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Abstract. With increasing availability of high frequency Þnancial data as a back-

ground, various volatility measures and related statistical theory are developed in the

recent literature. This paper introduces the method of empirical likelihood to conduct

statistical inference on the volatility measures under high frequency data environments.

We propose a modiÞed empirical likelihood statistic that is asymptotically pivotal under

the inÞll asymptotics, where the number of high frequency observations in a Þxed time

interval increases to inÞnity. Our empirical likelihood approach is extended to be robust

to the presence of jumps and microstructure noise. We also provide an empirical likeli-

hood test to detect presence of jumps. Furthermore, we establish Bartlett correction, a

higher-order reÞnement, for a general nonparametric likelihood statistic. Simulation and

a real data example illustrate the usefulness of our approach.

1. Introduction

Realized volatility and its related statistics have become standard tools to explore the

behavior of high frequency Þnancial data and to evaluate Þnancial theoretical models

including stochastic volatility models. This increase in popularity has been propelled by

recent developments of probability and statistical theory and by the increasing availability

of high frequency Þnancial data (see, A•t-Sahalia and Jacod, 2014, for a review).

By employing the asymptotic framework so-called the inÞll asymptotics, where the

number of high frequency observations in a Þxed time interval (say, a day) increases to

inÞnity, Jacod and Protter (1998) and Barndor!-Nielsen and Shephard (2002) established

laws of large numbers and central limit theorems for realized volatility, which were ex-

tended to more general setups and statistics by Barndor!-Nielsenet al. (2006). Gon•alves

and Meddahi (2009) studied higher-order properties of the realized volatility statistic and

its bootstrap counterpart. Also various volatility estimation methods are developed to be

robust to the presence of jumps (e.g., Barndor!-Nielsen, Shephard and Winkel, 2006, and

Andersen, Dobrev and Schaumburg, 2012) and microstructure noise (e.g., Zhang, Myk-

land and A•t-Sahalia, 2005, Barndor!-Nielsenet al., 2008, and Jacodet al., 2009). Finally,

several testing methods for the presence of jumps are developed (e.g., Barndor!-Nielsen

and Shephard, 2006, and A•t-Sahalia and Jacod, 2009).

In this paper, we introduce the method of empirical likelihood (see, Owen, 2001, for a

review) to conduct statistical inference on the volatility measures under high frequency
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data environments. In particular, based on estimating equations for the volatility mea-

sures, such as the integrated volatility, modiÞed empirical likelihood statistics are pro-

posed and shown to be asymptotically pivotal under the inÞll asymptotics. Our empirical

likelihood approach is extended to be robust to the presence of jumps and microstructure

noise. The proposed statistics share desirable properties of the conventional empirical

likelihood, such as range preserving, transformation respecting, and data decided shape

for conÞdence region. We also provide an empirical likelihood test to detect presence

of jumps. Our empirical likelihood approach provides useful alternatives to the existing

Wald-type inference methods and jump tests. This is illustrated by simulation studies

and a real data example.

Another distinguishing feature of (conventional) empirical likelihood is that it admits

Bartlett correction, a higher-order reÞnement (DiCiccio, Hall and Romano, 1991). How-

ever, under the inÞll asymptotics, empirical likelihood is not Bartlett correctable even for

the constant volatility case. In order to explore further this issue, we consider a general

class of nonparametric likelihood based on Cressie and ReadÕs (1984) power divergence

family, which contains empirical likelihood, exponential tilting, and PearsonÕs! 2 as spe-

cial cases. In this general class of likelihood functions, we Þnd some members that admit

Bartlett correction under the constant and general non-constant volatility cases. In par-

ticular, we show that the second-order reÞnement to the orderO(n! 2) can be achieved.

This Bartlett correctability can be considered as a unique advantage of our nonparametric

likelihood approach.

The rest of the paper is organized as follows. In Section 2, we consider a benchmark

setup which excludes jumps and microstructure noise, construct the empirical likelihood

statistic, and study its Þrst-order asymptotic properties. In Section 3, we propose a jump

robust version of the empirical likelihood statistic. Also an empirical likelihood test to

detect the presence of jumps is presented. In Section 4, we propose a noise robust version

of the empirical likelihood statistic. In Section 5, we conduct second-order analysis for

the proposed statistic and establish the Bartlett correctability results. Sections 6 and 7

present some simulation results and real data example, respectively. All proofs of the

theorems are contained in the web appendix.

2. Benchmark case

In this section, we present our methodology in a benchmark setup, which excludes jumps

and microstructure noise. Jump and noise robust methods are considered in the following

sections. Here we consider a scalar continuous time process (typically a log-price)

dX
t

= µ
t

dt + "
t

dW
t

, (2.1)
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for t ! 0, whereµ is a drift process," is a volatility process, andW is a standard Brownian

motion. Suppose we observe high frequency returnsr
i

= X
i/n

" X (i! 1)/n measured over the

period [(i " 1)/n, i/n ] for i = 1, . . . , n. Although our methodology can be applied to other

functionals of " (see Remark 4 below), we focus on the integrated volatility# =
! 1

0 " 2
u

du

over a Þxed interval[0, 1] (say, a day or month).

As a nonparametric measure of volatility, the integrated volatility# has been drawing

considerable attention from researchers who face to high frequency Þnancial data. One

popular estimator of # is so-called the realized volatilityö# =
"

n

i=1 r 2
i

. It is known that

under certain conditions on the process (2.1),ö# is consistent for# and asymptotically

normal under the limit n # $ for increasingly Þnely sampled returns over the Þxed

interval [0, 1] (called the inÞll asymptotics) (e.g., Jacod and Protter, 1998, and Barndor!-

Nielsen and Shephard, 2002). In this section, we employ the following setup based on

Barndor!-Nielsen et al. (2006).

Assumption X. The processX deÞned on a Þltered probability space follows (2.1), where

µ is an adapted predictable locally bounded drift process, and" is an adapted cadlag

volatility process satisfying

"
t

= " 0 +
#

t

0
a"
u

du +
#

t

0
" "
u! dW

u

+
#

t

0
v"
u! dV

u

,

wherea" , " " , and v" are adapted cadlag processes,a" is predictable and locally bounded,

and V is a Brownian motion independent ofW.

This assumption is general enough to allow for intraday seasonality, long memory,

and correlation between" and W (called the leverage e!ect). Under this assumption,

Barndor!-Nielsen et al. (2006) showed thatö# is consistent and asymptotically normal
%

n(ö# " #)
$

öV

d# N (0, 1), (2.2)

as n # $ , where öV = 2n
3

"
n

i=1 r 4
i

. Based on this result, it is customary to construct

a Wald-type conÞdence interval for#. Also, Gon•alves and Meddahi (2009) proposed

bootstrap inference methods on#. In this paper, we introduce the empirical likelihood

approach and propose an alternative inference method for#.

Based on the estimating equation
"

n

i=1 (nr 2
i

" #) = 0 for the realized volatility ö#, the

empirical likelihood function for # can be written as

EL (#) = max

%
n&

i=1

nw
i

'
'
'
'
'

n(

i=1

w
i

(nr 2
i

" #) = 0 , w
i

! 0,
n(

i=1

w
i

= 1

)

. (2.3)
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By the Lagrange multiplier argument, the dual form of (2.3) is written as

EL (#) =
n&

i=1

1
1 + $(nr 2

i

" #)
,

where$ solves 1
n

"
n

i=1
nr

2
i ! ✓

1+ �(nr2
i ! ✓) = 0. In practice, we employ this dual representation to

computeEL (#).

Let R
q

= nq/2! 1
"

n

i=1 |r
i

|q. The Þrst-order asymptotic distribution ofEL (#) is obtained

as follows. See our web appendix for the proof.

Theorem 1. Suppose Assumption X holds true. Asn # $ ,

T
EL

(#) =
3
2

*
1 "

R2
2

R4

+
{" 2 logEL (#)} d# ! 2

1.

Remark 1. Based on this theorem, the100(1" %)% asymptotic conÞdence interval for

the integrated volatility # is given by CI ↵

EL

= { # : T
EL

(#) & ! 2
1,↵} , where ! 2

1,↵ is the

(1 " %)-th quantile of the ! 2
1 distribution.

Remark 2. It should be noted that under the inÞll asymptotics, the conventional em-

pirical likelihood statistic (i.e., " 2 logEL (#)) does not converge to the! 2 distribution.

In other words, the empirical likelihood statistic is not internally studentized. This is

because the asymptotic variance of the term1#
n

"
n

i=1 (nr 2
i

" #) does not match to the

limit of 1
n

"
n

i=1 (nr 2
i

" #)2 under the inÞll asymptotics. The correction term3
2

,
1 " R

2
2

R4

-
is

introduced to recover the studentization.

Remark 3. We now discuss advantages of our empirical likelihood conÞdence interval

CI ↵

EL

compared to the conventional Wald-type conÞdence interval (i.e.,ö#± z
↵/2

.
öV /n for

the (1 " %/2)-th quantile z
↵/2 of N (0, 1)). First, CI ↵

EL

may be asymmetric around the

point estimate ö#, and its shape is ßexibly determined by the data. Second,CI ↵

EL

never

contains negative values (called range preserving property). On the other hand, the lower

endpoint of the Wald conÞdence interval may be negative. Third,CI ↵

EL

is transformation

respecting (i.e., the conÞdence interval off (#) is given by { f (#) : T
EL

(#) & ! 2
1,↵} ).

