denote R (λ) = fyx (λ) /f
1/2
xx (λ) f

1/2
yy (λ) as the coherence between yt and xt.

Assumption A.2 (i) R (λ) is twice continuously differentiable in any open set
outside the origin and for some β ∈ (1, 2],

|R (λ)−R (0)| = O ¡λβ
¢

as λ→ 0 + .

(ii) fxx (λ), fyy (λ) and fuu (λ) belong to K (dx, 2), K (dy, 2) and K (du, 2),
respectively, and where fuu (λ) denotes the spectral density function of ut
as defined in (2.1) with ut replacing wt.

Assumption A.3 Denote by ηg (λ) the gth row of the matrix

η (λ) = diag (Λ (λ) ,Ψ (λ)) ,

and by fgg (λ) the gth diagonal element of

f (λ) = diag (diag (fww (λ)) , fuu (λ)) .

Then, for all g, f−1/2gg

¯̄
ηg (λ)

¯̄
is a nonzero finite vector.

Assumption A.4 {εt} is a stochastic process, whereE (εt |Gt−1 ) = 0, E (ε2t |Gt−1 ) =
E (ε2t ) = σ2ε a.s., E (|ε3t | |Gt−1 ) = µ3 <∞ where Gt is the σ-algebra of events
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generated by εs, s ≤ t, and the joint fourth cumulant of εti, i = 1, ..., 4
satisfies

cum (εt1 , εt2 , εt3, εt4) =

½
κε t1 = t2 = t3 = t4
0 otherwise,

with |κε| <∞.
Assumption A.5 {ξt} is a stochastic process, whereE (ξt |Ft−1 ) = 0, E (ξtξ0t |Ft−1 ) =

E (ξtξ
0
t) = Ξ a.s., E

¡¯̄
ξtj1ξtj2ξtj3

¯̄ |Ft−1¢ = µ3,j1,j2,j3 < ∞ for all j1, j2, j3 =
1, 2 where Ft is the σ-algebra of events generated by ξs, s ≤ t, and the joint
fourth cumulant of ξtiji, ji = 1, 2 and i = 1, ..., 4 satisfies

cum
¡
ξt1j1 , ξt2j2 , ξt3j3, ξt4j4

¢
=

½
κj1,j2,j3,j4 t1 = t2 = t3 = t4
0 otherwise,

with κξ = maxji,i=1,...,4 |κj1,j2,j3,j4 | <∞.
Assumption A.6 m−2T + T−3m4 → 0.

Some discussion about our assumptions is in order. Part (i) of Assumption
A.1 is restrictive in the linearity it imposes, but not otherwise. In particular
A.1(i) combined with A.4 and A.5, e.g. E (εt |Gt−1 ) = 0, is equivalent to the
assertion that the best linear predictor is the best predictor, in the least squares
sense. Part (ii) of Assumption A.1 and Assumption A.2 deal with the need for
smoothness on both fww (λ) and fuu (λ). For frequencies λ → 0+, these are
the same used elsewhere by, for example, Robinson (1995) and thus, the same
comments apply here, while for frequencies λ outside any close set containing
the origin are standard. The requirement of independence between xt and ut
in the first part of Assumption A.1 (iii), as in Robinson and Hidalgo (1997),
is necessary for the proof of the asymptotic normality of (2.6), c.f. Theorem
2.1 below. We believe that it might be possible to relax this assumption to
some extent, but that will complicate enormously the otherwise already technical
proof given in Robinson and Hidalgo (1997). This certainly remains an open
question. Furthermore, it should also be noted that a sufficient condition for the
last part of Assumption A.1 (iii) is suptE

³
|xt|4+δ + |ut|4+δ

´
<∞ for some δ > 0.

Assumption A.3 is not strong, see for instance the comments made after (2.8)
below, once λdg is identified there as f−1/2gg up to constants. Finally, Assumption
A.6 gives upper and lower bounds for the rate of increase of m to infinity.
Examples of processes satisfying A.1-A.5 are as follows. Let ξt be a v−dimensional

unobservable covariance stationary process with a continuous and bounded away
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from zero spectral density matrix, and consider the filter

zt =
∞X
j=0

G (j) ξt−j (2.8)

where G (j) are v × v matrices. Denote by Gg (λ) the gth row of the matrix
G (λ) =

P∞
j=0G (j) e

ijλ, such that |Gg (λ)|λdg , with dg ∈
£
0, 1

2

¢
for g = 1, ..., v,

tends to a non-zero finite vector as λ → 0+, g = 1, ..., v, then A.1-A.3 hold.
As an example, let ξt be a stationary invertible autoregressive moving average
(ARMA) process and let each ztg be formed by separate fractional integration of
the corresponding ξt element, so that

G (λ) = diag
³¡
1− eiλ¢−d1 , ..., ¡1− eiλ¢−dv´ .

In particular, when zt is scalar, the spectral density function of zt is

f (λ) =
σ2

2π

¯̄
1− eiλ¯̄−2d ¯̄̄̄¯Θ

¡
eiλ
¢

Φ (eiλ)

¯̄̄̄
¯
2

, − π < λ ≤ π, (2.9)

with 0 ≤ d < 1/2, and where Θ (λ) and Φ (λ) are the MA and AR polynomi-
als respectively, having no zeroes in or on the unit circle. This is the familiar
ARFIMA model, see for instance Granger and Joyeux (1980) or Hosking (1981).
Another process which exhibits strong dependence is the fractional gaussian

noise process introduced by Mandelbrot and Van Ness (1968), whose spectral
density function, see Sinai (1976), is

f (λ) =
4σ2Γ (2d)

(2π)3+2d
cos (πd) sin2 (λ/2)

∞X
j=−∞

¯̄̄̄
j +

λ

2π

¯̄̄̄−2−2d
, (2.10)

where σ2 = E (zt −E (zt))2 < ∞ and Γ (·) denotes the gamma function. From
(2.9) and (2.10) we observe that they do not represent the same model, although
as λ → 0+, their spectral density functions behave as Kλ−2d with K ∈ (0,∞).
For a review of these models, see for instance Beran’s (1994) monograph.

Theorem 2.1. Assuming A.1-A.6, for any finite collection j1 , ..., j q , as T →∞,
(i) T 1/2

³bθj1−θj1 , ...,bθjq−θjq´ d→ N
³
0 ,Ω =

¡
Ωjk ,j `

¢
k ,`=1 ,...,q

´
where

Ωjk ,j `=(2π)
−1
Z π

−π
f −1xx (λ) fuu (λ) e

i(jk−j `)λdλ, k , ` = 1 , ..., q,
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denotes the indicated element of Ω , which corresponds to the asymptotic covari-
ance matrix between bθjk and bθj`.
(ii) Let bfuu,2ms=bfyy,2ms−bf −1xx ,2ms

¯̄̄bfyx ,2ms ¯̄̄2 . A consistent estimator of Ωjk ,j `,
k , ` = 1 , ..., q , is

bΩjk ,j `= 1

2M

2M−1X
s=1

bf −1xx ,2ms
bfuu,2mse i(jk−j `)λ2ms .

