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Abstract.  With increasing availability of high frequency Pnancial data as a back-
ground, various volatility measures and related statistical theory are developed in the
recent literature. This paper introduces the method of empirical likelihood to conduct
statistical inference on the volatility measures under high frequency data environments.
We propose a modibed empirical likelihood statistic that is asymptotically pivotal under
the inbll asymptotics, where the number of high frequency observations in a bxed time
interval increases to inPnity. Our empirical likelihood approach is extended to be robust
to the presence of jumps and microstructure noise. We also provide an empirical likeli-
hood test to detect presence of jumps. Furthermore, we establish Bartlett correction, a
higher-order repnement, for a general nonparametric likelihood statistic. Simulation and
a real data example illustrate the usefulness of our approach.

1. Introduction

Realized volatility and its related statistics have become standard tools to explore the
behavior of high frequency Pnancial data and to evaluate Pnancial theoretical models
including stochastic volatility models. This increase in popularity has been propelled by
recent developments of probability and statistical theory and by the increasing availability
of high frequency Pnancial data (see, Ast-Sahalia and Jacod, 2014, for a review).

By employing the asymptotic framework so-called the inbll asymptotics, where the
number of high frequency observations in a bPxed time interval (say, a day) increases to
inPnity, Jacod and Protter (1998) and Barndor!-Nielsen and Shephard (2002) established
laws of large numbers and central limit theorems for realized volatility, which were ex-
tended to more general setups and statistics by Barndor!-Nielsegt al. (2006). Gonealves
and Meddahi (2009) studied higher-order properties of the realized volatility statistic and
its bootstrap counterpart. Also various volatility estimation methods are developed to be
robust to the presence of jumps (e.g., Barndor!-Nielsen, Shephard and Winkel, 2006, and
Andersen, Dobrev and Schaumburg, 2012) and microstructure noise (e.g., Zhang, Myk-
land and Ast-Sahalia, 2005, Barndor!-Nielseret al., 2008, and Jacockt al., 2009). Finally,
several testing methods for the presence of jumps are developed (e.g., Barndor!-Nielsen
and Shephard, 2006, and Ast-Sahalia and Jacod, 2009).

In this paper, we introduce the method of empirical likelihood (see, Owen, 2001, for a
review) to conduct statistical inference on the volatility measures under high frequency



data environments. In particular, based on estimating equations for the volatility mea-
sures, such as the integrated volatility, modiped empirical likelihood statistics are pro-
posed and shown to be asymptotically pivotal under the inPIl asymptotics. Our empirical
likelihood approach is extended to be robust to the presence of jumps and microstructure
noise. The proposed statistics share desirable properties of the conventional empirical
likelihood, such as range preserving, transformation respecting, and data decided shape
for conbdence region. We also provide an empirical likelihood test to detect presence
of jumps. Our empirical likelihood approach provides useful alternatives to the existing
Wald-type inference methods and jump tests. This is illustrated by simulation studies
and a real data example.

Another distinguishing feature of (conventional) empirical likelihood is that it admits
Bartlett correction, a higher-order rebPnement (DiCiccio, Hall and Romano, 1991). How-
ever, under the inbll asymptotics, empirical likelihood is not Bartlett correctable even for
the constant volatility case. In order to explore further this issue, we consider a general
class of nonparametric likelihood based on Cressie and ReadOs (1984) power divergence
family, which contains empirical likelihood, exponential tilting, and Pearson®$ as spe-
cial cases. In this general class of likelihood functions, we bPnd some members that admit
Bartlett correction under the constant and general non-constant volatility cases. In par-
ticular, we show that the second-order rePnement to the ord@(n' 2) can be achieved.
This Bartlett correctability can be considered as a unique advantage of our nonparametric
likelihood approach.

The rest of the paper is organized as follows. In Section 2, we consider a benchmark
setup which excludes jumps and microstructure noise, construct the empirical likelihood
statistic, and study its brst-order asymptotic properties. In Section 3, we propose a jump
robust version of the empirical likelihood statistic. Also an empirical likelihood test to
detect the presence of jumps is presented. In Section 4, we propose a noise robust version
of the empirical likelihood statistic. In Section 5, we conduct second-order analysis for
the proposed statistic and establish the Bartlett correctability results. Sections 6 and 7
present some simulation results and real data example, respectively. All proofs of the
theorems are contained in the web appendix.

2. Benchmark case

In this section, we present our methodology in a benchmark setup, which excludes jumps
and microstructure noise. Jump and noise robust methods are considered in the following
sections. Here we consider a scalar continuous time process (typically a log-price)

dXt = utdt + " tth’ (21)
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fort! 0O, wherep is a drift process," is a volatility process, andW is a standard Brownian
motion. Suppose we observe high frequency retums= X, ,," X 1)/, measured over the
period[(i" 1)/n,i/n Jfori=1,...,n. Although our methodology can be applieo'l to other
functionals of" (see Remark 4 below), we focus on the integrated volatilit = '01 "2du
over a bxed interval[0, 1] (say, a day or month).

As a nonparametric measure of volatility, the integrated volatility# has been drawing
considerable attention from researchers who face to high frequency Pnancial data. One
popular estimator of# is so-called the realized volatility;@ = ., r2. Itis known that
under certain conditions on the process (2.1} is consistent for# and asymptotically
normal under the limit n # $ for increasingly Pnely sampled returns over the bxed
interval [0, 1] (called the inPIl asymptotics) (e.g., Jacod and Protter, 1998, and Barndor!-
Nielsen and Shephard, 2002). In this section, we employ the following setup based on

Barndor!-Nielsen et al. (2006).

Assumption X. The processX debned on a Pltered probability space follows (2.1), where
U is an adapted predictable locally bounded drift process, ahdis an adapted cadlag

volatility process satisfying
# t # t # t
"t - ||0+ a"udu+ n ;'LI qu + V:ul
0 0 0

dVa,

wherea’, "", and v’ are adapted cadlag processes, is predictable and locally bounded,
and V is a Brownian motion independent ofV.

This assumption is general enough to allow for intraday seasonality, long memory,
and correlation between" and W (called the leverage elect). Under this assumption,
Barndor!-Nielsen et al. (2006) showed that? is consistent and asymptotically normal

%_ .
Jg? # N(,1), (2.2)

asn#$ ,where9 = 2 " r4 Based on this result, it is customary to construct

a Wald-type conbkdence interval fort. Also, Gonealves and Meddahi (2009) proposed
bootstrap inference methods or. In this paper, we introduce the empirical likelihood
approach and propose an alternative inference method fér
Based on the estimating equation , (nr2" #) = 0 for the realized volatility 2 the
empirical likelihood funcot/ion for#' can be written as )
0&1 '

f n n

EL (#) = max nw;  wi(nr2" #=0, w;! 0, w; =1 . (2.3)

=1 i=1 i=1



By the Lagrange multiplier argument, the dual form of (2.3) is written as
& 1

EL(#) = 1+ $(nrzn 8’

[1]
n nriz! 0

where $ solves% =1 T o) - 0. In practice, we employ this dual representation to
computeEL (#).

LetR, = n¥21 " |r,|9. The Prst-order asymptotic distribution of EL (#) is obtained
as follows. See our web appendix for the proof.

Theorem 1. Suppose Assumption X holds true. As #$
*

3 r2"
Te(#)= 5 17 R—j {" 2logEL(#)} # 12

Remark 1. Based on this theorem, thelOO(1" %% asymptotic conbdence interval for
the integrated volatility # is given by Clg, = {#: Tp(#) & 1.}, where!{  is the
(1" 99-th quantile of the ! 2 distribution.