However, the Wald conÞdence interval is not invariant for transformations of# and may

yield di!erent conclusions.

Remark 4. Here we discuss the empirical likelihood method for the integrated volatility

# =
! 1

0 " 2
u

du. Our method can be modiÞed for other objects related to" . For example,

suppose we are interested in thep-th power variation #
p

=
! 1

0 " p

u

du for p > 0. By

Barndor!-Nielsen et al. (2006),#
p

is consistently estimated byö#
p

= µ! 1
p

n! 1+ p/2
"

n

i=1 |r
i

|p,

whereµ
p

= E|z|p with z ' N (0, 1). Based on the estimating equation forö#
p

, the empirical
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likelihood function for #
p

can be constructed as

EL (#
p

) = max

%
n&

i=1

nw
i

'
'
'
'
'

n(

i=1

w
i

(µ! 1
p

np/2|r
i

|p " #
p

) = 0 , w
i

! 0,
n(

i=1

w
i

= 1

)

.

The asymptotic property of this statistic is established in the same manner (with a dif-

ferent correction term for asymptotic pivotalness). Also, in the next section, we consider

empirical likelihood for multipower variation to conduct jump robust inference.

3. Jump robust inference and test for jumps

In this section, we propose a jump robust version of the empirical likelihood statistic

and test for presence of jumps. The empirical likelihood function (2.3) proposed in the last

section is constructed from the estimating equation for the realized volatilityö# =
"

n

i=1 r 2
i

.

Our approach can be generalized to other estimating equations for the integrated volatility

#. In particular, it is useful to consider the multipower variation (e.g., Barndor!-Nielsen,

Shephard, 2004, and Barndor!-Nielsen, Shephard and Winkel, 2006)

ö#p =
n(

i= m

|r
i! m+1 |p1 á á á |r

i

|pm ,

for a vector p = ( p1, . . . , p
m

) of positive numbers with p1 + á á á+ p
m

= 2. Indeed the

realized volatility is a special case of the multipower variation (withm = 1 and p1 = 2).

A remarkable property of the multipower variation is: if pÕs are reasonably small, then

the estimator ö#p enjoys certain robustness against jumps in the observed process.

To be precise, consider the process

Y
t

= X
t

+ J
t

, (3.1)

for t ! 0, where X is generated by the continuous time process in (2.1) satisfying As-

sumption X, and J is a jump process, which is assumed to be a LŽvy process with no

continuous component and index

%= inf
/

a ! 0 :
#

[! 1,1]
|x|a!( dx) < $

0
( [0, 2],

for the LŽvy measure! . The LŽvy process is a convenient and general class of processes

to accommodate both Þnite and inÞnite activity jumps. Barndor!-Nielsen, Shephard

and Winkel (2006, Theorem 1) showed that the limiting distribution of the multipower

variation ö#p remains the same regardless of presence of the jump processJ as far as

% < 1,
%

2 " %
& min{ p1, . . . , p

m

} & max{ p1, . . . , p
m

} < 1. (3.2)

A popular choice ofp for the jump robust estimator is the tripower variation (i.e.,m = 3

and p1 = p2 = p3 = 2/ 3).
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Suppose we observe high frequency returns÷r
i

= Y
i/n

" Y(i! 1)/n measured over the period

[(i " 1)/n, i/n ] for i = 1, . . . , n. Let cp =
1

m

l=1 µ
pl , where µ

p

= E|z|p with z ' N (0, 1).

Based on the estimating equation forö#p , we deÞne the jump robust empirical likelihood

function for # as

2EL (#) = max

%
n&

i=1

nw
i

'
'
'
'
'

n(

i=1

w
i

(n|÷r
i! m+1 |p1 á á á |÷r

i

|pm " cp #) = 0 , w
i

! 0,
n(

i=1

w
i

= 1

)

.

(3.3)

Let ÷R2 = ö#p and ÷R4 = n
"

n

i= m

|÷r
i! m+1 |2p1 á á á |÷r

i

|2pm . Also deÞne the constant

dp =
m&

l=1

µ2pl " (2m " 1)
m&

l=1

µ2
pl

+ 2
m! 1(

k=1

k&

l=1

µ
pk

m&

l= m! k+1

µ
pl

m! k&

l=1

µ
pl + pl + k .

The Þrst-order asymptotic property of the jump robust empirical likelihood statistic2EL (#)

is obtained as follows.

Theorem 2. SupposeY is generated by (3.1). Assumep1 + á á á+ p
m

= 2 and (3.2). Then

÷T
EL

(#) =
c2p

dp

3

1 "
÷R2

2

÷R4

4

{" 2 log2EL (#)} d# ! 2
1,

as n # $ . This result does not change even ifJ = 0 (the case of no jump).

Remark 5. This theorem says that the empirical likelihood statistic ÷T
EL

(#) has the

limiting distribution that is invariant to the presence of jumps. Similar to the benchmark

case, we introduce the correction termc2p

dp

,
1 "

÷
R

2
2

÷
R4

-
to achieve asymptotic pivotalness.

The jump robust conÞdence interval for# is obtained in the same manner. We note that

the empirical likelihood function (2.3) for the benchmark case (i.e.,m = 1 and p1 = 2)

does not satisfy the condition in (3.2).

We now consider hypothesis testing for presence of jumps in the observed process (i.e.,

J = 0). The basic idea is to compare the two estimating equations for the realized volatil-

ity ö# and multipower variation ö#p . More precisely, we propose the following empirical

likelihood statistic

2EL
J

= max

%
n&

i=1

nw
i

'
'
'
'
'

n(

i=1

w
i

(|÷r
i! m+1 |p1 á á á |÷r

i

|pm " cp ÷r 2
i

) = 0 , w
i

! 0,
n(

i=1

w
i

= 1

)

.

(3.4)

The rationale of the above moment restriction is explained as follows. When there is no

jump in the process (i.e.,J = 0), both the multipower variation ö#p (with p1+ á á á+ p
m

= 2)

and realized volatility cp
"

n

i=1 ÷r 2
i

multiplied by cp are consistent forcp #. Therefore, the

moment function
"

n

i= m

(|÷r
i! m+1 |p1 á á á |÷r

i

|pm " cp ÷r 2
i

) converges to zero and the statistic2EL
J

tends to be small. On the other hand, in the presence of jumps, the moment function

typically diverges and so does the statistic.
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Let c÷p l = ( µ
pl +2 /µ

pl )
1

m

k=1 µ
pk . The Þrst-order asymptotic property of the empirical

likelihood statistic 2EL
J

for the presence of jumps is obtained as follows.

Theorem 3. SupposeY = X (i.e., no jump in the process), whereX satisÞes Assumption

X. Also assume (3.2). Then

÷TJ

EL

=
c2p + 3c2

p " 2cp c÷p

dp " 2
"

m

l=1 cp (c÷p l " cp ) + 2 c2
p

{" 2 log2EL
J

} d# ! 2
1,

as n # $ . On the other hand, ifY is generated by (3.1), then the statistic÷TJ

EL

diverges.

4. Noise robust inference

Our empirical likelihood approach presented above can be also modiÞed to be robust to

the presence of microstructure noise. In particular, we adopt the pre-averaging approach

of Jacodet al. (2009), and construct empirical likelihood based on block averages of the

original data. In this section, let us consider the following setup.

Assumption XÕ. Observations{ Z
i/n

} n

i=1 are generated from

Z
i/n

= X
i/n

+ U
i/n

,

where{ X
i/n

} n

i=1 is drawn from the latent processX satisfying Assumption X, and{ U
i/n

} n

i=1

is an i.i.d. sequence with zero mean and Þnite eighth moments and is independent ofX .

We are interested in the integrated volatility# =
! 1

0 " 2
u

du of the latent processX . It is

known that due to the presence of the noise termU
i/n

, the conventional realized volatility

based on{ Z
i/n

} n

i=1 is inconsistent for#.

In this setup, Jacodet al. (2009) developed a noise robust estimator for# based on

the so-called pre-averaging approach. A simpliÞed version of their estimator is described

as follows. First, we transform the observed data{ Z
i/n

} n

i=1 into block averagesøZ
i/n

=

K ! 1
"

K! 1
j=0 Z(i+ j)/n for i = 0, 1, . . . , n " K + 1. Second, based on the block averages,

compute (half of) the return data ør
i

= ( øZ(i+ K)/n " øZ
i/n

)/ 2 for i = 1, . . . , n " K + 1.

Finally, we compute the noise robust estimator as

ø# =
6
K

nK(

i=1

ør 2
i

"
3

2K 2
ö#, (4.1)

where n
K

= n " 2K + 2 and ö# =
"

n

i=1 (Z
i/n

" Z(i! 1)/n)2 is the conventional realized

volatility estimator by using the original data. Intuitively, compared to the original Z
i/n

,

the variance of the noise in the block averageøZ
i/n

is reduced by a factor of1/K . Thus,

the volatility estimator ø# based on the block averages are expected to be less sensitive to

the presence of the noise term. The second term in (4.1) is a bias correction term. Note

that the conventional estimator ö# is inconsistent for# under Assumption XÕ. Jacodet al.