Proof. See Theorem 1 of Hidalgo (2000). ¤

3. ORDER SELECTION OF A DISTRIBUTED LAG RE-
GRESSION MODEL

As was mentioned in the introduction, the estimation of p0 in the model (1.1)
is by no means new. This problem was examined by Geweke and Meese (1981)
when both xt and ut were sequences of independent and identically distributed
(iid) random variables and by Pötscher (1989) who assumed that xt followed a
stationary (weakly dependent) sequence and ut a martingale difference sequence.
However the assumptions on xt and ut are stronger than those we impose in this
paper, see Assumptions A.1-A.5. In particular, we want to allow both xt and ut
to exhibit, possibly, strong dependence. As we discussed in Section 2 and in the
introduction, one consequence of strong dependence is that it may induce some
undesirable properties on the LSE of θj and thus on the criteria BIC/HIC, e.g.
their inconsistency.
Moreover, when p is allowed to increase with T , as is our case, (1.3) has some

additional technical problems. In this situation, the proof of (1.5), and the route
adopted in Geweke and Meese (1981), is based on Theorem 4.1 of Spitzer (1956).
In particular that bσ2p−bσ2p0 can be decomposed as partial sums of quadratic forms,
say

PT
t=1 bu2t,p −PT

t=1 bu2t,p−1, which are (asymptotically) independent identically
distributed χ2 random variables. Unfortunately, even if T 1/2−consistency were
achieved for the LSE eθj of θj, see Robinson and Hidalgo (1997), and thus the
inconsistency of the BIC/HIC mentioned in the introduction when p ≤ P may
disappear, Spitzer’s (1956) result could not straightforwardly be used in our frame-
work either. The reason is because under strong dependence, it is well known, see
for example Taqqu (1975), that

PT
t=1 bu2t,p −PT

t=1 bu2t,p−1 may not be independent
neither distributed as χ2 random variables. In general the (asymptotic) distribu-
tion is unknown.
Thus, we propose to estimate p0 in the model (1.1) by the value bp or bp∗ defined

10



as bp = arg min
1≤p≤[log(T )]

S (p) (3.1)

or bp∗ = arg min
1≤p≤[log(T )]

S∗ (p) (3.2)

where

S (p) =
1

2M

2M−1X
j=1

( bfuu,2mj (p)bfuu,2mj − 1
)
+
pg (T )

T
, (3.3)

and

S∗ (p) = log

Ã
1

2M

2M−1X
j=1

bfuu,2mj (p)bfuu,2mj
!
+
pg (T )

T
, (3.4)

with

bfuu,2mj (p) =
1

2m+ 1

mX
`=−m

Ibubu (λ` + λ2mj) and (3.5)

bfuu,2mj = bfuu,2mj (min ([log (T )] ,M)) .
Here Ibubu (λ) is as defined in (2.5) but using the residuals but = yt −Pp

`=1
bθ`xt−`+1

instead of wt, and where bθ` is given in (2.6). Observe that S (p) becomes more
in the spirit of (1.3) whereas S∗ (p) is closer to the BIC or HIC criteria given in
(1.2).
It is worth giving some intuition behind the criterion S (p). Since by Propo-

sition 3 and Lemma 1 of Hidalgo (2000),
³
f−1uu,2mj bfuu,2mj − (1 +Kj−2)´ = op (1)

uniformly in j, where henceforth K is some finite positive constant, we can expect
that for p < p0, S (p)− S (p0) will asymptotically be equivalent to

1

2M

2M−1X
j=1

¡
1 +Kj−2

¢−1( bfuu,2mj (p)
fuu,2mj

−
bfuu,2mj (p0)
fuu,2mj

)
+
(p− p0) g (T )

T
.

But, Theorem 2.1 implies that bθ`− θ` = Op
¡
T−1/2

¢
irrespective of the number of

lags p included in the model (1.1). So, the last displayed expression is approxi-
mated by

1

2M

2M−1X
j=1

¡
1 +Kj−2

¢−1 p0X
`1,`2=p+1

θ`1θ`2e
i(`1−`2)λ2mj fxx,2mj

fuu,2mj

+
(p− p0) g (T )

T
+ op (1)

=

p0X
`1,`2=p+1

θ`1 bΥ (|`1 − `2|) θ`2 + (p− p0) g (T )T
+ op (1) ,

11



where bΥ (`) = 1

2M

2M−1X
j=1

ei`λ2mj
fxx,2mj
fuu,2mj

¡
1 +Kj−2

¢−1
.

However the right side of the last displayed equation, (see the proof of Theo-
rem 3.1 in Section 5), converges uniformly in ` to the `th Fourier coefficient of
f−1uu (λ) fxx (λ), say Υ (`). Thus, for T large enough, S (p) − S (p0) > 0 which
implies that the minimum of (3.3) cannot be achieved for any value p < p0. In
Theorem 3.1 below we show that the minimum is not achieved either for any
value p > p0 as T → ∞. The same arguments apply to S∗ (p) since log (z) is a
monotonic increasing function.
It should be noted that if ut were a white noise process, then

S (p) ≈ 1

2M

2M−1X
j=1

( bfuu,2mj (p)
(2π)−1 σ2u

− 1
)
+
pg (T )

T

= σ−2u

Ã
1

2M

2M−1X
j=1

n
(2π) bfuu,2mj (p)− σ2u

o!
+
pg (T )

T

= σ−2u

Ã
1

2M

2M−1X
j=1

(2π) bfuu,2mj (p) + pg (T )σ2u
T

!
+K.

But (2M)−1 (2π)
P2M−1

j=1
bfuu,2mj (p) ≈ R 2π

0
bfuu (λ; p) dλ, which is an estimator of

σ2u =
R 2π
0
fuu (λ) dλ. Thus, when ut is a white noise sequence, the criterion S (p) is

just a reformulation of that given in (1.3). Proceeding in the same form, if S∗ (p)
given in (3.4) then it would be just a reformulation of the more familiar BIC or
HIC criteria given in (1.2).

Theorem 3.1. Assuming A.1-A.6 and the model (1 .1 ), if |g−1 (T ) log (T )|< K ,
as T →∞, bp given in (3 .1 ) satisfies

bp P→ p0 .

We now elaborate on the results of Theorem 3.1. First, it is worth noting that
unlike Geweke and Meese (1981) or Pötscher (1989, 1991), the upper bound for
p0 is not assumed to be finite, but the upper bound of admissible values for p0 is
allowed to increase to infinity at the rate logT , as in An et al. (1982). Second, a
closer inspection of the proofs indicates that the results of the theorem hold the
same if log T is replaced by log1+δ T for any 0 ≤ δ < 1. Finally, the results of the
theorem also hold true if log T were replaced by log log T in the definition of S (p)
but in this case p would have to be restricted to 1 ≤ p ≤ [log log T ] + 1.
We now examine bp∗ in (3.2).

12



Theorem 3.2. Assuming A.1-A.6 and the model (1 .1 ), if |g−1 (T ) log (T )|< K ,
as T →∞, bp given in (3 .2 ) satisfies

bp∗ P→ p0 .