Remark 2. It should be noted that under the inbPIl asymptotics, the conventional em-
pirical likelihood statistic (i.e., " 2logEL (#)) does not converge to thd 2 distribution.
In other words, the empirical likelihood statistic, is not internally studentized. This is

because the asymptotic variance of the term% w.(nr2" #) does not match to the
R

limit of 2 ', (nr2" #)2 under the inPll asymptotics. The correction termg 1" 22 is
n 7 4

introduced to recover the studentization.

Remark 3. We now discuss advantages of our empirical likelihood conbdence interval
Clg, compared to the conventional Wald-type conbdence interval (i.68t z,,, ¥ /n for
the (1" %/2)-th quantile z,,, of N(0,1)). First, Clg; may be asymmetric around the
point estimate # and its shape is Rexibly determined by the data. Second.l &, never
contains negative values (called range preserving property). On the other hand, the lower
endpoint of the Wald conbdence interval may be negative. Thir@Gl ¢, is transformation
respecting (i.e., the conbdence interval df(#) is given by {f (#) : Tg.(#) & !ia}).
However, the Wald conbdence interval is not invariant for transformations af and may
yield dilerent conclusions.

Remlark 4. Here we discuss the empirical likelihood method for the integrated volatility
#= '01 "2du. Our method can be modibed for other objects Irelated tb. For example,
suppose we are interested in th@-th power variation #, = '01 "Pdu for p > 0. By
Barndor!-Nielsen et al. (2006),#, is consistently estimated by#, = W int P2 e,
wherep, = E|z|” with z' N (0O, 1). Based on the estimating equation foﬁp, the empirical
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likelihood function for #, can be constructed as
% !
&L (" ' n
EL (#,) = max nw;,  wi(l P2 Pt #)=0, w;! 0, w; =1
=1 =1 =1
The asymptotic property of this statistic is established in the same manner (with a dif-
ferent correction term for asymptotic pivotalness). Also, in the next section, we consider

empirical likelihood for multipower variation to conduct jump robust inference.

3. Jump robust inference and test for jumps

In this section, we propose a jump robust version of the empirical likelihood statistic
and test for presence of jumps. The empirical likelihood function (2.3) proposed in the last
section is constructed from the estimating equation for the realized volatilitf = T2
Our approach can be generalized to other estimating equations for the integrated volatility
#. In particular, it is useful to consider the multipower variation (e.g., Barndor!-Nielsen,

Shephard, 2004, and Barndor!-Nielsen, Shephard and Winkel, 2006)

Qp = ( [rir mer [Pra@ @™,
for a vectorp = (ps,...,pPn) Of positive numbers withp, + aa# p,, = 2. Indeed the
realized volatility is a special case of the multipower variation (withm =1 and p; = 2).
A remarkable property of the multipower variation is: if pOs are reasonably small, then
the estimator@IO enjoys certain robustness against jumps in the observed process.
To be precise, consider the process

Yt = Xt + ‘]t1 (31)

fort ! 0O, where X is generated by the continuous time process in (2.1) satisfying As-
sumption X, and J is a jump process, which is assumed to be a LZvy process with no

continuous component and index
/ # 0

%=inf a! O: Ix]“!(dx) < $ ( [0,2],
[' 1,1]

for the LZvy measure . The LZvy process is a convenient and general class of processes
to accommodate both Pnite and inbnite activity jumps. Barndor!-Nielsen, Shephard
and Winkel (2006, Theorem 1) showed that the limiting distribution of the multipower

variation #p remains the same regardless of presence of the jump procksss far as
0,

% .
% <1, 2"—00/& Min{ps,...,Pn} & Mmax{py,...,pPn}t < L. (3.2)
0
A popular choice ofp for the jump robust estimator is the tripower variation (i.e.,m = 3

andp; = p, = p3 =2/3).



Suppose we observe high frequency retijrﬁis: Yim" Y 1y/» measured over the period
[(i" L)/n,iln Jfori=1,...,n. Letc, = 2, W,, Wherep, = E|z|’ with z' N(O, 1).
Based on the estimating equation foﬁp, we debne the jump robust empirical likelihood
function for # as

Yo ; )
&L (" n
EL (#) = max nw;  Wi(n|F e [ @Q&E™ " #) =0, w; ! 0, w; =1
i=1 i=1 =1
. (3.3)
Let R, = ﬂp andRs=n I |F .1 |t 44 &]|%". Also debne the constant
& & (e & 8k
dp = M2p, ! (2m ! 1) “p| +2 Mpy Mp, Mp+ prs k-
=1 =1 k=1 =1 I=m! k+1 =1

The brst-order asymptotic property of the jump robust empirical likelihood statisti®L (#)
is obtained as follows.

Theorem 2. Suppose€Y is generated by (3.1). Assume, + ad#ap,, =2 and (3.2). Then
3

.24
. C R
IEL(#) - 2P 1" 2

N2 n 2
. 7 {" 2logBL (#)} # 12,

asn#$ . This result does not change even f =0 (the case of no jump).

Remark 5. This theorem says that the empirical likelihood statisticTx.(#) has the
limiting distribution that is invariant to the presence of jumps. Similar to the benchmark
case, we introduce the correction tern%p' 1" g—f to achieve asymptotic pivotalness.
The jump robust conbdence interval fo# is obtained in the same manner. We note that
the empirical likelihood function (2.3) for the benchmark case (.em =1 and p; = 2)

does not satisfy the condition in (3.2).

We now consider hypothesis testing for presence of jumps in the observed process (i.e.,
J =0). The basic idea is to compare the two estimating equations for the realized volatil-
ity 2 and multipower variation Qp More precisely, we propose the following empirical
likelihood statistic
Yoo )

f n n

J s 2 2
BL" = max W, Wi([Fn e [P AAE™ " GFY) =0, w;! 0, w;=1
=1 =1 =1

(3.4)
The rationale of the above moment restriction is explained as follows. When there is no
jump in the process (i.e.,) = 0), both the multipower variation #p (with p,+ aatp,, =2)
and realized volatility ¢, -, ¥ multiplied by ¢, are consistent forc,#. Therefore, the
moment function - (|Fi 41 [P A4 &]|Pm " c,F2) converges to zero and the statistiELJ
tends to be small. On the other hand, in the presence of jumps, the moment function
typically diverges and so does the statistic.
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1
Let G5, = (Hp+2/Hp)  req Hp - The Prst-order asymptotic property of the empirical
likelihood statistic ELJ for the presence of jumps is obtained as follows.

Theorem 3. SupposeY = X (i.e., no jump in the process), whereX satisbPes Assumption
X. Also assume (3.2). Then

o 3G " 26,6
" 2 566" G)+26

asn#$ . On the other hand, ifY is generated by (3.1), then the statistid;, diverges.

{" 2logBL"} # 12,

~J
TEL_

4. Noise robust inference

Our empirical likelihood approach presented above can be also modibed to be robust to
the presence of microstructure noise. In particular, we adopt the pre-averaging approach
of Jacodet al. (2009), and construct empirical likelihood based on block averages of the
original data. In this section, let us consider the following setup.

Assumption XO. Observations{Z;,,};-, are generated from
Zim = Xim+ Ui,

where{ X;/,} i, is drawn from the latent procesX satisfying Assumption X, and{ U, ,,} i,

is an i.i.d. sequence with zero mean and Pnite eighth moments and is independenX of
!
We are interested in the integrated volatility # = 01 " 2du of the latent processX . It is

known that due to the presence of the noise tertd, ,,, the conventional realized volatility
based on{Z;,,}., is inconsistent for#.