(2009) showed thatø# is consistent for# and asymptotically normal with the rate ofn! 1/4.
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By utilizing the estimating equation for (4.1), the noise robust empirical likelihood

function can be constructed as

EL (#) = max

%
nK&

i=1

n
K

w
i

'
'
'
'
'

nK(

i=1

w
i

(g
Ki

" #) = 0 , w
i

! 0,
nK(

i=1

w
i

= 1

)

,

where

g
Ki

=
6n

K

K
ør 2
i

"
3

2K 2
ö#.

Choose the block length asK = 1
2cn1/2 + o(n1/4) for somec > 0. Then deÞne øR

q

=

nq/2! 1
K

"
nK
i=1 |ør

i

|q and

R"
4 =

4 á124" 22

3c

nK(

i=1

ør 4
i

+
4

c3n
(123" 12 " 124" 22)

nK ! 2K(

i=1

ør 2
i

i+4 K! 1(

j= i+2 K

(Z
j/n

" Z(j! 1)/n)2

+
1

c3n
(122" 11 " 2 á123" 12 + 124" 22)

n! 2(

i=2

(Z
i/n

" Z(i! 1)/n)2(Z(i+2) /n " Z(i+1) /n)2,

with " 11 = 1
6, " 12 = 1

96, and " 22 = 151
80640. The object R"

4 appeared in Jacodet al. (2009,

eq. (3.7)) as an estimator of the asymptotic variance ofø#. Based on this notation, the

Þrst-order asymptotic distribution of EL (#) is obtained as follows.

Theorem 4. Suppose Assumption XÕ holds true. Asn # $ ,

øT
EL

(#) =
36n1/2

n
K

K 2

øR4 " øR2
2

R"
4

{" 2 logEL (#)} d# ! 2
1.

As pointed out by Jacodet al. (2009), the pre-averaging estimatorø# can be interpreted

as a realized kernel estimator in Barndor!-Nielsenet al. (2008). Similarly, our empirical

likelihood statistic øT
EL

(#) using block averages may be interpreted as the block empirical

likelihood statistic by Kitamura (1997) for weakly dependent time series data. However,

here data blocking is employed to reduce the e!ect of microstructure noise.

In this section, we impose Assumption XÕ and consider the case of additive and i.i.d.

noise for brevity. We conjecture that it is possible to extend our approach to more general

setups, such as weakly dependent noise (A•t-Sahalia, Mykland and Zhang, 2011), non-

additive noise (Jacodet al., 2009), and endogenous time (Li, Zhang and Zheng, 2013) by

modifying the moment function.

5. General nonparametric likelihood and second-order asymptotics

In this section, we generalize the construction of nonparametric likelihood for the in-

tegrated volatility by using the power divergence family (Cressie and Read, 1984). This

family is general enough to accommodate not only the empirical likelihood considered

so far, but also other existing likelihood concepts. Based on this general family of non-

parametric likelihood functions, we investigate second-order asymptotic properties of the
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nonparametric likelihood statistics. In particular, we show that adequate choices of tuning

constants lead to Bartlett correctability of the nonparametric likelihood statistic.

5.1. General nonparametric likelihood. We Þrst consider the benchmark setup in

Section 2. As a general family of nonparametric likelihood functions, we employ the

power divergence family (Cressie and Read, 1984)

L
�

(w1 . . . , w
n

) =

5
67

68

2
�(�+1)

"
n

i=1 { (nw
i

)�+1 " 1} if & )= " 1, 0,

" 2
"

n

i=1 log(nw
i

) if & = " 1,

2n
"

n

i=1 w
i

log(nw
i

) if & = 0.

Based onL
�

(w1 . . . , w
n

) and using the estimating equation for the realized volatility
ö# =

"
n

i=1 r 2
i

, we specify the likelihood function for the integrated volatility# as

'
�,�

(#) = L
�

(w
�,1 . . . , w

�,n

), (5.1)

where the weightsw
�,1, . . . , w

�,n

solve

min
w1 ,...,wn

L
�

(w1 . . . , w
n

), subject to
n(

i=1

w
i

= 1,
n(

i=1

w
i

(nr 2
i

" #) = 0 . (5.2)

Note that the nonparametric likelihood function '
�,�

(#) contains two tuning constants,

& and ( . In the literature, it is commonly assumed& = ( . For example, the empirical

likelihood function discussed so far corresponds to& = ( = " 1, and PearsonÕs! 2 cor-

responds to& = ( = " 2. Also Baggerly (1998) showed that in the class of likelihood

functions with & = ( , only empirical likelihood is Bartlett correctable for the mean of

i.i.d. data. On the other hand, Schennach (2005, 2007) considered the case of& )= (

and studied the exponentially tilted empirical likelihood statistic with & = " 1 and ( = 0

from Bayesian and frequentist perspectives. In the current setup where we employ the

inÞll asymptotics, it is crucial to consider the general class of'
�,�

(#) indexed by& and (

to achieve Bartlett correction. Below we will show that even if the volatility process" is

constant, the empirical likelihood statistic (i.e.,'
�,�

(#) with & = ( = " 1) is not Bartlett

correctable under the inÞll asymptotics, and the constants& and ( need to be chosen

separately to achieve Bartlett correction.

By the Lagrange multiplier argument, the solution of (5.2) is (see, Baggerly, 1998)

w
�,i

=
1
n

(1 + ) + $(nr 2
i

" #))
1
! , (5.3)

for ( )= 0 and w
�,i

= 1
n

) exp($(nr 2
i

" #)) for ( = 0, where) and $ solve

1
n

n(

i=1

(1 + ) + $(nr 2
i

" #))
1
! = 1,

1
n

n(

i=1

(1 + ) + $(nr 2
i

" #))
1
! (nr 2

i

" #) = 0 , (5.4)
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for ( )= 0 and solve1
n

"
n

i=1 ) exp($(nr 2
i

" #)) = 1 and 1
n

"
n

i=1 ) exp($(nr 2
i

" #))( nr 2
i

" #) = 0

for ( = 0. In practice, we use (5.3) to compute the likelihood function in (5.1).

The Þrst-order asymptotic distribution of '
�,�

(#) is obtained as follows.

Theorem 5. Suppose Assumption X holds true. For each&, ( ( R, as n # $ ,

T
�,�

(#) =
3
2

*
1 "

R2
2

R4

+
'
�,�

(#) d# ! 2
1.

Note that the Þrst-order asymptotic distribution of the statistic T
�,�

(#) is identical

to the one in Theorem 1 for empirical likelihood. Moreover, the Þrst-order asymptotic

distribution does not depend on the tuning constants& and ( . In the next subsection,

we study second-order asymptotic properties of the statisticT
�,�

(#) to compare di!erent

choices of& and ( . For the Þrst-order asymptotics, similar modiÞcations can be applied

to T
�,�

(#) to be robust to jumps and microstructure noise.

5.2. Second-order asymptotics. The Þrst-order asymptotic theory for the nonpara-

metric likelihood statistic T
�,�

(#) is silent about the choice of tuning constants& and

( . In order to address this issue, we investigate the second-order asymptotic property

of T
�,�

(#). Following the conventional recipe put forward in DiCiccio, Hall and Romano

(1991) and Baggerly (1998), among others, we Þrst derive the signed root of the nonpara-

metric likelihood statistic, and then evaluate the cumulants of the signed root. Based

on these cumulants, we seek values of& and ( at which the third and fourth cumulants

vanish at su"ciently fast rates to achieve Bartlett correction. Details are provided in the

web appendix (proofs of Theorems 6 and 7).

For the second-order analysis, we add the following assumption.

Assumption H. The processX follows (2.1) with µ = 0 and " is independent ofW and

bounded away from zero.

This assumption is restrictive since it rules out the drift term and leverage e!ect.

Gon•alves and Meddahi (2009, p. 289) imposed a similar but stronger assumption for

higher-order analysis of the bootstrap inference. Although the drift termµ is asymptoti-

cally negligible at the Þrst-order, it will appear in the higher-order terms and complicates

our second-order analysis. Ruling out the leverage e!ect (i.e., independence between

" and W) also simpliÞes our second-order analysis since it allows to condition on the

path of " to compute the cumulants of the nonparametric likelihood statistic. Relaxing

Assumption H for the second-order analysis is beyond the scope of this paper.

To simplify the exposition of our results, Þrst we consider the simple case where the

volatility is constant ( "
t

= " over t ( [0, 1]). In this setting, the higher order properties

of the nonparametric likelihood statistic are presented in the next theorem.
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Theorem 6. Suppose Assumptions X and H hold true and"
t

= " over t ( [0, 1]. Then,

for & = " 1 and ( = " 1 ±
#

5
3 , the nonparametric likelihood statisticT

�,�

(#) is Bartlett

correctable, i.e., conditionally on the path of" ,

Pr
9

T
�,�

(#) & ! 2
1,↵(1 + 3n! 1)

:
= 1 " %+ O(n! 2).