As we mentioned in the introduction, we finish this section by describing how
an efficient (adaptive) estimator of θj can be obtained. To that end, assume first,
that p0 is known. Then, following Hannan (1963), the (adaptive) GLS estimator
of β = (θ1, ..., θp0)

0 is given by

eβ =

(
1

2M

2M−1X
k=0

bf−1bubu,2mk bfexex,2mk
)−1(

1

2M

2M−1X
k=0

bf−1bubu,2mk bfexy,2mk
)

(3.6)

= β +

(
1

2M

2M−1X
k=0

bf−1bubu,2mk bfexex,2mk
)−1(

1

2M

2M−1X
k=0

bf−1bubu,2mk bfexu,2mk
)

where but = yt −Pp0
j=1 xt−j+1bθj, bθj as defined in (2.6) and bfexex,2mk is the estimator

of the spectral matrix function of ex = (xt, ..., xt−p0+1)0, fexex,2mk, given in (2.4) but
with ext replacing wt. The reason why we have chosen bθj instead of the LSE of β is
due to our comments in Section 2. Alternatively, following Robinson and Hidalgo
(1997), we could have estimated β by the weighted least squares estimator in the
frequency domain

bβφ =

Ã
n−1X
j=1

Iexex,jφj
!−1Ãn−1X

j=1

Iexy,jφj
!
,

where φ (λ) is real-valued, even and periodic of period 2π function such that
φ (λ) ∼ Kλ as λ→ 0+ and ”∼” means that the ratio of the left- and right hand
side tends to one. An example of a function φ (λ) satisfying the aforementioned
properties is φ (λ) =

¯̄
1− eiλ¯̄. However since both bβφ and bθj in (2.6) are T 1/2-

consistent and the latter has already been computed for the estimation of p0, we
have decided to use the latter estimator. We then have the following result,
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Theorem 3.3. Assuming A.1-A.6, as T →∞

T 1/2
³eβ−β´ d→ N

³
0 ,Ω =(Ωj ,k)j ,k=1 ,...,p0

´
where eβ = ³eθ1 , ...,eθp0´0 is given in (3 .6 ) and

Ωj ,k=(2π)
−1
Z π

−π
f −1uu (λ) fxx (λ) e

i(j−k)λdλ, j , k = 1 , ..., p0 ,

denotes the indicated element of Ω , which corresponds to the asymptotic covari-
ance matrix between bθj and bθk .
Proof. The proof follows immediately from Hidalgo and Robinson’s (2001) The-
orem 2.1, so it is omitted. ¤
We now define the ”adaptive” estimator. Let bp be the estimator of p0 in (3.1).

Then we define the ”adaptive” estimator by

β̌ =

(
1

2M

2M−1X
k=0

bf−1bubu,2mk bfexex,2mk
)−1(

1

2M

2M−1X
k=0

bf−1bubu,2mk bfexy,2mk
)
, (3.7)

where now β = (θ1, ..., θbp)0 and ext = (xt, ..., xt−bp+1)0. With the results of the
previous theorem and Pötscher (1991), we achieve the following

Theorem 3.4. Assuming A.1-A.6, for any finite collection j1 , ..., j q∈ (1 , ...,bp), as
T →∞

T 1/2
³
θ̌j1−θj1 , ..., θ̌jq−θjq

´
d→ N

³
0 ,Ω =

¡
Ωjk ,j `

¢
k ,`=1 ,...,q

´
where θ̌j is the jth element of β̌ in (3 .7 ), and

Ωjk ,j `=(2π)
−1
Z π

−π
f −1uu (λ) fxx (λ) e

i(jk−j `)λdλ, k , ` = 1 , ..., q

denotes the indicated element of Ω , which corresponds to the asymptotic covari-
ance matrix between θ̌jk and θ̌j`.

Proof. The proof follows as a consequence of Theorem 3.3 and Lemma 1 of
Pötscher (1991). ¤
So the previous theorem indicates that indeed the asymptotic distribution of

our estimates of the parameters θj, θ̌j, for j ≤ p0, in (3.7) are not affected by the
estimation of p0, e.g. they are efficient in a Gauss-Markov sense. In addition, it
is obvious that the results of Theorem 3.4 hold true if bp were replaced by bp∗.
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Remark 1. It should be indicated that the results of the last two theorems hold
true if eβ and β̌ were replaced, respectively, by

bβ bf =
Ã
n−1X
j=1

Iexex,j bf−1bubu,j
!−1Ãn−1X

j=1

Iexy,j bf−1bubu,j
!

where β = (θ1, ..., θp0)
0 and ext = (xt, ..., xt−p0+1)0 and

β̌ bf =
(
1

n

n−1X
j=1

Iexex,j bf−1bubu,j
)−1(n−1X

j=1

Iexy,j bf−1bubu,j
)
,

where now β = (θ1, ..., θbp)0 and ext = (xt, ..., xt−bp+1)0, or β = (θ1, ..., θbp∗)0 andext = (xt, ..., xt−bp∗+1)0.
4. NUMERICAL EXAMPLE

In order to investigate how well bp and bp∗ given in (3.1) and (3.2) perform in finite
samples and its relative performance compared with ep provided in (1.4) with P
replaced by [log (T )] there and ep∗ = argmin1≤p≤[log(T )] S∗ (p), a small Monte-Carlo
study was carried out. The penalty functions g(T ) were g(T ) = log T and g(T ) =
2.0 log(log T ), corresponding to those employed in the criteria BIC and HIC
respectively. In Tables 4.1-4.3 below, METHOD 1 and 2 correspond to the BEC
type of criterion, e.g. (1.3) / (3.3), using g(T ) = logT and g(T ) = 2.0 log(logT )
respectively, whereas METHOD 3 and 4 employed the more standard BIC and
HIC criteria. Note that we have used c = 1 for the HIC. This is so, as Hannan
and Quinn (1979) mentioned, it would seem pedantic for the values of T used in
the simulations. All throughout the simulations, we have generated the model

yt = xt + 0.5xt−1 + 0.25xt−2 + ut t = 1, ..., T

which corresponds to p0 = 3 in (1.1), for sample sizes T = 64, 128 and 256, and
where xt and ut were generated as mutually independent Gaussian ARFIMA
models (2.9) with Θ (L) = Φ (L) = 1 and d = dx and d = du respectively. We
considered three different values of dx and du, specifically dx = 0.15, 0.25 and 0.35
and du = 0.15, 0.25 and 0.35.
The results of the experiment for the nine possible combinations of dx and

du are given in Tables 4.1 to 4.3, where PAR denotes the estimator of p0 when
S
∗
(p) and S (p) in (1.2) and (1.3), respectively, was used, and NP1 and NP2, the

estimator of p0 when the criterion function used was S (p) or S∗ (p), given in (3.3)
or (3.4), with M = T/8 and M = T/4, respectively. Finally, for each sample size
and different combination of dx and du, we performed 1000 Monte Carlo samples.
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A quick inspection of Tables 4.1- 4.3 illustrates that the choice of the penalty
function g(T ) = logT underestimate the true order more often than when we
employed g(T ) = 2.0 log(log T ) across all sample sizes, for all different combi-
nations of dx and du. This is somehow not surprising, as we mentioned in the
introduction, since the motivation to use the HIC criterion was precisely for this
reason. On the other hand, it seems that the number of times that the criteria
estimate the true order is not affected by the penalty function g (T ) employed,
except when the criterion given in (1.2) is employed. A second general feature is
that NP2 performs better than NP1, although that difference becomes smaller as
the sample size increases. In particular, for T = 256, the difference is negligible.
Regarding the relative finite sample performance of bp and bp∗ to ep and ep∗

respectively, it appears to be that our proposed criterion function enjoys better
finite sample properties in two aspects. First, the criteria (3.3) / (3.4) tend to
overestimate the true value p0 to a lesser degree than (1.3) / (1.2), and second, the
number of times that the criteria (3.3) / (3.4) correctly estimate p0, that is, bp0 = 3,
is greater, especially when T is small and M = T/4. This may indicate that the
finite sample distribution of bp or bp∗ is more concentrated around p0 than that of ep
or ep∗. This difference, however, appears to be greater when dx+du > 0.5, which is
the situation where the criteria S (p) or S∗ (p) may have some adverse properties,
as was mentioned in the introduction. However, when comparing bp∗ with ep∗, the
former underestimate the true order less often than the latter, whereas when bp
is compared with ep, it becomes the other way round for moderate sample sizes.
Overall, Tables 4.1 to 4.3 induce us to think that the proposed criteria functions
(3.3) / (3.4) possess very good finite sample properties, and more importantly, that
even for moderate sample sizes, say T = 128, the choice of M does not appear to
play a crucial or important role, so far the estimation of p0 is concerned.