In this setup, Jacodet al. (2009) developed a noise robust estimator féf based on
the so-called pre-averaging approach. A simpliPed version of their estimator is described
as follows. First, we transform the observed datéZ;,,};-,; into block averagesZ’i/n =
K'Y 5 Zgejym fori =0,1,...,n" K +1. Second, based on the block averages,
compute (half of) the return data@ = (Z+ k) " Byp)/2fori =1,...,n" K +1.
Finally, we compute the noise robust estimator as

6 ( 3 .
#= — R ¢ 4.1
K - i 2K2 1 ( )
whereng = n" 2K +2 and # = w1 Zign " Zia 1)/n)2 is the conventional realized

volatility estimator by using the original data. Intuitively, compared to the original Z;,,,,
the variance of the noise in the block averag®,,,, is reduced by a factor of/K . Thus,
the volatility estimator #based on the block averages are expected to be less sensitive to
the presence of the noise term. The second term in (4.1) is a bias correction term. Note
that the conventional estimator# is inconsistent for# under Assumption XO. Jacost al.
(2009) showed that#is consistent for# and asymptotically normal with the rate ofn' /4,
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By utilizing the estimating equation for (4.1), the noise robust empirical likelihood
function can be COhStI‘L(I)C'[ed as

%o : )
_ & (0 «
EL(#) = max n[(WiI Wl(ng " #) = O, W; ! 0, W; = 1 ,
i=1 i=1 i=1
where 5 3
N g ;
= " R
Oxi K 2K 2
Choose the block length a& = cn'/? + o(n'/*) for somec > 0. Then debneR, =
n¥/?* ™ |g|¢ and
) 43124,, (nK 4 ) ) ) m(! 2K i+€K! 1 )
R, = TZZ g + 5(123 12" 12" 2) i (Zjm" Zi 1ym)?
i=1 i=1 j=i2 K

1 V4 n n (l! 2 n n
+ 5(122" " 28127 1+ 12" ) (Zign " Z 1) (Zgeay " Zen) n)
i=2

with " 11= 1, " 1= &, and" » = g2=. The object R, appeared in Jacockt al. (2009,

80640°
eq. (3.7)) as an estimator of the asymptotic variance ¢ Based on this notation, the

prst-order asymptotic distribution of EL (#) is obtained as follows.

Theorem 4. Suppose Assumption XO holds true. As#$

36012/, " 2
ngK 2 R;

Por(#) = {" 2logEL(#)} # 12.

As pointed out by Jacodet al. (2009), the pre-averaging estimatof can be interpreted
as a realized kernel estimator in Barndor!-Nielseret al. (2008). Similarly, our empirical
likelihood statistic P (#) using block averages may be interpreted as the block empirical
likelihood statistic by Kitamura (1997) for weakly dependent time series data. However,
here data blocking is employed to reduce the elect of microstructure noise.

In this section, we impose Assumption XO and consider the case of additive and i.i.d.
noise for brevity. We conjecture that it is possible to extend our approach to more general
setups, such as weakly dependent noise (Ast-Sahalia, Mykland and Zhang, 2011), non-
additive noise (Jacodet al., 2009), and endogenous time (Li, Zhang and Zheng, 2013) by
modifying the moment function.

5. General nonparametric likelihood and second-order asymptotics

In this section, we generalize the construction of nonparametric likelihood for the in-
tegrated volatility by using the power divergence family (Cressie and Read, 1984). This
family is general enough to accommodate not only the empirical likelihood considered
so far, but also other existing likelihood concepts. Based on this general family of non-
parametric likelihood functions, we investigate second-order asymptotic properties of the
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nonparametric likelihood statistics. In particular, we show that adequate choices of tuning
constants lead to Bartlett correctability of the nonparametric likelihood statistic.

5.1. General nonparametric likelihood. We Pbrst consider the benchmark setup in
Section 2. As a general family of nonparametric likelihood functions, we employ the
power divergence family (Cressie and Read, 1984)

5 " .
6 ﬁ o {nwy)t 1y if &F " 1,0,

L’Y(Wl ca 1Wn) = g " "2 ?:l |Og(nWZ) if &="1,
2n -, w;log(nw;) if &=0.

Based onL,(w:...,w,) and using the estimating equation for the realized volatility
#= " r2 we specify the likelihood function for the integrated volatility# as

I%d)(#) = L’Y(W¢,l . ,W¢’n), (51)

where the weightsw,, 1, ..., W, , Solve
min Ly(ws...,w,), subjectto  w;=1, w;(nr2" #=0. (5.2)
=1 =1

Note that the nonparametric likelihood function', ,(#) contains two tuning constants,
& and (. In the literature, it is commonly assumed& = (. For example, the empirical
likelihood function discussed so far corresponds &= ( = " 1, and PearsonOs? cor-
responds to& = ( = " 2. Also Baggerly (1998) showed that in the class of likelihood
functions with & = (, only empirical likelihood is Bartlett correctable for the mean of
li.d. data. On the other hand, Schennach (2005, 2007) considered the cas&gf (
and studied the exponentially tilted empirical likelihood statistic with& =" 1and ( =0
from Bayesian and frequentist perspectives. In the current setup where we employ the
inPIl asymptotics, it is crucial to consider the general class of ;(#) indexed by & and (
to achieve Bartlett correction. Below we will show that even if the volatility process$ is
constant, the empirical likelihood statistic (i.e.,", ,(#) with &= ( = " 1) is not Bartlett
correctable under the inbll asymptotics, and the constant& and ( need to be chosen
separately to achieve Bartlett correction.

By the Lagrange multiplier argument, the solution of (5.2) is (see, Baggerly, 1998)

W= (L) + S )7, 53)

for ( ¥0 andw,, = 1) exp@(nr2" #) for ( =0, where) and $ solve

n

%(n (1+) +$(nr2" #)F =1, %(n (L+) +$(nr2" #H) (nr2" #=0, (5.4)

i=1 i=1

9



for( ¥ 0 andsolvel ' ) exp@(nr?" #))=1and: . ) exp@(nr2" #H)(nr" # =0
for ( = 0. In practice, we use (5.3) to compute the likelihood function in (5.1).
The Prst-order asymptotic distribution of' , ,(#) is obtained as follows.

Theorem 5. Suppose Assumption X holds true. For each, (( R, asn#3$ ,
*

+
3 .. R,
T =5 1" 22 e # 1L

Note that the brst-order asymptotic distribution of the statistic T, ,(#) is identical
to the one in Theorem 1 for empirical likelihood. Moreover, the prst-order asymptotic
distribution does not depend on the tuning constant& and (. In the next subsection,
we study second-order asymptotic properties of the statisti€, ,(#) to compare dilerent
choices of& and (. For the brst-order asymptotics, similar modibcations can be applied
to T, »,(#) to be robust to jumps and microstructure noise.

5.2. Second-order asymptotics. The Prst-order asymptotic theory for the nonpara-
metric likelihood statistic T, 4(#) is silent about the choice of tuning constants and
(. In order to address this issue, we investigate the second-order asymptotic property
of T, 4(#). Following the conventional recipe put forward in DiCiccio, Hall and Romano
(1991) and Baggerly (1998), among others, we brst derive the signed root of the nonpara-
metric likelihood statistic, and then evaluate the cumulants of the signed root. Based
on these cumulants, we seek values &fand ( at which the third and fourth cumulants
vanish at su"ciently fast rates to achieve Bartlett correction. Details are provided in the
web appendix (proofs of Theorems 6 and 7).

For the second-order analysis, we add the following assumption.

Assumption H. The processX follows (2.1) withp =0 and" is independent oW and
bounded away from zero.