This theorem says that when we choose& = " 1 and ( = " 1 ±
#

5
3 , the nonparametric

likelihood test based onT
�,�

(#) using the adjusted critical value! 2
1,↵(1 + 3n! 1) provides

a reÞnement to the orderO(n! 2) on the null rejection probability error. It should be

noted that the empirical likelihood statistic (i.e., T
�,�

(#) with & = ( = " 1) is not Bartlett

correctable because the fourth cumulant of the signed root does not vanish at the order

of O(n! 4) (see the proof of Theorem 6 in the web appendix). Also note that the Bartlett

factor 1 + 3n! 1 does not contain any unknown object.

Finally, we drop the assumption of constant volatility and consider the general case.

Although the computations are quite cumbersome, it is possible to estimate some tuning

constants ö& and ö( such that the nonparametric likelihood statistic Tö�,ö�(#) is Bartlett

correctable. The higher order properties of the nonparametric likelihood statistic in the

general case are presented in the next theorem.

Theorem 7. Suppose Assumptions X and H hold true. Then, forö&, ö( , and a (deÞned

in (A.12), (A.15), and (A.16), respectively, in the web appendix), the nonparametric

likelihood statistic Tö�,ö�(#) is Bartlett correctable, i.e., conditionally on the path of" ,

Pr
;

Tö�,ö�(#) & ! 2
1,↵(1 + an! 1)

<
= 1 " %+ O(n! 2).

This theorem says that even for the general case, the nonparametric likelihood statistic

Tö�,ö�(#) with the estimated tuning constants ö& and ö( using the adjusted critical value

! 2
1,↵(1 + an! 1) provides a reÞnement to the orderO(n! 2) on the null rejection probability

error. In the general case, the Bartlett factora can be estimated by the method of

moments or wild bootstrap as in Gon•alves and Meddahi (2009). For the one-sided test,

Gon•alves and Meddahi (2009) obtained second-order reÞnement by the bootstrap to the

order o(n! 1/2). In contrast, we consider the two-sided test and show that our Bartlett

correction to the nonparametric likelihood statistic can yield a reÞnement to the order

O(n! 2).

6. Simulation

This section conducts simulation studies in order to evaluate Þnite sample properties

of the empirical likelihood methods presented above.
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6.1. Simulation 1: Benchmark case. We adopt simulation designs considered in

Gon•alves and Meddahi (2009). In particular, we consider the stochastic volatility model

dX
t

= µ
t

dt + "
t

*
* 1dW1t + * 2dW2t +

.
1 " * 2

1 " * 2
2dW3t

+
,

whereW1t, W2t, and W3t are independent standard Brownian motions.

First, we consider a general case (i.e. with drift and leverage e!ects) to illustrate

the Þrst-order asymptotic theory in Theorem 1 for the nonparametric likelihood statistic

T
�,�

(#). We consider two di!erent models for the volatility process"
t

. The Þrst model

for "
t

is the GARCH(1,1) di!usion

d" 2
t

= 0.035(0.636" " 2
t

)dt + 0.144" 2
t

dW1t.

The second model is the two-factor di!usion model

"
t

= f (" 1.2 + 0.04" 2
1t + 1.5" 2

2t),

whered" 2
1t = " 0.00137" 2

1tdt + dW1t, d" 2
2t = " 1.386" 2

2tdt + (1 + 0 .25" 2
2t)dW2t, and

f (x) =

%
exp(x) x & x0

exp(x0)
#
x0

$
x0 " x2

0 + x2 x > x 0

with x0 = log(1.5). We allow for drift and leverage e!ects by settingµ
t

= 0.0314,

* 1 = " 0.576, and * 2 = 0 for GARCH(1,1) models, andµ
t

= 0.030 and * 1 = * 2 = " 0.30

for the two-factor di!usion model.

We compare three methods to construct two-sided 95% conÞdence intervals: (i) the

Wald-type interval (Wald), (ii) empirical likelihood (EL) and (iii) nonparametric likeli-

hood (NL) with & = " 1 and ( = " 1 +
#

5
3 .

Table 1 gives the actual coverage rates of all the intervals across 10,000 replications for

Þve di!erent sample sizes:n = 1152, 288, 48, 24, and 12, corresponding to 1.25-minute, 5-

minute, half-hour, 1-hour, and 2-hour returns. The Wald-type intervals tend to undercover

for both models. The degree of undercoverage is especially large when sampling is not

too frequent. The two-factor model implies overall larger coverage distortions than the

GARCH(1,1) model. The nonparametric likelihood intervals (including EL intervals)

outperform the Wald-type intervals in all cases.

As we discussed in Remark 3, the nonparametric likelihood intervals are range preserv-

ing but the Wald-type conÞdence interval may contain negative values. To illustrate this

point, we report the frequencies of negative left endpoints of the Wald-type conÞdence

intervals in Table 2. This shows that the Wald-type intervals tend to contain negative

values particularly for small sample sizes.

Second, we consider two special cases to illustrate the second-order reÞnements pro-

posed in the last section: (a) a benchmark model where volatility is constant, and (b)

12



models where volatility is not constant (with no drift term and no leverage e!ect). Bartlett

corrected nonparametric likelihood (BNL) with the Bartlett correction factor 1 + 3/n are

compared with the above methods. Table 3 shows that the Bartlett corrected nonpara-

metric likelihood intervals outperform all the other intervals even when there is stochastic

volatility despite the fact that this correction does not theoretically provide an asymptotic

reÞnement under the non-constant volatility case.

6.2. Simulation 2: Test for jump. In this subsection we evaluate Þnite sample proper-

ties of the nonparametric likelihood tests for the presence of jumps. We adopt simulation

designs considered in Dovonon, Gon•alves, Hounyo and Meddahi (2014). In particular,

we consider the two-factor di!usion model with diurnality e!ects.

d logS
t

= µ
t

dt + "
u,t

"
t

(* 1dW1t + * 2dW2t +
.

1 " * 2
1 " * 2

2dW3t) + dJ
t

,

"
u,t

= 0.88929198 + 0.75 exp(" 10t) + 0 .25 exp(" 10(1" t)) ,

"
t

= f (" 1.2 + 0.04" 2
1t + 1.5" 2

2t),

whered" 2
1t = " 0.00137" 2

1tdt + dW1t, d" 2
2t = " 1.386" 2

2tdt + (1 + 0 .25" 2
2t)dW2t, and

f (x) =

%
exp(x) x & x0

exp(x0)
#
x0

$
x0 " x2

0 + x2 x > x 0

with x0 = log(1.5). The process"
u,t

models the diurnal U-shaped pattern in intraday

volatility. When "
u,t

= 1 for t ( [0, 1], the return process reduces to the simple case of

no diurnally e!ects. J
t

is a Þnite activity jump process modeled as a compound Poisson

process with constant jump intensity$ and random jump size distributed asN (0, " 2
jump

).

Under the null hypothesis of no jumps in the return process, we set" 2
jump

= 0. Under the

alternative hypothesis, we set$ = 0.058and " 2
jump

= 1.7241.

We compare three methods to test for jumps: (i) the Wald-type test (Wald),1 (ii)

(signed root) empirical likelihood (EL) and (iii) (signed root) nonparametric likelihood

(NL) with & = " 1 and ( = " 1 +
#

5
3 .2 We consider Þve di!erent sample sizes:n = 1152,

576, 288, 96, and 48 corresponding to 1.25-minute, 2.5-minute, 5-minute, 15-minute, and

half-hour returns. All results are based on 1,000 Monte Carlo replications.

Table 4 reports the rejection frequencies of tests at the 5% nominal signiÞcance level

for both cases with and without diurnally e!ects. The Wald-type test tends to over-

reject for the both cases, the degree of which is especially large when sampling is not too

1We deÞne the statisticTn =
!

n (RVn" BV n)%
öVn

where RVn =
" n

i =1 r 2
i , BVn = 1

µ 2
1

" n
i =2 |r i ||r i " 1| and öVn =

{ (µ" 4
1 + 2µ" 2

1 " 3) " 2} n
µ 3

4/3

" n
i =3 |r i |4/ 3|r i " 1|4/ 3|r i " 2|4/ 3. Then, the test rejects the null of no jumps at

signiÞcance level! when Tn > z 1" ! wherez1" ! is the 100(1" ! )% percentile of the N (0, 1) distribution.
2We deÞne the signed root of nonparametric likelihood ratio statistic asNL # = sgn(RVn " T Vn )ø"1/ 2

",# where
T Vn = 1

µ 3
2/3

" n
i =3 |r i |2/ 3|r i " 1|2/ 3|r i " 2|2/ 3. Then, the test rejects the null of no jumps at signiÞcance level

! when NL # > z 1" ! where z1" ! is the 100(1" ! )% percentile of the N (0, 1) distribution.
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frequent. In all cases, the nonparametric likelihood tests (including EL tests) shows better

performance in the null rejection frequencies. The rejection frequencies varies between

7.20% (n = 1152) and 17.27% (n = 48) for Wald, while it varies between 5.10% (n=1152)

and 8.54% (n = 48) for EL and between 4.68% (n = 1152) and 8.83% (n = 48) for NL.