5. PROOF OF THEOREMS 3.1 AND 3.2

5.1. Proof of Theorem 3.1

Because bp = argmin1≤p≤[log(T )] S (p), it implies that S (bp) − S (p0) < 0, or equiv-
alently S (p0) − S (bp) > 0. On the other hand, from the definition of S (p), we
obtain that

S (p0)− S (p) =
1

2M

2M−1X
q=1

( bfuu,2mq (p0)bfuu,2mq −
bfuu,2mq (p)bfuu,2mq

)
+
(p0 − p) g (T )

T

16



=
1

2M

2M−1X
q=1

fuu,2mqbfuu,2mq
( bfuu,2mq (p0)− bfuu,2mq (p)

fuu,2mq

)
+
(p0 − p) g (T )

T
.

We begin showing that Pr {bp > p0} → 0. Denote bp = p0 + j for some j > 0.
Using the inequality

Pr {bp > p0} ≤ Pr( sup
1≤j≤[log(T )]−p0

S (p0)− S (p0 + j) > 0
)
,

it suffices to show that the right side of the last displayed inequality converges to
zero. First, observing that by Proposition 3 of Hidalgo (2000),

sup
q=1,...,M

¯̄̄
f−1uu,2mq bfuu,2mq − ¡1 +Kq−2¢¯̄̄ = Op ¡MT−1/2¢ (5.1)

it implies that it suffices to show that

Pr

(
sup

1≤j≤[log(T )]−p0
eS (p0, j) > 0)→ 0, (5.2)

where

eS (p0, j) = 1

2M

2M−1X
q=1

µ
1− K

K + q2

¶( bfuu,2mq (p0)− bfuu,2mq (p0 + j)
fuu,2mq

)
− jg (T )

T
.

Let us introduce

bb (k) = (2M)−1 2M−1X
q=1

µ
1− K

K + q2

¶
f−1uu,2mq bfux,2mqeikλ2mq (5.3)

and bΥ (k) = (2M)−1 2M−1X
q=1

µ
1− K

K + q2

¶
f−1uu,2mq bfxx,2mqeikλ2mq .

It is worth observing that since (5.1) also holds true with ut replaced by xt, and

(2M)−1
2M−1X
q=1

f−1uu,2mqfxx,2mqe
ikλ2mq → 1

2π

Z π

−π
f−1uu (λ) fxx (λ) e

ikλdλ = Υ (k) ,

(5.4)
it implies that as M →∞, bΥ (k) p→ Υ (k) uniformly in k.
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Because bθj given in (2.6) is the same irrespective of the number of lags specified
in (1.1), after some straightforward algebra, we conclude that

eS (p0, j) = Ψ (j)− jg (T )
T

where

Ψ (j) = −2
p0+jX
k=p0+1

bθkbb (k − p0)− 2 p0X
k1=1

³bθk1 − θk1

´ p0+jX
k2=p0+1

bΥ (|k1 − k2|)bθk2
−

p0+jX
k1,k2=p0+1

bθk1 bΥ (|k1 − k2|)bθk2
But as the third term on the right of the last displayed equation is a quadratic

form, then it is less than or equal to zero with probability 1, and thus (5.2) holds
true if

Pr

(
sup

1≤j≤[log(T )]−p0

p0+jX
k=p0+1

bθkbb (k − p0)− jg (T )
T

> 0

)
→ 0 (5.5)

and

Pr

(
p0X
k1=1

³bθk1 − θk1

´
sup

1≤j≤[log(T )]−p0

p0+jX
k2=p0+1

bΥ (|k1 − k2|)bθk2 − jg (T )T
> 0

)
→ 0.

(5.6)
We begin showing (5.5), whose left side is upper bounded by

Pr

(
sup

1+p0≤k≤[log(T )]
Tbθkbb (k − p0) > g (T )) . (5.7)

First, from the proof of Theorem 2.1, see Hidalgo (2000), for M ≥ k > p0,

T 1/2bθk =
T 1/2

2M

2M−1X
q=1

f−1xx,2mq bfux,2mqeikλ2mq +Opµ logMM1/2

¶
= θk +Op

µ
logM

M1/2

¶
, (5.8)

where the second term on the right of (5.8) is uniform in k. (Recall that the
statistical properties of bθk are independent of k and/or the number of lags assumed
in (1.1).) So, we obtain that (5.7) is upper bounded by

Pr

(
sup

1+p0≤k≤[log(T )]
θkT

1/2bb (k − p0) > g (T )) . (5.9)
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Next, from the definitions of bb (k) and θk given in (5.3) and (5.8) respectively,
it is easily shown that

E
³
θkT

1/2bb (k − p0)´→ 1

2M

2M−1X
q=1

eip0λ2mq = 0,

and since both θk and T 1/2bb (k − p0) converge to a normal random variable, As-
sumption A.1 and Serfling’s (1980, p.14) Theorem A imply that

E
³
θkT

1/2bb (k − p0)´2 ≤ K,
as we now show. Indeed, the latter is true since the secondmoments of θkT 1/2bb (k − p0)
converge to those of the limiting distribution by Serfling’s (1980, p.14) Theorem
A provided that the sequence of random variables is uniform integrable which is
the case since by A.1 x4t and u

4
t are uniformly integrable. From here, using the

inequality supk |ck|2 ≤
P

k |ck|2 and Markov inequality, (5.9) is upper bounded
by K

P[log(T )]
k=1 g−2 (T ) which converges to 0 since from the assumption on g (T ),

|g−1 (T ) logT | < K.
On the other hand, since by Theorem 2.1,

Pp0
k=1 T

1/2
³bθk − θk

´
= Op (1), it

implies that the left side of (5.6) is bounded by

Pr

(
sup

1+p0≤k≤[log(T )]
T 1/2bθk > g (T )) ≤ K [log(T )]X

k=1

g−2 (T )→ 0

proceeding similarly as with the proof of (5.5). Thus, we have completed the proof
that Pr {bp > p0}→ 0.
To finish the proof of the theorem, it remains to show that Pr {bp < p0} → 0.

Because p0 ≤ K <∞, it suffices to show that for all 1 ≤ j < p0,
Pr {S (p0 − j)− S (p0) < 0}→ 0.