This assumption is restrictive since it rules out the drift term and leverage elect.
Gonealves and Meddahi (2009, p. 289) imposed a similar but stronger assumption for
higher-order analysis of the bootstrap inference. Although the drift ternp is asymptoti-
cally negligible at the prst-order, it will appear in the higher-order terms and complicates
our second-order analysis. Ruling out the leverage elect (i.e., independence between
" and W) also simpliPes our second-order analysis since it allows to condition on the
path of " to compute the cumulants of the nonparametric likelihood statistic. Relaxing
Assumption H for the second-order analysis is beyond the scope of this paper.

To simplify the exposition of our results, brst we consider the simple case where the
volatility is constant ("; = " overt ( [0,1]). In this setting, the higher order properties

of the nonparametric likelihood statistic are presented in the next theorem.
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Theorem 6. Suppose Assgmptions X and H hold true arid = " overt ( [0,1]. Then,
for &= "1and( = " 1+ =2, the nonparametric likelihood statisticT, ,(#) is Bartlett
correctable, i.e., conditionally on the path of,
9 :
ProT,,(#)&!7,(1+3n'") =1" %+ O(n'?).
#_

This theorem says that when we choosg="1land( =" 1% TF’ the nonparametric
likelihood test based onT,, ,(#) using the adjusted critical value! § (1 +3n'*) provides
a rebnement to the orderO(n' 2) on the null rejection probability error. It should be
noted that the empirical likelihood statistic (i.e., T, 4(#) with &= ( = " 1) is not Bartlett
correctable because the fourth cumulant of the signed root does not vanish at the order
of O(n' %) (see the proof of Theorem 6 in the web appendix). Also note that the Bartlett
factor 1+ 3n' ! does not contain any unknown object.

Finally, we drop the assumption of constant volatility and consider the general case.
Although the computations are quite cumbersome, it is possible to estimate some tuning
constants & and @ such that the nonparametric likelihood statistic T, 4(#) is Bartlett
correctable. The higher order properties of the nonparametric likelihood statistic in the
general case are presented in the next theorem.

Theorem 7. Suppose Assumptions X and H hold true. Then, f&, O, and a (debned
in (A.12), (A.15), and (A.16), respectively, in the web appendix), the nonparametric

likelihood statistic T, 4(#) is Bartlett correctable, i.e., conditionally on the path of ,
; <
Pr' T, a9 & 13,0+ an' ) =17 06 O(n' Y.

This theorem says that even for the general case, the nonparametric likelihood statistic
Ty 9(#) with the estimated tuning constants & and © using the adjusted critical value
12 (1+an'?') provides a rePnement to the orde®(n' ?) on the null rejection probability
error. In the general case, the Bartlett factora can be estimated by the method of
moments or wild bootstrap as in Gonealves and Meddahi (2009). For the one-sided test,
Gonealves and Meddahi (2009) obtained second-order rePnement by the bootstrap to the
order o(n' ¥/?). In contrast, we consider the two-sided test and show that our Bartlett
correction to the nonparametric likelihood statistic can yield a rePnement to the order
o(n' ?).

6. Simulation

This section conducts simulation studies in order to evaluate Pnite sample properties
of the empirical likelihood methods presented above.
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6.1. Simulation 1: Benchmark case. @ We adopt simulation designs considered in

Gonealves and Meddahi (2009). In particular, we consider the stochastic volatility model
* +

dX; = pdt+ ", *dWy, + *odWp, + 1" *¥2" *3dW5,

whereWy;, Wy, and W3, are independent standard Brownian motions.

First, we consider a general case (i.e. with drift and leverage elects) to illustrate
the brst-order asymptotic theory in Theorem 1 for the nonparametric likelihood statistic
T,.4(#). We consider two dilerent models for the volatility process';. The brst model
for ", is the GARCH(1,1) dilusion

d"2=0.035(0636" "?2)dt+0.144' 2dW;.
The second model is the two-factor dilusion model
"= f("12+0.04'} +1.5"3),

whered"2, = " 0.00137 2,dt + dW,,, d"2, = " 1.386' 2,dt + (1 + 0 .25'2,)dW,,, and
%

(%) = exp(x) X & Xg

ePplro) © xo " X3+ X2 X > X
% 0

with xo = log(1.5). We allow for drift and leverage elects by settingy; = 0.0314
*, =" 0576 and *, = 0 for GARCH(1,1) models, andu; = 0.030and *; = *, = " 0.30
for the two-factor dilusion model.

We compare three methods to construct two-sided 95% conbdence intervals: (i) the
Wald-type interval (Wald), (ii) empirica#! likelihood (EL) and (iii) nonparametric likeli-
hood (NL) with &= "1and( =" 1+ 2.

Table 1 gives the actual coverage rates of all the intervals across 10,000 replications for
pve dilerent sample sizesn =1152, 288, 48, 24, and 12, corresponding to 1.25-minute, 5-
minute, half-hour, 1-hour, and 2-hour returns. The Wald-type intervals tend to undercover
for both models. The degree of undercoverage is especially large when sampling is not
too frequent. The two-factor model implies overall larger coverage distortions than the
GARCH(1,1) model. The nonparametric likelihood intervals (including EL intervals)
outperform the Wald-type intervals in all cases.

As we discussed in Remark 3, the nonparametric likelihood intervals are range preserv-
ing but the Wald-type conbdence interval may contain negative values. To illustrate this
point, we report the frequencies of negative left endpoints of the Wald-type conbdence
intervals in Table 2. This shows that the Wald-type intervals tend to contain negative
values particularly for small sample sizes.

Second, we consider two special cases to illustrate the second-order rebnements pro-
posed in the last section: (a) a benchmark model where volatility is constant, and (b)
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models where volatility is not constant (with no drift term and no leverage e'ect). Bartlett
corrected nonparametric likelihood (BNL) with the Bartlett correction factor1 +3/n are
compared with the above methods. Table 3 shows that the Bartlett corrected nonpara-
metric likelihood intervals outperform all the other intervals even when there is stochastic
volatility despite the fact that this correction does not theoretically provide an asymptotic
rePnement under the non-constant volatility case.

6.2. Simulation 2: Test for jump. In this subsection we evaluate bnite sample proper-
ties of the nonparametric likelihood tests for the presence of jumps. We adopt simulation
designs considered in Dovonon, Gonealves, Hounyo and Meddahi (2014). In particular,
we consider the two-factor di'usion model with diurnality e'ects.
dlogs, Mt + " (F AWy, + *odWo, + 17 %3 *3dWa) + dJy,
"t 0.88929198 + 075 exp(" 10t) + 0.25exp(' 10(1" 1)),
", = f("12+0.04'}+15"5

whered"2, = " 0.00137 2,dt + dW,,, d"2, = " 1.386' 2,dt + (1 + 0 .25'2,)dW,,, and
%

(%) = exp(x) X & Xg

p(z0) © y X2 4 X2 X > X
Zo 0

with Xo = log(1.5). The process’,; models the diurnal U-shaped pattern in intraday
volatility. When " ,, =1 for t ( [0, 1], the return process reduces to the simple case of
no diurnally elects. J, is a Pnite activity jump process modeled as a compound Poisson
process with constant jump intensity$ and random jump size distributed as\N (0,
Under the null hypothesis of no jumps in the return process, we sé}ump = 0. Under the
alternative hypothesis, we se = 0.058and "%, =1.7241

We compare three methods to test for jumps: (i) the Wald-type test (Wald, (i)
(signed root) empirical likelihood (EL) and (iii) (signed root) nonparametric likelihood
(NL) with &="1and( =" 1+ 5 .2 We consider bve dilerent sample sizes =1152,
576, 288, 96, and 48 correspondlng to 1.25-minute, 2.5-minute, 5-minute, 15-minute, and
half-hour returns. All results are based on 1,000 Monte Carlo replications.