We also analyze the power properties of the proposed tests under the alternative hy-

pothesis. We compare the calibrated powers of three tests (i.e., the rejection frequencies of

these tests where the critical values are given by the Monte Carlo 95% percentiles of these

test statistics under the data generation process satisfying the null hypothesis). Table 5

shows that the nonparametric likelihood tests is slightly less powerful than Wald. Since

the nonparametric likelihood tests have better null rejection properties than Wald, these

power properties characterize a tradeo! between the null rejection and power properties

of Wald-type and nonparametric likelihood tests.

6.3. Simulation 3: Noise robust test. In this subsection we evaluate Þnite sample

properties of the noise robust nonparametric likelihood tests. We adopt simulation designs

considered in Jacodet al. (2009). In particular, we consider two di!erent models for the

X processes. The Þrst model is the constant volatility model

X
t

= X 0 + "W
t

,

with " = 0.2/
%

252. The second model is the stochastic volatility model of Heston (1993):

dX
t

= ( µ " +
t

/ 2)dt + "
t

dB
t

,

d+
t

= , (%" +
t

)dt + &+1/2
t

dW
t

,

where+
t

= " 2
t

, µ = 0.05/ 252, , = 5/ 252, %= 0.04/ 252, & = 0.05/ 252and Corr (B, W ) =

" 0.5. As for the microstructure noise, we assume thatU
t

is i.i.d. and followsN (0, 0.00052).

We compare three methods to construct two-sided 95% conÞdence intervals: (i) the

Wald-type interval (Wald), 3 (ii) empirical likelihood (EL) and (iii) nonparametric likeli-

hood (NL) with & = " 1 and ( = " 1 +
#

5
3 . For the choice of the block lengthK , we used

K = * n

1/ 2

6 + so that c , 1
3, following Jacodet al. (2009).

Table 6 gives the actual coverage rates of all the intervals across 10,000 replications for

eight di!erent sample sizes:n = 23400, 11700, 7800, 4680, 1560, and 780. The Wald-type

intervals tend to undercover for both models. The degree of undercoverage is especially

large when sampling is not too frequent. The nonparametric likelihood intervals (including

EL intervals) outperform the Wald-type interval in all cases.

3The 100(1" ! )% asymptotic conÞdence interval for the integrated volatility # is given by CI !
W = { # :

Tn (#) & $2
1,! } , where Tn (#) = n 1/2 ( ø$" $)2

R !
4

and $2
1,! is the (1 " ! )-th quantile of the $2

1 distribution.
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7. Real data example

We consider tick prices obtained from TickData consisting of intra-day quotes of Alcoa,

American Express, Baxter, Citigroup, Dow, Gilead, Goldman Sachs, Intel Corporation,

Met, Microsoft, Nike, PÞzer, Verizon and Yahoo from January 2, 2001 to November 15,

2010, which corresponds to 2472 trading days.

Table 7 reports the mean and standard deviation of daily returns based on 5-min intra-

day returns. We can observe common features across assets belonging to the same market

segment. Negative returns are likely linked to the extraordinary events of the recent

Þnancial crisis in 2008-9. Furthermore, Table 8 reports the percentage of days identiÞed

with jumps for the period under investigation. As in the Monte Carlo analysis presented in

the previous section, we consider three methods to test for jumps: (i) the Wald-type test

(Wald), (ii) (signed root) empirical likelihood (EL), and (iii) (signed root) nonparametric

likelihood (NL) with & = " 1 and ( = " 1 +
#

5
3 . In line with the Monte Carlo Þndings,

we note that the Wald test tends to over detect the jumps. Indeed, the percentage of

days identiÞed with jumps is always larger than21%. EL and NL implies very similar

empirical Þndings. Using nonparametric likelihood procedures, the percentage of days

identiÞed with jumps is always smaller than13%.

Appendix A. Tables

n Wald EL NL Wald EL NL
GARCH(1,1) di!usion Two-factor di!usion

12 80.83 84.80 84.48 73.24 78.45 78.02
24 86.97 90.34 90.03 80.61 85.65 85.23
48 90.41 92.76 92.46 85.76 89.38 89.04

288 94.55 94.98 94.92 93.52 94.50 94.35
1152 94.72 94.83 94.79 94.91 95.31 95.22

Table 1. Coverage probabilities of nominal 95% conÞdence intervals for
integrated volatility with leverage and drift
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95% 99% 99.9% 95% 99% 99.9%
n GARCH(1,1) di!usion Two-factor di!usion

12 80.64 99.85 100 91.86 99.96 100
24 6.94 43.60 95.44 40.61 79.32 99.02
48 0.01 0.47 7.21 8.75 25.59 58.14

288 0 0 0 0 0.04 0.23
1152 0 0 0 0 0 0

Table 2. Frequencies (measured by percentages) of negative left endpoints
of 95%, 99%, and 99.9% Wald conÞdence intervals for integrated volatility
with leverage and drift

n Wald EL NL BNL
Constant volatility

12 81.20 85.18 84.77 87.46
24 87.63 90.66 90.35 92.00
48 91.04 93.54 93.14 94.08

288 94.24 94.85 94.78 94.89
1152 95.27 95.39 95.34 95.40

GARCH(1,1) di!usion
12 81.39 85.29 85.02 87.73
24 87.51 90.89 90.61 92.04
48 90.98 93.51 93.19 93.89

288 94.44 94.97 94.87 94.97
1152 95.07 95.18 95.14 95.18

Two-factor di!usion
12 73.74 77.97 77.63 80.87
24 80.90 85.72 85.33 87.06
48 86.05 86.69 89.45 90.32

288 92.83 94.08 93.95 94.08
1152 94.22 95.04 94.99 95.02

Table 3. Coverage probabilities of nominal 95% conÞdence intervals for
integrated volatility with no drift and no leverage
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n Wald EL NL Wald EL NL
without diurnal e!ects with diurnal e!ects

48 17.27 8.54 8.83 16.24 7.82 8.04
96 13.34 6.79 6.98 12.56 6.57 6.80

288 9.83 5.94 6.08 9.76 5.70 5.80
576 8.70 5.79 5.85 8.58 5.59 5.42

1152 7.53 5.38 5.27 7.20 5.10 4.68

Table 4. Rejection frequencies of tests at 5% level

n Wald EL NL Wald EL NL
without diurnal e!ects with diurnal e!ects

48 78.40 72.59 72.59 75.86 68.05 68.23
96 84.93 80.94 80.94 82.75 75.86 76.22

288 90.19 86.75 86.93 87.47 83.12 83.30
576 92.01 88.92 89.65 91.28 85.66 85.66

1152 93.10 90.38 90.74 91.65 88.38 88.56

Table 5. Calibrated power

n Wald EL NL Wald EL NL
constant volatility Heston Model

780 85.79 89.33 89.18 85.41 89.52 89.30
1560 90.41 92.40 92.28 91.36 93.55 93.33
4680 93.19 94.40 94.26 94.06 95.26 95.15
7800 93.84 94.53 94.46 94.88 95.50 95.41

11700 94.34 95.19 95.11 95.18 95.74 95.66
23400 94.78 95.26 95.22 95.54 95.79 95.77

Table 6. Coverage probabilities of nominal 95% conÞdence intervals for
integrated volatility
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Mean- 10! 4 SD- 10! 4

Alcoa -6.17 215.13
American Express 3.48 201.84
Baxter 3.16 135.96
Citigroup -1.82 266.59
Dow 4.37 184.85
Gilead -7.68 207.68
Goldman Sachs 2.67 200.02
Intel Corporation -2.12 195.60
Met -5.90 216.37
Microsoft -5.47 153.43
Nike 7.36 149.27
PÞzer -6.70 139.92
Verizon 7.44 148.23
Yahoo -3.69 249.70

Table 7. Mean and standard deviation of daily returns based on 5-min
intra-day returns for the period 2001-2010.

Wald EL NL
Alcoa 23.68 8.70 9.95
American Express 22.15 8.07 9.18
Baxter 25.29 9.90 11.21
Citigroup 24.32 10.87 12.04
Dow 25.13 9.74 11.01
Gilead 23.64 7.16 8.28
Goldman Sachs 21.59 5.68 6.67
Intel Corporation 22.99 8.45 9.87
Met 25.68 11.49 12.60
Microsoft 23.51 9.82 11.03
Nike 24.80 8.90 9.86
PÞzer 23.11 10.63 12.04
Verizon 24.77 8.66 9.94
Yahoo 25.25 9.98 11.13

Table 8. Percentage of days identiÞed with jumps for the period2001-2010.
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WEB APPENDIX TO ÒEMPIRICAL LIKELIHOOD FOR HIGH
FREQUENCY DATAÓ

Abstract. In this appendix, we present proofs of the theorems in the paper.

Appendix A. Mathematical Appendix

Throughout the appendix, let Rq = nq/ 2! 1
! n

i =1 |r i |q, ø! q =
" 1

0 ! q
udu, and µq = E|z|q

with z ! N (0, 1) for q > 0.

A.1. Proof of Theorems 1 and 5. Theorem 1 is a special case of Theorem 5. Since

the proof is similar, we focus on the case of", # "= # 1, 0. From Barndor!-Nielsen et al.