The left side of the last displayed expression is

Pr

½ bA1 (j) + bA2 (j) + bA3 (j) < jg (T )

T 1/2

¾
, (5.10)

where

bA1 (j) = T 1/2
p0X

k1,k2=p0−j+1

nbθk1 bΥ (|k1 − k2|)bθk2o ,
19



bA2 (j) = 2

p0X
k=p0−j+1

bθkT 1/2bb (k + j − p0) and

bA3 (j) = 2

p0−1X
k1=1

T 1/2
³bθk1 − θk1

´ q0X
k2=q0−j

bΥ (|k1 − k2|)bθk2 .
But

T 1/2
³bθ`1 − θ`1 , ...,bθ`r − θ`r

´0 d→ (ω (`1) , ...,ω (`r))
0 ∼= N (0,Ω) ,

T 1/2
³bb (`1) , ...,bb (`r)´0 d→ (τ (`1) , ..., τ (`r))

0 ∼= N (0,Υ) , and
p0X

k1,k2=p0−j

nbθk1 bΥ (|k1 − k2|)bθk2o P→ ψ > 0

because bΥ (|k1 − k2|) P→ Υ (|k1 − k2|), Υ = (Υ (|k1 − k2|))k1,k2=p0−j,...,p0 is a posi-
tive definite matrix, c.f. (5.4), and

³bθp0−j, ...,bθp0´ converges in probability to a
non-zero vector. Hence

lim
T→∞

Pr
n
T−1/2

³ bA1 (j) + bA2 (j) + bA3 (j)´ > Ko→ 1,

which implies that (5.10) converges to 0 since T−1g (T )→ 0. So, Pr {bp < p0}→ 0
and the proof of the theorem is completed. ¤

5.2. Proof of Theorem 3.2

Because bp∗ = argmin1≤p≤[log(T )] S∗ (p), it implies that S∗ (bp) − S∗ (p0) < 0, or
equivalently S∗ (p0)− S∗ (bp) > 0.
We begin showing that Pr {bp∗ > p0}→ 0. Denote bp∗ = p0 + j for some j > 0.

Using the arguments of Theorem 3.1, it suffices to show that

Pr {bp∗ > p0} ≤ Pr( sup
1≤j≤[log(T )]−p0

S∗ (p0)− S∗ (p0 + j) > 0
)
. (5.11)

Denoting h (p) = (2M)−1
P2M−1

j=1
bf−1uu,2mj bfuu,2mj (p),

S∗ (p0)− S∗ (p0 + j) = log

µ
h (p0)

h (p0 + j)

¶
− jg (T )

T

≤ h (p0)− h (p0 + j)
h (p0 + j)

− jg (T )
T
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because log (x) ≤ x− 1. So that the right side of (5.11) is bounded by

Pr

(
sup

1≤j≤[log(T )]−p0

h (p0)− h (p0 + j)
h (p0 + j)

− jg (T )
T

> 0

)
. (5.12)

On the other hand, we have that

h (p0 + j) = h (p0)− (h (p0)− h (p0 + j))
= h (p0)− jg (T )

T
−
µ
h (p0)− h (p0 + j)− jg (T )

T

¶
.

But, with probability approaching one

inf
j
h (p0 + j) = h (p0)− jg (T )

T
− sup

j

µ
h (p0)− h (p0 + j)− jg (T )

T

¶
≥ h (p0)− jg (T )

T

since by Theorem 3.1., Pr
n
h (p0)− h (p0 + j)− jg(T )

T
> 0

o
→ 0. Since h (p0)

P→
1, we have that infj h (p0 + j) > 1/2. In addition, by standard arguments,

we have that h (p0 + j)
P→ 1. Hence with probability approaching one, 1/2 <

infj h (p0 + j) < 2, which implies that the behaviour of (5.12) is that of

Pr

(
sup

1≤j≤[log(T )]−p0
h (p0)− h (p0 + j)− jg (T )

T
> 0

)
,

which converges to zero by Theorem 3.1. Thus, Pr {bp∗ > p0}→ 0.
The proof that Pr {bp∗ < p0}→ 0, follows by similar steps to those of Theorem

3.1, and it is omitted. ¤
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TABLE 4.1
Distribution of bq in 1000 Monte Carlo samples with the criterion function (1.3) and

(3.3) with M = T/8 and T/4 respectively
dx = 0.15, du = 0.15

METH 1 METH 2

dx = 0.25, du = 0.15

METH 1 METH 2

dx = 0.35, du = 0.15

METH 1 METH 2

T = 64

bq < 3bq = 3bq = 4bq = 5bq = 6bq = 7

PAR NP1 NP2 PAR NP1 NP2

14.5 40.9 50.7

42.8 46.0 44.3

13.5 8.1 4.4

7.4 2.8 0.6

7.4 1.0 0.0

14.4 1.2 0.0

7.1 30.2 30.3

28.7 43.9 43.9

13.2 12.5 12.5

10.4 5.6 5.6

10.9 4.5 4.5

29.7 3.2 3.2

PAR NP1 NP2 PAR NP1 NP2

17.2 45.4 55.6

41.1 42.0 40.0

13.3 7.3 3.9

7.7 3.0 0.5

7.6 1.3 0.0

13.1 1.0 0.0

9.1 33.4 42.2

26.2 41.6 47.9

12.6 11.9 6.8

10.8 5.6 2.6

10.7 4.5 0.4

30.6 3.0 0.1

PAR NP1 NP2 PAR NP1 NP2

24.1 53.2 63.6

34.3 35.1 32.2

12.6 6.6 3.7

8.4 2.6 0.4

7.8 1.4 0.1

12.8 1.1 0.0

13.2 40.8 51.6

24.2 35.1 38.5

12.4 10.8 7.4

10.3 6.1 2.1

10.6 4.4 0.2

29.3 2.8 0.1

T = 128

bq < 3bq = 3bq = 4bq = 5bq = 6bq = 7

PAR NP1 NP2 PAR NP1 NP2

4.6 24.7 26.6

56.4 69.1 71.1

12.5 5.2 2.3

7.5 0.6 0.0

8.2 0.1 0.0

10.8 0.3 0.0

11.6 13.2 14.8

37.6 70.0 77.0

13.6 10.3 6.8

11.2 3.8 0.8

11.3 1.6 0.5

24.7 1.1 0.1

PAR NP1 NP2 PAR NP1 NP2

5.9 29.6 32.3

54.3 63.8 65.2

12.8 5.4 2.5

8.5 0.7 0.0

8.1 0.2 0.0

10.4 0.3 0.0

2.7 17.9 19.0

37.7 65.6 72.1

13.0 10.2 7.3

11.3 3.5 0.8

11.3 1.9 0.7

24.5 0.9 0.1

PAR NP1 NP2 PAR NP1 NP2

12.3 40.0 44.0

50.4 53.7 53.2

17.9 4.9 2.7

8.0 0.9 0.1

7.9 0.2 0.0

9.5 0.3 0.0

5.3 26.9 30.1

34.5 57.1 61.6

12.7 9.7 6.8

11.2 3.4 0.6

11.3 1.9 0.8

25.0 1.0 0.1

T = 256

bq < 3bq = 3bq = 4bq = 5bq = 6bq = 7

PAR NP1 NP2 PAR NP1 NP2

0.6 4.4 5.6

68.0 90.8 91.9

11.9 4.4 2.5

6.7 0.2 0.0

5.4 0.2 0.0

7.4 0.0 0.0

0.4 1.8 2.1

41.9 86.2 90.0

13.9 8.0 6.6

10.4 2.0 0.7

10.5 1.4 0.6

22.9 0.3 0.0

PAR NP1 NP2 PAR NP1 NP2

0.9 8.3 9.1

67.8 86.9 88.3

11.6 4.2 2.6

7.2 0.4 0.0

5.8 0.2 0.0

6.7 0.0 0.0

0.5 3.0 3.5

41.9 84.7 88.6

12.8 8.1 6.5

10.5 2.5 0.8

10.7 1.2 0.6

23.6 0.5 0.0

PAR NP1 NP2 PAR NP1 NP2

2.6 18.8 19.1

65.6 96.4 78.9

12.8 4.1 2.0

7.1 0.5 0.0

5.5 0.2 0.0

6.4 0.0 0.0

1.2 8.2 8.8

40.2 78.2 82.7

13.0 9.3 7.0

10.8 2.5 1.0

10.4 1.4 0.5

24.4 0.4 0.0



TABLE 4.1(Cont)
Distribution of bq in 1000 Monte Carlo samples with the criterion function (1.2) and