Table 4 reports the rejection frequencies of tests at the 5% nominal signibcance level
for both cases with and without diurnally elects. The Wald-type test tends to over-
reject for the both cases, the degree of which is espeC|aIIy Iarge when sampling is not too

4 jump)

lwe debne the statisticT, = M whereRV, = L; r2, BVy = & L, Irillri- 1] and 9,
n l

{(uy+2p 2" 3)" 2}@? "t |4’3|r 1] 3|r;» 2|¥3. Then, the test rejects the null of no jumps at
signibcance level whenT, >z, wherez;-, is the 100(1" ! )% percentile of the N (0, 1) distribution.
2\We debne the signed root of nonparametric likelihood ratio statistic adNL 4 = sgn(RV," TVn)f??”#2 where
TV, = lTZlTs s 12 3Iriv 112 3|ri» 2% 3. Then, the test rejects the null of no jumps at signiPcance level
I whenNL4 >2zq-, wherez;-, is the 100(1" ! )% percentile of the N (0, 1) distribution.
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frequent. In all cases, the nonparametric likelihood tests (including EL tests) shows better
performance in the null rejection frequencies. The rejection frequencies varies between
7.20% g = 1152) and 17.27% ( = 48) for Wald, while it varies between 5.10% (n=1152)
and 8.54% ( = 48) for EL and between 4.68%1f = 1152) and 8.83% (1 = 48) for NL.

We also analyze the power properties of the proposed tests under the alternative hy-
pothesis. We compare the calibrated powers of three tests (i.e., the rejection frequencies of
these tests where the critical values are given by the Monte Carlo 95% percentiles of these
test statistics under the data generation process satisfying the null hypothesis). Table 5
shows that the nonparametric likelihood tests is slightly less powerful than Wald. Since
the nonparametric likelihood tests have better null rejection properties than Wald, these
power properties characterize a tradeo! between the null rejection and power properties
of Wald-type and nonparametric likelihood tests.

6.3. Simulation 3: Noise robust test. In this subsection we evaluate Pnite sample
properties of the noise robust nonparametric likelihood tests. We adopt simulation designs
considered in Jacocet al. (2009). In particular, we consider two dilerent models for the
X processes. The brst model is the constant volatility model

Xy = Xo+ "Wy,

%___
with " =0.2/ 252 The second model is the stochastic volatility model of Heston (1993):

dX;
d+

(U" +/2)dt+ ",dBy,
(%" +)dt+ &+7/2dw,,

where+ = "7, n=0.05252 , =5/252 %= 0.04 252 &= 0.05252and Corr(B,W) =

" 0.5. As for the microstructure noise, we assume thad, is i.i.d. and followsN (0, 0.0005%).
We compare three methods to construct two-sided 95% conbdence intervals: (i) the

Wald-type interval (Wald), 3 (ii) empiri%al likelihood (EL) and (iii) nonparametric likeli-

hood (NL) with &= " 1and( = " 1+ -2. For the choice of the block lengthK , we used

3
= *n" %4 50 that c, % following Jacodet al. (2009).

6
Table 6 gives the actual coverage rates of all the intervals across 10,000 replications for
eight di'erent sample sizes:n =23400, 11700, 7800, 4680, 1560, and 780. The Wald-type
intervals tend to undercover for both models. The degree of undercoverage is especially
large when sampling is not too frequent. The nonparametric likelihood intervals (including

EL intervals) outperform the Wald-type interval in all cases.

3The 100(1" ! )% asymptotic conbdence interval for the integrated volatility # is given by Cly = {#:
Tn(#) & $2, }, where T, (#) = %& and $2, is the (1" ! )-th quantile of the $2 distribution.
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7. Real data example

We consider tick prices obtained from TickData consisting of intra-day quotes of Alcoa,
American Express, Baxter, Citigroup, Dow, Gilead, Goldman Sachs, Intel Corporation,
Met, Microsoft, Nike, Pbzer, Verizon and Yahoo from January 2, 2001 to November 15,
2010, which corresponds to 2472 trading days.

Table 7 reports the mean and standard deviation of daily returns based on 5-min intra-
day returns. We can observe common features across assets belonging to the same market
segment. Negative returns are likely linked to the extraordinary events of the recent
Pnancial crisis in 2008-9. Furthermore, Table 8 reports the percentage of days identiped
with jumps for the period under investigation. As in the Monte Carlo analysis presented in
the previous section, we consider three methods to test for jumps: (i) the Wald-type test
(Wald), (ii) (signed root) empirical likelihood ’gEL), and (iii) (signed root) nonparametric
likelihood (NL) with &= "1land( =" 1+ ?5 In line with the Monte Carlo Pndings,
we note that the Wald test tends to over detect the jumps. Indeed, the percentage of
days identibPed with jumps is always larger thar21% EL and NL implies very similar

empirical Pndings. Using nonparametric likelihood procedures, the percentage of days
identiPed with jumps is always smaller tharl3%

Appendix A. Tables

n Wald EL NL Wald EL NL
GARCH(1,1) ditusion Two-factor dilusion
12 80.83 84.80 84.48 73.24 78.45 78.02
24 86.97 90.34 90.03 80.61 85.65 85.23
48 90.41 92.76 92.46 85.76 89.38 89.04
288 94.55 94.98 94.92 93.52 94.50 94.35
1152 94.72 94.83 94.79 9491 95.31 95.22

Table 1. Coverage probabilities of nominal 95% conbdence intervals for
integrated volatility with leverage and drift
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95% 99%  99.9% 95% 99% 99.9%
n GARCH(1,1) dilusion Two-factor dilusion
12 80.64 99.85 100 91.86 99.96 100
24 6.94 43.60 95.44 40.61 79.32 99.02
48 0.01 047 7.21 8.75 25.59 58.14
288 O 0 0 0 0.04 0.23
1152 0 0 0 0 0 0

Table 2. Frequencies (measured by percentages) of negative left endpoints
of 95% 99% and 99.9% Wald conbdence intervals for integrated volatility
with leverage and drift

Wald

EL

NL

BNL

12
24
48
288
1152

12
24
48
288
1152

Constant volatility

81.20
87.63
91.04
94.24
95.27

85.18
90.66
93.54
94.85
95.39

84.77
90.35
93.14
94.78

87.46
92.00
94.08
94.89

95.34 95.40

GARCH(1,1) dilusion

81.39
87.51
90.98
94.44
95.07

85.29
90.89
93.51
94.97
95.18

85.02 87.73
90.61 92.04
93.19 93.89
94.87 94.97
95.14 95.18

Two-factor dilusion

12
24
48
288
1152

73.74
80.90
86.05
92.83
94.22

77.97
85.72
86.69
94.08
95.04

77.63
85.33
89.45
93.95
94.99

80.87
87.06
90.32
94.08
95.02

Table 3. Coverage probabilities of nominal 95% conbdence intervals for

integrated volatility with no drift and no leverage
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n Wald EL NL Wald EL NL
without diurnal elects with diurnal elects
48 17.27 8.54 8.83 16.24 7.82 8.04
96 13.34 6.79 6.98 1256 6.57 6.80
288 9.83 5.94 6.08 9.76 5.70 5.80
576 8.70 5.79 5.85 858 559 542
1152 7.53 5.38 5.27 7.20 510 4.68

Table 4. Rejection frequencies of tests at 5% level

Wald

n EL NL Wald EL NL
without diurnal elects with diurnal elects
48 78.40 7259 7259 75.86 68.05 68.23
96 84.93 80.94 80.94 8275 75.86 76.22
288 90.19 86.75 86.93 87.47 83.12 83.30
576 92.01 88.92 89.65 91.28 85.66 85.66
1152 93.10 90.38 90.74 91.65 88.38 88.56
Table 5. Calibrated power
n Wald EL NL Wald EL NL
constant volatility Heston Model
780 85.79 89.33 89.18 85.41 89.52 89.30
1560 90.41 92.40 92.28 91.36 93.55 93.33
4680 93.19 94.40 94.26 94.06 95.26 95.15
7800 93.84 94.53 94.46 94.88 95.50 95.41
11700 94.34 95.19 95.11 95.18 95.74 95.66
23400 94.78 95.26 95.22 95.54 95.79 95.77