(2006, Theorem 1), Assumption X guarantees

Rq
p

$ µqø! q, (A.1)

for any q > 0. This implies R2
p

$ ø! 2, R4
p

$ µ4ø! 4, and

3
2

#
1 #

R2
2

R4

$
p

$
3
2

#
µ4ø! 4 # ø! 2

2

µ4ø! 4

$
. (A.2)

Let gi = nr 2
i # $, øg = 1

n

! n
i =1 gi , and øV = 1

n

! n
i =1 g2

i . By (A.1) and Barndor!-Nielsen et

al. (2006), we obtain
#

2
3

µ4ø! 4

$ ! 1/ 2 %
nøg =

#
2
3

µ4ø! 4

$ ! 1/ 2 %
n(R2 # ø! 2) d$ N (0, 1), (A.3)

øV = R4 # 2ø! 2R2 + ø! 2
2

p
$ µ4ø! 4 # ø! 2

2. (A.4)

By these results combined withE[g2
i ] < & for all i = 1, . . . , n, we can apply the same

argument to Owen (1988) to showmax1" i " n |%+ &gi |
p

$ 0. Thus, by expanding

1
n

n%

i =1

(1 + %+ &(nr 2
i # $))

1
! = 1,

1
n

n%

i =1

(1 + %+ &(nr 2
i # $))

1
! (nr 2

i # $) = 0 , (A.5)

around (%, &) = (0 , 0), we obtain

& = # # øV ! 1øg + Op(n! 1),

% =
1
2

#(# + 1) øV ! 1øg2 + Op(n! 2).

Based on these results, an expansion of' !," ($) around (%, &) = (0 , 0) yields

' !," ($) =
2

" (" + 1)

n%

i =1

{ (1 + %+ &gi )
" +1

! # 1} = øV ! 1(
%

nøg)2 + Op(n! 1).

Therefore, the conclusion follows by (A.2)-(A.4).

1



A.2. Proofs of Theorems 2 and 3. Proofs of these theorems are similar to that of

Theorem 5 above.

First, we show Theorem 2. Let÷gi = n|÷r i ! m+1 |p1 á á á |÷r i |pm ! cp ! . By Barndor!-Nielsen,

Shephard and Winkel (2006, Theorem 1), we can replace (A.3) and (A.4) with

(dp ø" 4)! 1/ 2 1
"

n

n!

i =1

÷gi
d# N (0, 1),

1
n

n!

i =1

÷g2
i

p
# c2p ø" 4 ! c2

p ø" 2
2,

respectively. The remaining part is similar.

Next, we show Theorem 3. Letøgi = n(|÷r i ! m+1 |p1 á á á |÷r i |pm ! cp ÷r 2
i ). Under the null

hypothesis of no jump (i.e. Y = X ), we can apply the limit theorems in Barndor!-

Nielsenet al. (2006). Thus we can replace (A.3) and (A.4) with

({ dp ! 2
m!

l=1

cp [c÷p l ! cp ] + 2c2
p } ø" 4)! 1/ 2 1

"
n

n!

i =1

øgi
d# N (0, 1),

1
n

n!

i =1

øg2
i

p
# (c2p + 3c2

p ! 2cp c÷p )ø" 4,

respectively. The remaining part is similar. Under the alternative of the presence of

jumps, Barndor!-Nielsen, Shephard and Winkel (2006, Theorem 1) implies that1n
" n

i =1 øgi

converges to a non-zero constant. Therefore, the test statistic÷TJ
EL diverges asn # $ .

A.3. Proof of Theorem 4. The proof is similar to that of Theorem 5 above. By Jacod

et al. (2009, Theorem 3.1), we obtain

n1/ 2

n2
K R"

4

#
nK!

i =1

(gKi ! ! )

$ 2

=
n1/ 2(ø! ! ! )2

R"
4

d# #2
1. (A.6)

Also, by inspection of the derivations in Jacodet al. (2009), we can obtain

3
2K 2

ö!
p

#
12
c2

%1

0
U2

s ds,
6
K

øR2
p

# ! +
12
c2

%1

0
U2

s ds.

These results imply

1
nK

nK!

i =1

(gKi ! ! )2 !
36
K 2

( øR4 ! øR2
2) = ! 2

6
K

øR2

&
3

2K 2
ö! + !

'
+

&
3

2K 2
ö! + !

' 2

+
36
K 2

øR2
2

p
# 0.

(A.7)

By (A.6) and (A.7), a similar argument to the proof of Theorem 5 yields

øTEL (! ) =
36n1/ 2

nK K 2

øR4 ! øR2
2

R"
4

{
" nK

i =1 (gKi ! ! )} 2

" nK
i =1 (gKi ! ! )2

+ op(1) d# #2
1.

2



A.4. Proof of Theorem 6. Due to independence between! and W, the symbols such

asE[á] and Op(á) mean the conditional expectation and stochastic order given the path of

! , respectively. Before analyzing Bartlett correctability of the nonparametric likelihood

statistic, we introduce further notation. We transform the moment function asmi =

V ! 1/ 2(nr 2
i ! " ) with V = E[n! 1

Pn
i=1(nr 2

i ! " )2] and deÞne

øAk =
1
n

nX

i=1

mk
i , #k = E[ øAk], Ak = øAk ! #k,

for k = 1, 2, . . .. Note that Assumption H implies

#1 = 0, #2 = 1, Ak = Op(n! 1/ 2),

for eachk = 1, 2, . . ., where the Þrst equality follows fromE[r 2i ] =
R i/n
(i ! 1)/n ! 2

udu, the second

equality follows by construction, and the third equality follows from Barndor!-Nielsenet
al. (2006, Theorem 2).

Based on the above notation, the nonparametric likelihood statistic is rewritten as

$!," (" ) = L ! (w", 1 . . . , w",n ), where

w",i =
1
n

(1 + %+ ÷&mi )
1
� ,

and %and ÷& solves

1
n

nX

i=1

(1 + %+ ÷&mi )
1
� = 1,

1
n

nX

i=1

(1 + %+ ÷&mi )
1
� mi = 0.

Expansions of these equations around%+ ÷&wi = 0 and repeated substitutions yield ex-

pansions of%and ÷& as follows

% =
1
2

' (1 + ' )A2
1 +

1
6

' (1 + ' )(1 ! ' )#3A3
1 !

1
2

' (1 + ' )A2
1A2

+
1
2

' (1 + ' )A2
1A

2
2 !

1
2

' (1 ! ' )(1 + ' )#3A3
1A2 +

1
6

' (1 ! ' )(1 + ' )A3
1A3

+
1
8

'
⇢

(1 + ' )3 + (1 ! ' )2(1 + ' )#2
3 !

1
3

(1 ! ' )(1 + ' )(1 ! 2' )#4

�
A4

1 + Op(n! 5/ 2).

and

÷& = ! 'A 1 !
1
2

' (1 ! ' )#3A2
1 + 'A 1A2

! 'A 1A2
2 +

3
2

' (1 ! ' )#3A2
1A2 !

1
2

' (1 ! ' )A2
1A3

!
1
2

'
⇢

' (1 + ' ) + (1 ! ' )2#2
3 !

1
3

(1 ! ' )(1 ! 2' )#4

�
A3

1 + Op(n! 2).
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By inserting these formulae to an expansion ofn! 1! !," (" ) around # + ÷$wi = 0, we obtain

n! 1! !," (" )

= A2
1 +

1
3

(1 ! %)&3A3
1 ! A2

1A2 + A2
1A2

2 ! (1 ! %)&3A3
1A2 +

1
3

(1 ! %)A3
1A3

+
!"

1
4

+
%
2

+
%'
2

!
' 2

4

#
+

"
1
4

!
%
2

+
%'
2

!
' 2

4

#
&2

3 +
"

!
1
12

+
%
4

+
%2

12
!

%'
2

+
' 2

4

#
&4

$
A4

1

+ Op(n! 5/ 2). (A.8)

Let ø( q,n = nq/ 2! 1
% n

i =1

&' i/n
(i ! 1)/n ( 2

udu
( q/ 2

. For the term 3
2

&
1 ! R2

2
R4

(
, expansions around

R4 = 3ø( 4,n and R2 = " yield

3
2

"
1 !

R2
2

R4

#
=

1
2

3ø( 4,n ! " 2

ø( 4,n
+

1
2

" 2

ø( 4,n

"
R4

3ø( 4,n
! 1

#
!

1
2

" 2

ø( 4,n

"
R4

3ø( 4,n
! 1

# 2

!
V 1/ 2"
ø( 4,n

A1 !
1
2

V
ø( 4,n

A2
1 +

2
3

V "2

ø( 2
4,n

A2
1 +

1
3

V 3/ 2"
ø( 2

4,n
A1A2 + Op(n! 3/ 2),(A.9)

where R4
3ø#4,n

! 1 = 2
3

V 1/ 2$
ø#4,n

A1 + 1
3

V
ø#4,n

A2.