(3.4) with M = T/8 and T/4 respectively
dx = 0.15, du = 0.15

METH 3 METH 4

dx = 0.25, du = 0.15

METH 3 METH 4

dx = 0.35, du = 0.15

METH 3 METH 4

T = 64

bq < 3bq = 3bq = 4bq = 5bq = 6bq = 7

PAR NP1 NP2 PAR NP1 NP2

51.0 44.7 51.6

44.2 45.5 44.1

3.5 6.5 3.8

1.0 2.1 0.5

0.2 0.5 0.0

0.1 0.7 0.0

35.0 33.4 37.4

49.6 44.1 52.1

8.3 11.6 8.1

2.9 4.8 2.1

2.0 3.6 0.3

2.2 2.5 0.0

PAR NP1 NP2 PAR NP1 NP2

56.5 48.9 55.7

39.1 41.0 39.9

2.9 6.3 13.9

1.1 2.4 0.5

0.2 0.8 0.6

0.2 0.6 0.0

39.4 35.8 42.5

45.8 42.0 47.7

8.1 11.3 7.1

2.7 5.0 2.2

2.0 3.5 0.4

2.0 2.4 0.1

PAR NP1 NP2 PAR NP1 NP2

65.9 56.6 63.2

30.1 34.5 32.5

2.9 5.1 3.8

0.6 2.2 0.4

0.3 0.8 0.1

0.0 0.8 0.0

29.2 43.3 52.0

36.8 35.2 38.9

7.0 10.0 6.8

3.1 5.5 1.9

2.1 3.9 0.3

1.8 2.1 0.1

T = 128

bq < 3bq = 3bq = 4bq = 5bq = 6bq = 7

PAR NP1 NP2 PAR NP1 NP2

27.2 26.6 26.5

69.8 67.8 71.4

2.5 4.6 2.1

0.1 0.5 0.0

0.1 0.1 0.0

0.3 0.3 0.0

15.0 14.2 14.9

73.4 69.6 77.0

7.3 10.0 6.9

1.8 3.7 0.8

1.5 1.5 0.4

1.0 1.0 0.0

PAR NP1 NP2 PAR NP1 NP2

33.4 31.6 32.1

63.5 62.5 65.7

2.5 4.9 2.2

0.1 0.6 0.0

0.3 0.1 0.0

0.2 0.3 0.0

18.7 19.3 18.9

69.8 65.0 72.5

7.2 9.7 7.3

1.7 3.5 0.6

1.4 1.7 0.6

1.2 0.8 0.1

PAR NP1 NP2 PAR NP1 NP2

48.0 42.4 44.7

49.2 51.9 52.8

2.3 4.4 2.5

0.1 0.8 0.0

0.2 0.2 0.0

0.2 0.3 0.0

29.9 28.3 30.2

59.7 56.4 61.7

6.2 9.5 7.0

1.8 3.1 0.4

1.3 1.8 0.6

1.1 0.9 0.1

T = 256

bq < 3bq = 3bq = 4bq = 5bq = 6bq = 7

PAR NP1 NP2 PAR NP1 NP2

5.8 4.7 5.6

91.0 90.9 92.0

2.9 4.1 2.4

0.3 0.1 0.0

0.0 0.2 0.0

0.0 0.0 0.0

1.5 2.0 2.1

87.4 86.5 89.9

7.2 7.6 6.8

2.0 2.3 0.6

1.3 1.3 0.6

0.6 0.3 0.0

PAR NP1 NP2 PAR NP1 NP2

9.7 8.9 9.1

87.0 86.8 88.3

3.0 3.8 2.6

0.3 0.3 0.0

0.0 0.2 0.0

0.0 0.0 0.0

3.0 3.3 3.3

85.8 88.9 88.9

7.0 6.4 6.4

2.3 0.8 0.8

1.4 0.6 0.6

0.5 0.0 0.0

PAR NP1 NP2 PAR NP1 NP2

23.9 19.6 19.4

73.3 75.8 77.8

2.6 3.9 2.8

0.1 0.5 0.0

0.1 0.2 0.0

0.0 0.0 0.0

9.6 8.5 9.0

79.8 78.1 82.6

6.4 9.2 6.9

2.4 2.5 0.9

1.4 1.3 0.6

0.4 0.4 0.0



TABLE 4.2
Distribution of bq in 1000 Monte Carlo samples with the criterion function (1.3) and