Table 6. Coverage probabilities of nominal 95% conbdence intervals for

integrated volatility

17



Mean 10 4 SD- 10 *

Alcoa -6.17 215.13
American Express 3.48 201.84
Baxter 3.16 135.96
Citigroup -1.82 266.59
Dow 4.37 184.85
Gilead -7.68 207.68
Goldman Sachs 2.67 200.02
Intel Corporation -2.12 195.60
Met -5.90 216.37
Microsoft -5.47 153.43
Nike 7.36 149.27
Pbzer -6.70 139.92
Verizon 7.44 148.23
Yahoo -3.69 249.70

Table 7. Mean and standard deviation of daily returns based on 5-min
intra-day returns for the period 20022010

Wald EL NL

Alcoa 23.68 8.70 9.95
American Express 22.15 8.07 9.18
Baxter 25.29 9.90 11.21
Citigroup 24.32 10.87 12.04
Dow 25.13 9.74 11.01
Gilead 23.64 7.16 8.28

Goldman Sachs 2159 5.68 6.67
Intel Corporation 22.99 8.45 9.87

Met 25.68 11.49 12.60
Microsoft 23,51 9.82 11.03
Nike 24.80 8.90 9.86
Pbzer 23.11 10.63 12.04
Verizon 2477 8.66 9.94
Yahoo 25.25 9.98 11.13

Table 8. Percentage of days identiPed with jumps for the period001:2010
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WEB APPENDIX TO OEMPIRICAL LIKELIHOOD FOR HIGH
FREQUENCY DATAO

Abstract. In this appendix, we present proofs of the theorems in the paper.

Appendix A. Mathematical Appendix

l n
Throughout the appendix, letRq = n¥2 1" " |ri|%, g, = !3du, and pg = E|z[
with z! N(O,1) for g > 0.

A.l. Proof of Theorems 1 and 5. Theorem 1 is a special case of Theorem 5. Since
the proof is similar, we focus on the case 6f# = #1,0. From Barndor!-Nielsen et al.
(2006, Theorem 1), Assumption X guarantees

Rq $ HqZq, (A1)
for any g > 0. This implies R, $ RS Hal3, and
3# R2$ 3# b, # 2$
o1y 2 §_M_ (A.2)

2 R4 2 VA 2A

| |
Letg = nr2# $,g=1" L, g,and¥=1" 1 ¢ By (A1) and Barndor!-Nielsen et
al. (2006), we obtain

#2 $!1/2(%)_ #2 $!1/2()0_
§H4b4 ng = §H4b4 n(Ro# 1) $ N(0,1), (A.3)
Y= R,# 26R, + 828 [, # B2, (A.4)
By these results combined withE[g?] < & for all i = 1,...,n, we can apply the same
argument to Owen (1988) to shownaxy- i~ , |%t+ &g| $ 0. Thus, by expanding
1% 1 1% 1
= (1+ %+ &nr2# $)7 =1, - (1+ %+ &nre# $)T(nr2# $)=0, (A5)
i=1 i=1

around (%, &= (0, 0), we obtain

& ##9' 'g+ Oy(n' 1),

%

%#(# +1)¢' g7 + Op(n' ?).
Based on these results, an expansion ‘af ($) around (%, &= (0, 0) yields

2 % - BRLE 11
" (9) = 1) {(1+ %+ &g)" #1} =¥ *( ng“+ Op(n 7).
i=1

Therefore, the conclusion follows by (A.2)-(A.4).
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A.2. Proofs of Theorems 2 and 3. Proofs of these theorems are similar to that of
Theorem 5 above.

First, we show Theorem 2. Letg = n|f m«1 [P 44 &|P~ ! c,!. By Barndor!-Nielsen,
Shephard and Winkel (2006, Theorem 1), we can replace (A.3) and (A.4) with
1"

(o) V2= g # N(0,1),

i=1
In

1 ’ ) )

= & # cpln! B3,
i=1

respectively. The remaining part is similar.

Next, we show Theorem 3. Letg = n(|F m+1 [P A4 &[P ! 7). Under the null

hypothesis of no jump (i.e. Y = X), we can apply the limit theorems in Barndor!-
Nielsenet al. (2006). Thus we can replace (A.3) and (A.4) with

Im In

(! 2 Glos ! ]+2G)m) Y2 g # N(O,D)
=1

i=1

1!"

= o # (Cp +33 ! 26,G)bn,
i=1

respectively. The remaining part is similar. Under the alternative of the presence of

jumps, Barndor!-Nielsen, Shephard and Winkel (2006, Theorem 1) implies th%t !

i=1 g
converges to a non-zero constant. Therefore, the test statisfl¢, diverges asn # $

A.3. Proof of Theorem 4. The proof is similar to that of Theorem 5 above. By Jacod
et al. (2009, Theorem 3.1), we obtain

#
nv2 Nk nl/z(p! !)2
- (Ga ' 1) = ——~ 0 # g2 (A.6)
nﬁ R4 - i R4 1

Also, by inspection of the derivations in Jacockt al. (2009), we can obtain
%1

%
3 pp 127 6 127t
ZKZD#P ? . USdS, EWZ#P I+ ? . Ust.
These results imply
& & |
L (gai ! 1)?! E(F@M R2) = | ZEF@Z i.f3+! y S 0+ 1 2+ EW#P 0.
Nk i=1 K2 2 K 2K2 2K2 K2 2

(A.7)
By (A.6) and (A.7), a similar argument to the proof of Theorem 5 yields

_ 36nY2R, ! F@Z{:: (g ! DY
R(h) = nKK2 R, : P:Ki(gKi! )2 +0p(1)#j -
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A.4. Proof of Theorem 6. Due to independence betweeh and W, the symbols such
asE[d and O,(9 mean the conditional expectation and stochastic order given the path of
I', respectively. Before analyzing Bartlett correctability of the nonparametric likelihood
statistic, we introduce further notation. We transform the moment function asm; =
V! 2(nr2t "y with V.= E[n' 130 (nr2! ")?] and debne

_1& _ _
Mk—ﬁ;miy # = E[A], A = B! #y,

fork =1,2,.... Note that Assumption H implies
#,=0, #,=1, Ay = Op(n* 3,

foreachk =1, 2,..., where the pbrst equality follows fronE[r?] = f(ii/!” i ! 2du, the second

equality follows by construction, and the third equality follows from Barndor!-Nielsenet
al. (2006, Theorem 2).

Based on the above notation, the nonparametric likelihood statistic is rewritten as
$-(")=L (W q...,wp), where

1 .
W = (L %t &m)?,
and %and & solves

1 n ) 1 1 n . 1
— 1+ %+ &m,)¢ =1, — 1+ %+ &m;)¢m; =0.
LS @ % am) LS @ o6 am)im

i=1 i=1
Expansions of these equations arountb+ &w = 0 and repeated substitutions yield ex-
pansions of%and & as follows

% = % (1+')A§+é' (L+")A! " )#3AT % (1+")A2A,
+%‘ (1+"')A3AZ! % (A )@+ )#HASAL + é' (1! )L+ ")A3A,
1 1
+§' {(1+')3+(1! ')A+ )#HE ! 5(1! )@+ )ar 2 )#4}A;1+ Op(n' ¥2).
and
& = 1A |1'1l'#A2 ‘A (A
= ! 5 (1! " )H#AT+ 1A2

1
'A A2+ g’ (L1 )#aATALL (L1 )ATA,

!%‘ { L+ )+ (@ )42 %(1! a2 )#4}A§+ Op(n' 2).