Consider the constant volatility case( t = ( over t " [0, 1]. In this case, it holds

( 2 = ", ø( 4,n = " 2, V = 2" 2, &3 = 2
#

2, &4 = 15. (A.10)

Then by (A.8) and (A.9), the expansion of the nonparametric likelihood statisticn! 1T!," (" )

is written as

n! 1T!," (" ) = A2
1 !

2
#

2
3

%A3
1 !

2
3

A2
1A2 +

4
9

A2
1A2

2 !
2
#

2
9

(19 ! 8%)A3
1A2

+
1
3

(1 ! %)A3
1A3 +

"
41
36

%! 3%' +
5
4

%2 +
3
2

' 2

#
A4

1 + Op(n! 5/ 2).

As in Baggerly (1998), to achieve Bartlett correction, we investigate the conditions of%

and ' where the third and fourth cumulants of the signed root of the above expansion

vanish at su!ciently fast rates.

First, we consider the third cumulant. After some algebra, the signed root form is

obtained asn! 1T!," (" ) = ( S1 + S2 + S3)2 + Op(n! 5/ 2), where

S1 = A1, S2 = !
1
3

A1A2 !

#
2

3
%A2

1,

and S3 = Op(n! 3/ 2) is not displayed since it is not used to compute the third cumulant.

Based on this form, the third cumulant ofS1 + S2 + S3 is obtained as

) 3(%, ') = E[S3
1] + 3E[S2

1S2] ! 3E[S2
1]E[S2] + O(n! 3),

4



where by Lemma 2,

E[S3
1] = 2

!
2n! 2 + O(n! 3), E[S2

1S2] = "
!

2(! + 2) n! 2 + O(n! 3),

E [S2
1]E[S2] = "

!
2

3
(! + 2) n! 2 + O(n! 3).

Therefore, if ! = " 1, then the dominant term of the third cumulant vanishes and it holds

" 3(" 1, #) = O(n! 3).

Next, we set! = " 1 and analyze the fourth cumulant. After some algebra, the signed

root form of n! 1T!," ($) with ! = " 1 is obtained asn! 1T! 1," ($) = ( T1 + T2 + T3)2 +

Op(n! 5/ 2), where

T1 = A1, T2 = "
1
3

A1A2 +

!
2

3
A2

1,

T3 =
1
6

A1A2
2 "

11
!

2
9

A2
1A2 +

1
3

A2
1A3 +

✓
3
4

#2 +
3
2

# "
1
18

◆
A3

1.

Then the fourth cumulant of T1 + T2 + T3 is obtained as

" 4(" 1, #) = E[T4
1 ] + 4E[T3

1 T2] + 4E[T3
1 T3] " 3(E[T2

1 ])2

+6E[T2
1 T2

2 ] " 4E[T3
1 ]E[T2] " 12E[T2

1 T2]E[T2] " 6E[T2
1 ]E[T2

2 ]

+12E[T2
1 ](E[T2])2 " 12E[T2

1 ]E[T1T2] " 12E[T2
1 ]E[T1T3] + O(n! 4),

where by Lemma 2,

E[T4
1 ] = 3n! 2 + 12n! 3 + O(n! 4), E[T3

1 T2] = "
76
3

n! 3 + O(n! 4),

E [T3
1 T3] =

⇢
74
3

+
15
4

✓
3#2 + 6# "

2
9

◆�
n! 3 + O(n! 4), (E [T2

1 ])2 = n! 2,

E [T2
1 T2

2 ] =
16
3

n! 3 + O(n! 4), E[T3
1 ]E[T2] = "

4
3

n! 3 + O(n! 4),

E [T2
1 T2]E[T2] =

2
3

n! 3 + O(n! 4), E[T2
1 ]E[T2

2 ] =
4
3

n! 3 + O(n! 4),

E [T2
1 ](E[T2])2 =

2
9

n! 3 + O(n! 4), E[T2
1 ]E[T1T2] = "

10
3

n! 3 + O(n! 4),

E [T2
1 ]E[T1T3] =

⇢
16
3

+
3
4

✓
3#2 + 6# "

2
9

◆�
n! 3 + O(n! 4).

Therefore, if

9#2 + 18# + 4 = 0 ,

i.e. # = " 1 ±
"

5
3 , then the dominant term of the fourth cumulant vanishes and it holds

" 4

⇣
" 1, " 1 ±

"
5

3

⌘
= O(n! 4).
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Finally, by setting � = �1 and � = �1 ±
p

5
3 , it holds

E[T 2
1 ] = n�1, E[T1T2] = �10

3

n�2
+ O(n�3

),

E[T 2
2 ] =

4

3

n�2
+ O(n�3

), E[T1T3] =

25

6

n�2
+ O(n�3

),

and thus the second cumulant used to compute the Bartlett correction factor is obtained

as

nE[(T1 + T2 + T3)

2
] = 1 + 3n�1

+ O(n�2
).

A.5. Proof of Theorem 7. We now drop the assumption of constant volatility. In the

general case, the identities in (A.10) do not apply. Thus the objects such asV , ↵3, and

↵4 become unknown and need to be estimated. In this case, by (A.8) and (A.9), the

expansion of the nonparametric likelihood statisticn�1T�,�(✓) is written as

n�1T�,�(✓) =

1

2

cA2
1 +

1

6

c1/2
�
c1/2

(1 � �)↵3 + 2d3/2 � 6d1/2
 
A3

1 +

1

6

c(d� 3)A2
1A2

+

1

18

c(9 � 3d� cd)A2
1A

2
2 +

1

6

c(1 � �)A3
1A3

+

1

18

c1/2
�
c1/2

(d� 9)(1 � �)↵3 + 18d1/2
+ 9cd1/2 � 6d3/2 � 4cd3/2

 
A3

1A2

+

1

18

�
2c1/2d1/2

(d� 3)(1 � �)↵3 � 9c + 12cd� 4cd2
+ 9cf

 
A4

1 + Op(n
�5/2

),

where

c =

V

�̄4,n
, d =

✓2

�̄4,n
,

f =

✓
1

4

+

�

2

+

��

2

� �2

4

◆
+

✓
1

4

� �

2

+

��

2

� �2

4

◆
↵2

3 +

✓
� 1

12

+

�

4

+

�2

12

� ��

2

+

�2

4

◆
↵4.

First, we consider the third cumulant. After some algebra, the signed root form is

obtained asn�1T�,�(✓) = (S1 + S2 + S3)

2
+ Op(n

�5/2
), where

S1 =

p
2

2

c1/2A1, S2 =

p
2

12

�
c1/2

(1 � �)↵3 � 6d1/2
+ 2d3/2

 
A2

1 +

p
2

12

c1/2
(d� 3)A1A2,

and S3 = Op(n
�3/2

) is not displayed since it is not used to compute the third cumulant.

Based on this form, the third cumulant ofS1 + S2 + S3 is obtained as

3(�,�) = E[S3
1 ] + 3E[S2

1S2] � 3E[S2
1 ]E[S2] + O(n�3

),
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where by Lemma 1,

E[S3
1 ] =

2

p
2

15

�
c3/2↵3 + 9d1/2 � 2d3/2

 
n�2

+O(n�3
),

E[S2
1S2] =

p
2

10

�
5c�1/2

(1� �)↵3 � 2c3/2↵3 � 18d1/2 + 4d3/2
 
n�2

+O(n�3
),

E[S2
1 ]E[S2] =

p
2

30

�
5c�1/2

(1� �)↵3 � 2c3/2↵3 � 18d1/2 + 4d3/2
 
n�2

+O(n�3
).

Therefore, if we set � as

�⇤
= 1� 4

15

c2 � 12

5

c1/2d1/2

↵3
+

8

15

c1/2d3/2

↵3
, (A.11)

then it holds 3(�
⇤,�) = O(n�3

). Note that under the constant volatility case, the
equation (A.11) reduces to �⇤

= �1. In the general case, however, �⇤ depends on unknown
objects c, d, and ↵3. By replacing these objects with consistent estimators, we propose
the data-dependent value of �:

�̂ = 1� 4

15

ĉ2 � 12

5

ĉ1/2 ˆd1/2

↵̂3
+

8

15

ĉ1/2 ˆd3/2

↵̂3
, (A.12)

where ĉ =

V̂
�̂4,n

, ˆd =

✓2

�̂4,n
, ↵̂3 =

ˆV �3/2 1
n

Pn
i=1(nr

2
i � ✓)3, ˆV =

1
n

Pn
i=1(nr

2
i � ✓)2, and

�̂4,n =

1
3(
ˆV + ✓2). Since �̂ � �⇤

= Op(n
�1/2

), we need to take the estimation error of �̂
into account for the second-order analysis below.

Next, we rederive the stochastic expansion of n�1T�̂,�(✓) with �̂ in (A.12). By expanding
�̂ around (ĉ, ˆd, ↵̂3) = (c, d,↵3), it holds

�̂ = �⇤
+ gA2 + hA3 +Op(n

�1
),

where

g = � 8

15

c2 +
8

45

c3 � 6

5

c1/2d1/2

↵3
+

4

5

c3/2d1/2

↵3
+

4

15

c1/2d3/2

↵3
� 16

45

c3/2d3/2

↵3
,

h =

4

15

(9� 2d)
c1/2d1/2

↵2
3

.