(3.3) with M = T/8 and T/4 respectively
dx = 0.15, du = 0.25

METH 1 METH 2

dx = 0.25, du = 0.25

METH 1 METH 2

dx = 0.35, du = 0.15

METH 1 METH 2

T = 64

bq < 3bq = 3bq = 4bq = 5bq = 6bq = 7

PAR NP1 NP2 PAR NP1 NP2

14.7 37.4 43.6

46.5 49.2 51.5

12.4 8.3 4.3

7.0 3.1 0.6

6.7 1.1 0.0

12.7 0.9 0.0

7.4 26.3 30.9

33.8 48.9 56.9

11.8 12.6 9.0

10.4 5.2 2.5

10.7 4.1 0.6

25.9 2.9 0.1

PAR NP1 NP2 PAR NP1 NP2

17.8 41.2 51.2

44.3 45.4 44.1

11.9 8.3 4.2

6.8 3.2 0.5

6.8 1.2 0.0

12.4 0.7 0.0

9.5 31.3 36.9

31.4 44.0 52.0

11.9 11.5 8.0

10.6 5.8 2.5

10.3 4.1 0.5

26.3 3.1 0.1

PAR NP1 NP2 PAR NP1 NP2

24.4 50.7 60.5

37.5 37.5 35.2

12.3 6.4 3.9

7.4 3.3 0.4

6.3 1.4 0.0

12.1 0.7 0.0

14.4 38.6 48.1

27.7 37.6 42.0

12.0 11.0 7.2

10.8 5.0 2.2

10.4 4.3 0.4

24.7 2.7 0.1

T = 128

bq < 3bq = 3bq = 4bq = 5bq = 6bq = 7

PAR NP1 NP2 PAR NP1 NP2

3.5 19.2 19.9

59.9 74.7 77.0

12.1 5.5 3.1

7.8 1.1 0.0

7.0 0.1 0.0

9.7 0.3 0.0

1.5 8.6 10.9

42.3 73.9 80.5

13.9 10.5 6.9

10.8 3.9 1.0

11.0 1.9 0.7

21.5 1.2 0.0

PAR NP1 NP2 PAR NP1 NP2

5.7 24.8 26.3

58.4 68.6 71.4

11.9 5.1 2.3

7.5 1.1 0.0

7.1 0.1 0.0

9.4 0.3 0.0

2.1 13.7 15.8

42.0 69.2 76.3

13.3 10.4 6.8

10.5 3.8 1.2

10.4 1.7 0.8

21.7 1.2 0.1

PAR NP1 NP2 PAR NP1 NP2

11.4 36.5 40.1

53.6 57.2 57.8

11.9 5.1 2.1

7.1 0.7 0.0

6.7 0.2 0.0

9.3 0.3 0.0

4.7 22.9 26.2

39.5 60.6 65.0

12.6 9.8 6.8

10.4 3.9 0.9

10.4 1.7 0.9

22.4 1.0 0.2

T = 256

bq < 3bq = 3bq = 4bq = 5bq = 6bq = 7

PAR NP1 NP2 PAR NP1 NP2

0.6 2.6 3.7

70.9 92.2 93.8

11.1 4.8 2.5

6.0 0.2 0.0

4.5 0.2 0.0

6.9 0.0 0.0

0.2 1.1 1.2

46.9 86.7 89.7

13.6 7.9 7.4

8.5 2.3 1.1

10.2 1.6 0.6

20.6 0.4 0.0

PAR NP1 NP2 PAR NP1 NP2

0.7 4.5 5.8

69.6 90.5 91.6

11.9 4.5 2.6

6.7 0.3 0.0

4.5 0.2 0.0

6.6 0.0 0.0

0.4 1.8 2.5

45.6 86.1 89.2

12.2 7.8 6.8

9.5 2.4 0.9

9.4 1.5 0.6

22.9 0.4 0.0

PAR NP1 NP2 PAR NP1 NP2

2.2 13.9 15.1

67.9 81.2 82.1

11.7 4.1 2.7

6.8 0.6 0.1

4.4 0.2 0.0

7.0 0.0 0.0

1.0 6.1 6.8

44.4 81.5 84.6

12.5 8.0 6.8

9.4 2.5 1.2

9.0 1.5 0.6

23.7 0.4 0.0



TABLE 4.2(Cont)
Distribution of bq in 1000 Monte Carlo samples with the criterion function (1.2) and

(3.4) with M = T/8 and T/4 respectively
dx = 0.15, du = 0.25

METH 3 METH 4

dx = 0.25, du = 0.25

METH 3 METH 4

dx = 0.35, du = 0.25

METH 3 METH 4

T = 64

bq < 3bq = 3bq = 4bq = 5bq = 6bq = 7

PAR NP1 NP2 PAR NP1 NP2

46.1 40.8 44.2

47.9 48.7 50.8

3.9 7.2 4.4

1.4 2.3 0.6

0.4 0.3 0.0

0.3 0.7 0.0

30.8 28.1 31.3

52.1 49.4 57.0

8.1 11.7 9.0

3.8 5.2 2.3

2.2 3.5 0.4

3.2 2.1 0.0

PAR NP1 NP2 PAR NP1 NP2

52.6 44.6 51.8

42.2 45.2 43.7

3.0 6.5 4.1

1.3 2.4 0.4

0.5 0.7 0.0

0.4 0.6 0.0

35.5 33.9 37.2

48.1 44.4 51.7

7.1 10.7 8.3

3.7 5.5 2.3

2.4 3.3 0.4

2.3 2.2 0.1

PAR NP1 NP2 PAR NP1 NP2

62.9 53.8 61.4

32.2 37.6 34.3

2.8 5.1 3.8

0.9 2.2 0.4

0.7 0.7 0.1

0.5 0.6 0.0

45.9 40.6 48.5

38.9 38.4 41.9

6.3 10.5 7.1

3.3 5.0 2.0

2.3 3.3 0.4

3.3 2.2 0.1

T = 128

bq < 3bq = 3bq = 4bq = 5bq = 6bq = 7

PAR NP1 NP2 PAR NP1 NP2

23.5 19.5 20.5

73.4 74.4 76.6

2.4 5.2 2.9

0.2 0.5 0.0

0.2 0.1 0.0

0.3 0.2 0.0

12.0 9.3 11.2

75.7 74.4 79.8

6.5 10.2 7.4

1.8 3.6 1.0

1.8 1.6 0.6

2.2 0.9 0.0

PAR NP1 NP2 PAR NP1 NP2

29.6 26.7 26.9

67.2 67.8 70.8

2.6 4.6 2.3

0.1 0.5 0.0

0.2 0.1 0.0

0.3 0.2 0.0

16.8 14.7 15.1

70.5 68.8 76.3

60.3 10.3 6.8

2.1 3.7 0.9

1.9 1.5 0.8

2.4 1.0 0.1

PAR NP1 NP2 PAR NP1 NP2

44.2 38.3 40.6

52.8 56.1 57.4

2.3 4.8 2.0

0.2 0.5 0.0

0.3 0.1 0.0

0.2 0.2 0.0

26.8 24.8 26.3

61.8 60.2 65.4

5.3 9.1 6.8

2.2 3.6 0.7

1.8 1.5 0.7

2.1 0.8 0.1

T = 256

bq < 3bq = 3bq = 4bq = 5bq = 6bq = 7

PAR NP1 NP2 PAR NP1 NP2

4.9 2.7 3.6

91.2 92.7 93.8

3.2 4.4 2.6

0.7 0.1 0.0

0.0 0.1 0.0

0.0 0.0 0.0

1.4 1.1 1.2

87.5 86.8 89.9

6.6 7.8 7.3

2.5 2.4 1.1

1.0 1.5 0.5

1.0 0.4 0.0

PAR NP1 NP2 PAR NP1 NP2

8.2 5.3 6.4

88.0 89.9 91.0

2.8 4.4 2.6

0.8 0.2 0.0

0.1 0.2 0.0

0.1 0.0 0.0

2.2 1.8 2.5

86.3 86.5 89.4

6.8 7.6 6.7

2.5 2.3 0.8

1.4 1.4 0.6

0.8 0.4 0.0

PAR NP1 NP2 PAR NP1 NP2

21.8 14.8 15.6

74.9 80.5 81.7

2.5 4.1 2.7

0.4 0.4 0.0

0.2 0.2 0.0

0.2 0.0 0.0

8.1 6.3 6.7

80.7 81.6 84.8

6.3 7.9 6.7

2.3 2.4 1.2

1.7 1.4 0.6

0.9 0.4 0.0



TABLE 4.3
Distribution of bq in 1000 Monte Carlo samples with the criterion function (1.3) and