By inserting these formulae to an expansion af !,. (") around #+ $w; = 0, we obtain
n' 1!!|" (n)

1 1
AP+ (11 N&AT!L ATA,+ AZAZL (L1 W&ATA+ (11 WATAG
!" # " # " #
1 2

1 % %' '?2 1 % % % 9% % 2
+ T+ T+ 0 o+ D D I &2y oy Dy 2 Iy A2
4 2 2 4 4° 2 2 4 3 12 4 12° 2 4 & A
+Op(n!5/2).

& (g2 & (

— na/2! 1%n i/n 2 a 3 | RS .
Let @gn = N9~ =1 (i1 (¢du . For the term 5 1! R. » expansions around

R4 =364, and R, = " yield

# " # " #
:_3 11 R_% - 1‘3(@4”! "2+ :_L " R4 11 1 :_L_z R4 11 i
2 . R4 2 @4,n 2@4,n 3(@1,n . - 2@4|n 3@,n -
\/1/2II 1V 2V"2 1\/3/2"
! Al S—A?+ S A%+ 2 A A+ Oy(n' ¥2A9
@4,n ! 2@4,n ! 3@%’” ! 3 @gn v p( X )
Where3§T4m! 1= %V#Z:SBA1+ %%Az.

Consider the constant volatility case(; = ( overt " [0, 1]. In this case, it holds
#_
(2=, Cun = "2, Vv =2"2 & =2 2, & = 15. (A.10)

Then by (A.8) and (A.9), the expansion of the nonparametric likelihood statistia' 1T, (")
is written as

#_ #_
: 2 2 2 4 2 2
nIT. (") = A2 TR ZAZA+ —AIAZL T_S(19! 8%AS3A,
’ 3 3" 9 9 #
1 41 .5 3,
+31 DATAs+ ol 3%+ 9B+ 12 AT+ Op(n' 7).

As in Baggerly (1998), to achieve Bartlett correction, we investigate the conditions &
and ' where the third and fourth cumulants of the signed root of the above expansion
vanish at sulciently fast rates.

First, we consider the third cumulant. After some algebra, the signed root form is
obtained asn' 'T,» (") = (Sy+ S+ S3)? + Op(n' ¥2), where

1 2
S = Ay, S =1 ZAA, ! ?%/%,

and S; = Op(n' ¥?) is not displayed since it is not used to compute the third cumulant.
Based on this form, the third cumulant ofS; + S, + S; is obtained as

)3(%,") = E[S}]+3E[S?S;]! 3E[SAE[S:]+ O(n' 3),



where by Lemma 2,
[ !

E[Sf] = 2 n'2+0(n'3),  E[SIS]=" 2( +2)n' 2+ O(n'?),
. z | |
E[SIE[S,] = " ?(! +2)n' 2+ O(n' ).
Therefore, if! = " 1, then the dominant term of the third cumulant vanishes and it holds
"5(" 1, #) = O(n'3).

Next, we set! = " 1 and analyze the fourth cumulant. After some algebra, the signed
root form of n' 1T,. ($) with ! = " 1 is obtained asn' T, 1. ($) = (Ty + To + T3)?2 +
Op(n' ¥2), where |

T.= A T—"}AA+—§A2
1- 1 2 — 3 1M2 3 1

6 4 2 18
Then the fourth cumulant of T; + T, + T3 is obtained as

L
1 11 2 1 3 3. 1
Ts= ZALAS" TA§A2+ §A§A3+ <_#2+ —H" —) A3,

"A("L#) = E[TH+4E[TIT,]+4E[T3Ts]" 3(E[TE])?
+6E[T2TZ]" 4E[TIE[T,]" 12E[T2TE[T,]" 6E[TE[TZ]
+12E[TZ(E[T2])?" 12E[TAE[T.To]" 12E[TAE[T, T3]+ O(n' %),
where by Lemma 2,
E[T/=3n'2+12n'3+ O(n'%), E[T’T,]=" 7_36n! 3+ 0 Y,

2 | | |
= 175(3#%6#" 5)}n- *+om'Y), (EMAP=n'?

Tl = {
E[T?TA] = %Gn! 3+ 0(n' Y, E[T3E[T,] =" gn! 3+ 0(n' Y,
E[TZTIEMT] = o' *+ O(n' %), ETZEIT]= an' >+ O(n' %),
ETAED = on' >+ 0(n' ), ETZEMT]=" 2n' *+ o(n' %),
E[T7IE[T,Ts] = {%6+ Z (3#2+6#" g)}n! +0(n' Y.

Therefore, if
o#’ +18#+4=0,



Finally, by setting y=—-1and¢ =-1+ \/?5 it holds

Efi=n"t EILDI= g+ 00n7)

4 2
BT = an 2+ 00 %), EINTI= 22+ 0,

and thus the second cumulant used to compute the Bartlett correction factor is obtained
as

nE[(Ty+ T, +T3)* =1+ 3n 1+ O(n2).

A.5. Proof of Theorem 7. We now drop the assumption of constant volatility. In the
general case, the identities in (A.10) do not apply. Thus the objects such &5 a3, and
a4 become unknown and need to be estimated. In this case, by (A.8) and (A.9), the
expansion of the nonparametric likelihood statistie: 7., 4(0) is written as

1 1 1
n T, 4(0) = ECA% + 661/2 {01/2(1 — Yag + 2d%? — 6d1/2} A3+ éc(d —3)A3A,

1 1
1
+Ecl/2 {c?(d — 9)(1 — )z + 18dY2 + 9cd"? — 64%% — 4cd®/?} A3A,

1
+o {2620%2(d — 3)(1 — 7)az — 9¢ + 12¢d — ded? + 9ef} A + O, (n~%?),

Vv 6?
c= =, d=—,
O4n O4n

f:(E+Z+ﬁ_¢_2>+(E_Z+ﬁ_¢_2>a§+<_i+1+7_2_7_¢+¢_2)044.

4 2 2 4 4 2 2 4 12 4 12 2 4

First, we consider the third cumulant. After some algebra, the signed root form is
obtained asn1T, 4,(0) = (S1 + Sz + S3)? + O,(n~°/?), where

V2 V2 V2
= 2= 1 {21 — y)as — 6dY2 + 243/} A2 + E(;1/2(d — 3)A3 45,
and Sz = 0,(n~%2) is not displayed since it is not used to compute the third cumulant.
Based on this form, the third cumulant ofS; + S5 + S5 is obtained as

S]_ Cl/ZAl, S

ka(7,¢) = E[S7]+3E[S1S;] — 3E[ST]E[S:] + O(n ™),
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where by Lemma 1,

22

E[S?] = F {03/2(13 + 9q'/? — 2d3/2} n24 O(n_3)7
2
E[S%SQ] = \1/_0_ {50_1/2(1 . '7)043 . 263/2043) . 18d1/2 + 4d3/2} n—2 + O(n—?,)7
2
E[S%]E[SQ] == \3/_; {50_1/2(1 o ’Y)QS o 203/2043 o 18d1/2 + 4d3/2} n—2 + O(n_g).