By using this expansion of �̂, we can rewrite the expansion of the nonparametric likelihood
statistic as

n�1T�̂,�(✓)

=

1

2

cA2
1 +

1

6

c1/2
�
c1/2(1� �⇤

)↵3 + 2d3/2 � 6d1/2
 
A3

1 +
1

6

c(d� 3)A2
1A2

+

1

18

c(9� 3d� cd)A2
1A

2
2 +

1

6

c(1� �⇤ � h↵3)A
3
1A3

+

1

18

c1/2
�
c1/2 ((d� 9)(1� �⇤

)� 3g)↵3 + 18d1/2 � 6d3/2 + 9cd1/2 � 4cd3/2
 
A3

1A2

+

1

18

�
2c1/2d1/2(d� 3)(1� �⇤

)↵3 � 9c+ 12cd� 4cd2 + 9cf
 
A4

1 +Op(n
�5/2

).(A.13)
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After some algebra, the signed root form is obtained as n�1T�̂,�(✓) = (T1 + T2 + T3)
2
+

Op(n
�5/2

), where

T1 =

p
2

2

c1/2A1, T2 = jA2
1 + kA1A2,

T3 = lA1A
2
2 + qA2

1A3 +mA2
1A2 + ⇣(�)A3

1,

and

j =

p
2

12

�
c1/2(1� �)↵3 + 2d3/2 � 6d1/2

 
, k =

p
2

12

c1/2(d� 3),

l =

p
2

36

c1/2(9� 3d� cd)�
p
2

144

c1/2(d� 3)

2,

m =

p
2

72

�
c1/2(d� 15)(1� �)↵3 + 18d1/2 � 2d5/2 + 18cd1/2 � 8cd3/2 � 6c1/2g↵3

 
,

q =

p
2

12

c1/2(1� � � h↵3),

⇣(�) =

p
2

36

⇢
9c1/2f � 9c1/2 + 12c1/2d� 4c1/2d2 � 1

4

c1/2(1� �)2↵2
3 � c�1/2d3 � 9c�1/2d+ 6c�1/2d2

�
.

By the definition of �⇤, we can show that the third cumulant of T1 + T2 + T3 satisfies
3(�̂,�) = O(n�3

). After lengthy calculations, by using the expectations in Lemma 1, the
fourth cumulant

4(�̂,�) = E[T 4
1 ] + 4E[T 3

1 T2] + 4E[T 3
1 T3]� 3(E[T 2

1 ])
2

+6E[T 2
1 T

2
2 ]� 4E[T 3

1 ]E[T2]� 12E[T 2
1 T2]E[T2]� 6E[T 2

1 ]E[T 2
2 ]

+12E[T 2
1 ](E[T2])

2 � 12E[T 2
1 ]E[T1T2]� 12E[T 2

1 ]E[T1T3] +O(n�4
)

is written in the form of

4(�̂,�) = ⇠1⇣(�) + ⇠2 +O(n�4
), (A.14)

where ⇠1 and ⇠2 are implicitly defined and do not depend on �. Although ⇣(�), ⇠1 and ⇠2

contain unknown objects c, d, and ↵3, they can be estimated by ĉ, ˆd, and ↵̂3, respectively
(denote by ˆ⇣(�), ˆ⇠1 and ˆ⇠2). Then if the solution exists, the ideal value ˆ� is given by a
solution of

ˆ⇠1ˆ⇣(ˆ�) + ˆ⇠2 = 0. (A.15)

It should be noted that in the expansion (A.13), � appears only in the term f . Therefore,
the estimation error ˆ��� is of negligible order Op(n

�5/2
), and it holds 4(�̂, ˆ�) = O(n�4

),
i.e., the dominant term of the fourth cumulant vanishes if we choose �̂ and ˆ� as in (A.12)
and (A.15), respectively.
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Finally, we compute the second cumulant and Bartlett factor. Using the expectations
in Lemma 1, we have

E[T 2
1 ] =

c

2

E[A2
1] = n�1, E[T1T2] = rn�2

+O(n�3
),

E[T 2
2 ] = sn�2

+O(n�3
), E[T1T3] = tn�2

+O(n�3
),

where (recall �̄q,n = nq/2�1
Pn

i=1

⇣R i/n

(i�1)/n �
2
udu

⌘q/2

)

r = 4

p
2c1/2V �2

�
j�̄6,nV

1/2
+ k(9�̄8,n � 2✓�̄6,n)

 
,

s = 12j2�̄2
4,nV

�2
+ 2jk(72�̄4,n�̄6,n � 24✓�̄2

4,n)V
�5/2

+k2
(192�̄4,n�̄8,n + 288�̄2

6,n � 288✓�̄4,n�̄6,n + 48✓2�̄2
4,n)V

�3,

t = 24

p
2c1/2l(4�̄4,n�̄8,n + 6�̄2

6,n � 6✓�̄4,n�̄6,n + ✓2�̄2
4,n)V

�3

+18

p
2c1/2q(15�̄4,n�̄8,n � 6✓�̄4,n�̄6,n + ✓2�̄2

4,n)V
�3

+6

p
2c1/2V �5/2

�
m(6�̄4,n�̄6,n � 2✓�̄2

4,n) + ⇣(�)�̄2
4,nV

1/2
 
.

Thus, the second cumulant used to compute the Bartlett correction factor is obtained as

nE[(T1 + T2 + T3)
2
] = 1 + an�1

+O(n�2
), (A.16)

where a = 2(r + t) + s.

A.6. Lemmas . Here we present some approximation formulae for the moments of Ak.
Lemma 1 is derived under Assumptions X and H, which allows non-constant volatility.
Lemma 2 is derived for the constant volatility case. The proofs are available from the
authors upon request.
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Lemma 1. Suppose Assumptions X and H hold true. Then

E[A1] = 0, E[A2
1] = 2ø! 4,nV ! 1n! 1, E[A3

1] = 8ø! 6,nV ! 3/ 2n! 2,

E [A4
1] = 12ø! 2

4,nV ! 2n! 2 + 48ø! 8,nV ! 2n! 3, E[A5
1] = 160ø! 4,n ø! 6,nV ! 5/ 2n! 3 + O(n! 4),

E [A6
1] = 120ø! 3

4,nV ! 3n! 3 + O(n! 4), E[A1A2] = (12ø! 6,n ! 4" ø! n,4)V ! 3/ 2n! 1

E[A2
1A2] = (72ø! 8,n ! 16" ø! 6,n )V ! 2n! 2,

E [A3
1A2] = (72ø! 4,n ø! 6,n ! 24" ø! 2

4,n )V ! 5/ 2n! 2 + O(n! 3),

E [A4
1A2] = (384ø! 2

6,n + 864ø! 4,n ø! 8,n ! 320" ø! 4,n ø! 6,n )V ! 3n! 3 + O(n! 4),

E [A5
1A2] = (720ø! 2

4,n ø! 6,n ! 240" ø! 3
4,n )V ! 7/ 2n! 3 + O(n! 4),

E [A1A3] = (90ø! 8,n ! 36" ø! 6,n + 6" 2ø! 4,n )V ! 2n! 1,

E [A3
1A3] = (540ø! 4,n ø! 8,n ! 216" ø! 4,n ø! 6,n + 36" 2ø! 2

4,n )V ! 3n! 2 + O(n! 3),

E [A5
1A3] = (5400ø! 2

4,n ø! 8,n ! 2160" ø! 2
4,n ø! 6,n + 360" 2ø! 3

4,n )V ! 4n! 3 + O(n! 4),

E [A2
1A2

2] = (192ø! 4,n ø! 8,n + 288ø! 2
6,n ! 288" ø! 4,n ø! 6,n + 48" 2ø! 2

4,n )V ! 3n! 2 + O(n! 3),

E [A4
1A2

2] = (1152ø! 2
4,n ø! 8,n + 3456ø! 4,n ø! 2

6,n ! 2880" ø! 2
4,n ø! 6,n + 480" 2ø! 3

4,n )V ! 4n! 3 + O(n! 4).

Lemma 2. Suppose Assumptions X and H hold true. Furthermore, assume that! t = !

over t " [0, 1]. Then

E[A1] = 0, E[A2
1] = n! 1, E[A3

1] = #3n! 2, E[A4
1] = 3n! 2 + ( #4 ! 3)n! 3,

E [A5
1] = 10#3n! 3 + O(n! 4), E[A6

1] = 15n! 3 + O(n! 4),

E [A1A2] = #3n! 1, E[A2
1A2] = ( #4 ! 1)n! 2,

E [A3
1A2] = 3#3n! 2 + O(n! 3), E[A4

1A2] = (6 #4 + 4#2
3 ! 6)n! 3 + O(n! 4),

E [A5
1A2] = 15#3n! 3 + O(n! 4), E[A1A3] = #4n! 1,

E [A3
1A3] = 3#4n! 2 + O(n! 3), E[A5

1A3] = 15#4n! 3 + O(n! 4),

E [A2
1A2

2] = ( #4 + 2#2
3 ! 1)n! 2 + O(n! 3), E[A4

1A2
2] = (3 #4 + 12#2

3 ! 3)n! 3 + O(n! 4).
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