(3.3) with M = T/8 and T/4 respectively
dx = 0.15, du = 0.35

METH 1 METH 2

dx = 0.25, du = 0.35

METH 1 METH 2

dx = 0.35, du = 0.35

METH 1 METH 2

T = 64

bq < 3bq = 3bq = 4bq = 5bq = 6bq = 7

PAR NP1 NP2 PAR NP1 NP2

13.9 25.9 31.3

55.1 59.5 63.1

10.6 9.3 5.0

5.5 3.2 0.6

5.0 1.3 0.0

9.9 0.8 0.0

8.2 28.2 21.6

46.1 55.0 65.6

11.6 13.4 9.3

7.6 6.4 2.8

7.2 4.1 0.5

19.3 2.9 0.2

PAR NP1 NP2 PAR NP1 NP2

17.6 31.4 38.3

51.5 54.9 56.3

10.2 8.5 4.7

6.0 3.2 0.7

5.0 1.3 0.0

9.5 0.7 0.0

9.8 22.4 26.6

44.5 51.6 61.3

12.0 12.8 8.9

7.6 6.0 2.5

7.3 4.1 0.5

18.8 3.1 0.2

PAR NP1 NP2 PAR NP1 NP2

25.2 41.6 51.8

45.5 45.5 43.8

9.0 7.9 3.8

6.7 3.0 0.6

4.8 1.4 0.0

8.8 0.6 0.0

16.6 31.9 38.0

38.6 44.2 51.3

11.3 11.5 7.6

7.5 5.4 2.4

7.8 4.1 0.5

18.2 2.9 0.2

T = 128

bq < 3bq = 3bq = 4bq = 5bq = 6bq = 7

PAR NP1 NP2 PAR NP1 NP2

2.5 7.0 8.4

69.7 84.9 88.1

9.4 6.0 3.5

5.8 1.5 0.0

4.4 0.2 0.0

8.2 0.4 0.0

1.0 3.6 4.2

52.1 77.8 86.1

12.4 11.4 7.5

8.8 3.7 1.4

7.6 2.2 0.8

18.1 1.3 0.0

PAR NP1 NP2 PAR NP1 NP2

4.7 11.6 13.7

67.0 80.9 83.2

9.8 5.8 3.1

5.9 1.7 0.0

4.6 0.1 0.0

8.0 0.4 0.0

1.6 6.0 6.8

50.4 76.2 83.5

12.8 10.7 7.2

8.7 4.0 1.4

7.6 1.9 0.1

18.9 1.2 0.2

PAR NP1 NP2 PAR NP1 NP2

9.9 24.2 27.6

62.4 69.0 70.0

9.1 5.3 2.4

5.9 1.2 0.0

4.7 0.1 0.0

8.0 0.2 0.0

4.8 14.3 14.7

48.1 68.4 75.8

12.6 10.2 6.9

8.6 4.3 1.4

8.2 1.6 0.9

17.7 1.2 0.3

T = 256

bq < 3bq = 3bq = 4bq = 5bq = 6bq = 7

PAR NP1 NP2 PAR NP1 NP2

0.4 0.7 0.8

76.0 94.0 96.0

9.6 4.8 2.9

4.7 0.3 0.3

3.7 0.2 0.0

5.6 0.0 0.0

0.0 0.4 0.2

55.8 86.8 89.7

11.7 8.4 8.3

7.8 2.5 1.2

7.1 1.6 0.6

17.6 0.3 0.3

PAR NP1 NP2 PAR NP1 NP2

0.5 1.2 2.2

74.8 93.3 94.8

9.9 4.8 2.7

4.9 0.4 0.3

3.9 0.3 0.0

6.0 0.0 0.0

0.3 0.6 1.0

54.8 86.9 89.5

11.0 8.0 7.8

8.0 2.4 1.2

7.0 1.7 0.5

18.9 0.4 0.0

PAR NP1 NP2 PAR NP1 NP2

1.8 5.1 6.4

72.6 89.7 90.8

10.8 4.6 2.6

4.9 0.4 0.2

3.3 0.2 0.0

6.6 0.0 0.0

0.5 1.9 2.9

53.2 85.5 88.4

11.7 7.8 7.1

7.9 2.8 1.2

6.8 1.6 0.4

19.9 0.4 0.0



TABLE 4.3(Cont)
Distribution of bq in 1000 Monte Carlo samples with the criterion function (1.2) and

(3.4) with M = T/8 and T/4 respectively
dx = 0.15, du = 0.35

METH 3 METH 4

dx = 0.25, du = 0.35

METH 3 METH 4

dx = 0.35, du = 0.35

METH 3 METH 4

T = 64

bq < 3bq = 3bq = 4bq = 5bq = 6bq = 7

PAR NP1 NP2 PAR NP1 NP2

36.4 28.3 31.5

56.2 60.0 62.6

3.9 8.2 5.2

1.8 2.4 0.7

0.6 0.5 0.0

0.9 0.6 0.0

22.8 19.6 20.7

58.5 56.4 66.0

7.1 13.1 9.7

3.9 5.2 2.7

2.4 3.3 0.7

5.3 2.4 0.2

PAR NP1 NP2 PAR NP1 NP2

43.1 34.5 38.8

49.6 54.1 55.9

3.5 7.4 4.6

1.8 2.7 0.7

1.0 0.7 0.0

1.0 0.6 0.0

28.3 23.8 27.0

53.2 52.9 60.6

6.8 12.4 9.3

4.3 5.5 2.5

2.4 3.2 0.4

5.0 2.2 0.2

PAR NP1 NP2 PAR NP1 NP2

55.0 45.3 52.5

38.3 44.2 43.5

3.2 6.4 3.5

1.5 2.9 0.5

1.0 0.6 0.0

1.0 0.6 0.0

38.7 34.1 37.5

43.9 44.3 51.6

6.0 11.1 8.0

4.3 5.2 2.3

2.5 3.3 0.5

4.6 2.0 0.1

T = 128

bq < 3bq = 3bq = 4bq = 5bq = 6bq = 7

PAR NP1 NP2 PAR NP1 NP2

17.3 7.5 8.8

78.8 84.9 87.7

2.6 5.9 3.5

0.3 1.2 0.0

0.3 0.2 0.0

0.7 0.8 0.0

7.7 3.7 4.2

78.5 78.8 86.1

6.0 10.9 7.7

2.3 3.7 1.3

1.9 1.9 0.7

3.6 1.0 0.0

PAR NP1 NP2 PAR NP1 NP2

22.0 12.8 14.0

74.3 80.6 83.1

2.4 5.5 2.9

0.2 0.8 0.0

0.3 0.1 0.0

0.8 0.2 0.0

11.2 6.3 6.8

74.5 76.5 83.9

5.8 10.6 7.1

2.5 3.9 1.3

2.4 1.8 0.9

3.6 0.9 0.0

PAR NP1 NP2 PAR NP1 NP2

35.1 26.3 28.1

61.1 68.3 69.6

2.2 4.4 2.3

0.5 0.7 0.0

0.3 0.1 0.0

0.8 0.2 0.0

20.0 14.9 15.1

67.1 68.8 75.6

4.8 10.0 7.0

2.3 4.2 1.3

2.2 1.2 0.9

3.6 0.9 0.1

T = 256

bq < 3bq = 3bq = 4bq = 5bq = 6bq = 7

PAR NP1 NP2 PAR NP1 NP2

2.4 0.7 0.9

92.9 94.2 96.1

3.2 4.6 2.7

1.0 0.3 0.3

0.3 0.2 0.0

0.2 0.0 0.0

0.8 0.4 0.2

87.2 87.0 89.7

6.4 8.4 8.4

2.8 2.4 1.1

0.9 1.5 0.6

1.9 0.3 0.0

PAR NP1 NP2 PAR NP1 NP2

5.3 1.2 2.2

89.8 93.9 94.8

3.1 4.4 2.7

1.0 0.4 0.3

0.5 0.1 0.0

0.3 0.0 0.0

1.4 0.6 1.0

85.8 87.2 89.7

7.0 8.0 7.8

2.8 2.4 1.1

1.1 1.5 0.4

1.9 0.3 0.0

PAR NP1 NP2 PAR NP1 NP2

16.7 5.7 6.4

79.0 89.3 90.8

2.9 4.5 2.6

0.8 0.4 0.2

0.3 0.1 0.0

0.3 0.0 0.0

5.2 1.9 2.9

82.4 85.9 88.4

6.1 7.6 7.1

2.6 2.6 1.2

1.7 1.6 0.4

2.0 0.4 0.0
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