Therefore, if we set v as

4 ) 1201/2d1/2 8 Cl/2d3/2

*_q]_22_ 2% A1l

7 575 @ B a (A.11)
then it holds s3(7*,¢) = O(n™3). Note that under the constant volatility case, the
equation (A.11) reduces to v* = —1. In the general case, however, v* depends on unknown

objects ¢, d, and ag. By replacing these objects with consistent estimators, we propose

the data-dependent value of v:

C_ 4, 12 &1/2q1/2 N ] ¢1/243/2
= —_ —C - — R—
! 55 a; 15 a5

(A.12)

A Y 7 2 A S n 9 n
where ¢ = &YT’ d = (}?17, Gy = VIRLSE (r? —0)%, V = L3 (nr? — 6)?, and
61 = 3(V +62). Since 4 — 7" = O,(n~"/?), we need to take the estimation error of 4
into account for the second-order analysis below.
Next, we rederive the stochastic expansion of n™'T5 ,(#) with 4 in (A.12). By expanding

4 around (¢, d, a3) = (¢, d, ag), it holds

¥ =7*+ gAs + hAs + Op(n"),

where
8 , 8 . 6 cL/2q1/2 4 3/241/2 4 M2q3/2 16 3/243/2
9= BB 5 m 5 e 15 s B a
4 /24172
h = —(9—2d
15( ) a3

By using this expansion of 4, we can rewrite the expansion of the nonparametric likelihood

statistic as
n T 4(6)

1 1 1
= 50%1% + 601/2 {01/2(1 — a4 2d3% — 6d1/2} A3+ Ec(d —3)A2A,

1 1

1
+ECU2 {01/2 ((d—9)(1 —~*) — 3g) as + 18d"/* — 6d*/ + 9cd"/? — 4cd3/2} A3 A,

1
+13 {2¢"2dM%(d — 3)(1 — 7")ag — 9c + 12cd — 4ed? + 9ef} A} + O, (n~>/?)(A.13)
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After some algebra, the signed root form is obtained as n™'Ts 4,(6) = (T1 + To + T3)* +
0,(n=%?), where

2
Tl = §01/2A1, T2 = jA% + kAlAQ,

Ty = 1A A5+ qATAs + mAT A + ((9) A3,

and
V2 V2
. /201 _ 3/2 _ @1/2 — V200 —
J kD) {?(1 = 7)as + 2d 6d'/?} k 12 ¢ (d—3),
2 2
| = 3—‘/(;&/2(9 ~3d - ed) — %cm(d _3)?,
V2 1/2 1/2 5/2 1/2 3/2 1/2
m = E{c (d —15)(1 — v)as + 18d"* — 2d°? + 18¢d"/? — 8cd*? — 6¢'/*gas }
V2
q = 501/2(1 — v — haz),
V2 1/2 1/2 1/2 1/2 12 1 1/2 2 2 ~1/2 33 ~1/2 —1/2 2
= — C — JC C — 4C — —=C —7Y) G3 —C — JC C .
(o) S 4967 =06 112620 — 4P — 11— 4] &3 — 9¢V/2d + 672

By the definition of v*, we can show that the third cumulant of T} + Ty + T3 satisfies
k3(¥,#) = O(n=3). After lengthy calculations, by using the expectations in Lemma 1, the

fourth cumulant
ka(7,0) = B[] +4E[TVT] + AB[TY T3] — 3(E[T?))?
+OE[TET]) — AE[TY|E[Ty) — 12E[TI T3 E[Ty] — 6E[T? E[T3]
+12E[T?)(E[Ty])?* — 12E[T?|E[INTy] — 12E[T?|E[T\ T3] + O(n™%)

is written in the form of

ka(¥,0) = &C() + & +O(n™Y), (A.14)

where & and & are implicitly defined and do not depend on ¢. Although ((¢), & and &
contain unknown objects ¢, d, and as, they can be estimated by ¢, aAl, and &gz, respectively
(denote by (o), & and &). Then if the solution exists, the ideal value ¢ is given by a
solution of

££4(0) + & =0. (A.15)
It should be noted that in the expansion (A.13), ¢ appears only in the term f. Therefore,
the estimation error ¢ — ¢ is of negligible order O,(n~%/2), and it holds x4(7, $) = 0(n™),
i.c., the dominant term of the fourth cumulant vanishes if we choose 4 and ¢ as in (A.12)

and (A.15), respectively.



Finally, we compute the second cumulant and Bartlett factor. Using the expectations

in Lemma 1, we have
E[T?] = gE[Af] =n"',  E[NT]=rn"%+0n?),
E[T;]=sn?+0n™?),  E[NOT5]=tn?+0n"?),

iin q/2
where (recall G, = n?/>~" 370, <f(i/—1)/n Uidu) )

ro= 2PV 66, VY 4 k(958 — 2056,) )
s = 12563,V + 2jk(7264,,56,, — 24053 ,,)V "
+k%(19264,,05 5, + 28853, — 28805406, + 486°57 )V ™,
t = 24v2c'21(464,65, + 667, — 604,06, + 0°53,,)V "
+18v/2¢"2q(1564 155 — 6054,,56., + 6°53,,)V >
+6v2c 2V 2 Im(664,66, — 2057 ,,) + C(0)57, V2
Thus, the second cumulant used to compute the Bartlett correction factor is obtained as
nE[(Ty + Ty +T3)* =1 +an ' +0(n™?), (A.16)

where a = 2(r +t) + s.

A.6. Lemmas . Here we present some approximation formulae for the moments of Aj.
Lemma 1 is derived under Assumptions X and H, which allows non-constant volatility.
Lemma 2 is derived for the constant volatility case. The proofs are available from the

authors upon request.



Lemma 1. Suppose Assumptions X and H hold true. Then

E[A]]=0,  E[Al]=2b4,V' 'n't,  E[A}] =886,V ¥7n' 2,

E[A]] =127 ,V' ®n' 2+ 48, V' °n' 3, E[A]] = 160k, 0186, V' ¥*n' °+ O(n' %),

E[AS] =120,V °n' °+ O(n' %),  E[A1A2] = (12B6n ! 4"b4)V' ¥%n'*

E[A2A,] = (72bg, ! 16'W5,)V' °n' 2,

E[ASAL] = (72840060 ! 24'95,)V' ¥%n' 2+ O(n' 3),

E[ATA;] = (3841%,, + 86401555 ! 320'040185,)V' °n' 2+ O(n' %),

E[AJAZ] = (72015 65, ! 240'%5,)V' "2n' 3+ O(n' %),

E[A1A3] = (90bg, ! 36'Ws, +6"%y,)V' 2n' L,

E[AJAs] = (5400405 | 21610185, + 36”25 ,)V' °n' 2+ O(n' 3),

E[ATA3] = (5400, s, | 21601, s, +360"21; )V’ *n' 3+ O(n' %),

E[AJAS] = (19215 n + 28815, ! 288'ly 105, + 48”21 ,,)V' °n' 2+ O(n' %),

E[AIAS] = (11524 s, + 3456la 0165, | 288015 , 6, + 480" %k ,)V' “n' 3+ O(n' *).
Lemma 2. Suppose Assumptions X and H hold true. Furthermore, assume that= !
overt" [0,1]. Then

E[A1] =0, E[Af]=n'"1, E[AJ] = #3n' 2, E[AT]=3n'2+(#,! 3)n'?,

E[A3] = 10#3n' 3+ O(n' %), E[AS]=15n' 3+ O(n' %),

E[A1A5] = #3n' L, E[AZA,] = (#4! 1)n'?

E[ASA,] =3#3n' 2+ O(n' 3), E[AIA] = (6#,+4#3! 6)n' 3+ O(n' Y,

E[ASA;] = 15#3n' 3+ O(n' %), E[A1Az] = #4n' 1

E[ASA;] =3#4n' 2+ O(n' 3), E[A3A3] = 15#,n' 3+ O(n' 4,

E[AJAZ] = (#,+2#5! 1)n' 2+ O(n' 3), E[ATAZ] = (3#4+12#3! 3)n' 3+ O(n' 4.
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