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Abstract. In the past few decades, much progress has been made in semiparametric model-

ing and estimation methods for econometric analysis. This paper is concerned with inference

(i.e., confidence intervals and hypothesis testing) in semiparametric models. In contrast to the

conventional approach based on t-ratios, we advocate likelihood-based inference. In particu-

lar, we study two widely applied semiparametric problems, weighted average derivatives and

treatment effects, and propose semiparametric empirical likelihood and jackknife empirical like-

lihood methods. We derive the limiting behavior of these empirical likelihood statistics and

investigate their finite sample performance via Monte Carlo simulation. Furthermore, we ex-

tend the (delete-1) jackknife empirical likelihood toward the delete-d version with growing d and

establish general asymptotic theory. This extension is crucial to deal with non-smooth objects,

such as quantiles and quantile average derivatives or treatment effects, due to the well-known

inconsistency phenomena of the jackknife under non-smoothness.

1. Introduction

Recent years have witnessed a surge of research using semiparametric and nonparametric
modeling techniques to answer empirical economic questions. This is partly because economic
theory seldom suggests parametric functional or distribution forms for economic data and partly
because of the sharp increase in high-quality and large-scale data sets combined with declining
computational cost.

This paper is concerned with inference (i.e., confidence intervals and hypothesis testing) in
semiparametric models. The conventional approach to conduct inference on parametric or finite-
dimensional objects of interest is based on t-ratios. Typically the confidence interval of a param-
eter is formed by ‘estimate± 2 · standard error’, where the standard error is computed by taking
a sample counterpart of the limiting variance formula of the corresponding semiparametric esti-
mator. A major advantage of this conventional approach is its convenience: it requires only two
inputs, the estimate and standard error. However, there are at least two concerns regarding this
approach. First, by construction, the confidence interval is always centered around the param-
eter estimate. This is because we determine the shape of the confidence interval based on the
limiting normal approximation. This shape constraint on the confidence interval may not be in-
nocuous in certain situations, such as inference on the variance. Second, it should be emphasized
that the conventional confidence interval involves another estimation problem: estimation of the
limiting variance. Since the asymptotic variances of semiparametric estimators usually involve
nonparametric components, their estimation or computation requires additional nonparametric
fit, which demand additional smoothing parameters, such as bandwidths and series lengths.
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In this paper, we advocate an alternative inference approach based on semiparametric or
nonparametric likelihoods. If the distribution form of the data is known to the researcher,
it is possible to invert the likelihood ratio statistic, say `(θ), to construct the confidence set
{θ : `(θ) ≤ c} for some critical value c based on the chi-squared distribution. This construc-
tion obviously circumvents the above critiques on the conventional confidence intervals based
on t-ratios. The shape of the likelihood-based confidence set is determined by data emphasis
through the likelihood function. Also, the construction does not involve the standard errors.
Theoretical properties of the parametric likelihood methods are summarized in Severini (2000).
A remarkable feature of the likelihood ratio statistic is it converges in distribution to the chi-
squared distribution (called Wilks’ phenomenon) so that the critical value c does not contain
any unknown objects.

Since Owen’s (1988) discovery of empirical likelihood, numerous works extended this likelihood-
based inference approach toward semiparametric and nonparametric econometric and statistical
problems. For example, Owen (1988) proposed empirical likelihood inference on population
means (without specifying the distribution form) and established Wilks’ phenomenon. DiCiccio,
Hall and Romano (1991) showed that the empirical likelihood ratio statistic admits higher-order
refinement, called the Bartlett correction. We refer to Owen (2001) for a review on the method
of empirical likelihood.

This paper focuses on two widely applied semiparametric problems in econometrics, weighted
average derivatives and treatment effects, and explores empirical likelihood methods for these
problems. Average derivatives are widely used to estimate parameters in single index models
(e.g., a binary choice model with an unknown link function) and marginal effects of covariates in
some nonseparable models (see, Section 2.1 for some references). Treatment effect analysis is one
of the most intensively studied topics in econometrics and statistics (see, Section 3.1 for some
references). A common feature of these objects is that both are written in the form θ = E[g(Z, h)]

with unknown functions h. Based on this expression, the object θ is often estimated by the
sample average n−1

∑n
i=1 g(Zi, ĥ) using a preliminary nonparametric estimator ĥ. Without h, the

problem reduces to inference on the population moment E[g(Z)] with known g, and the empirical
likelihood statistic converges to the chi-squared distribution (Wilks’ phenomenon). However, if
we apply the same method to the plug-in moment function g(Zi, ĥ), Wilks’ phenomenon may
not emerge. Indeed the empirical likelihood ratio generally converges to a weighted chi-squared
distribution (Hjort, McKeague and van Keilegom, 2009), where the weights involve unknown
nonparametric objects to be estimated. An obvious reason for this is the influence from the
estimation error of ĥ.

This paper employs two modifications of empirical likelihood to recover Wilks’ phenomenon
for average derivatives and treatment effects. The first approach, called semiparametric empirical
likelihood (Bravo, Escanciano and van Keilegom, 2015, and Matsushita and Otsu, 2016), mod-
ifies the moment function by adding a correction term to ‘undo’ the influence of ĥ − h. Bravo,
Escanciano and van Keilegom (2015) developed a general theory of semiparametric empirical
likelihood for semiparametric two-step estimators. Matsushita and Otsu (2016) applied this ap-
proach to semiparametric three-step estimators investigated in Hahn and Ridder (2013). We
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apply the semiparametric empirical likelihood method to the weighted average derivatives and
derive Wilks’ phenomenon from primitive conditions. Another interesting finding is that semi-
parametric empirical likelihood inference does not require undersmoothing for the bandwidth
parameter. In contrast, conventional (or bootstrap) inference based on the estimator or t-ratio
typically requires undersmoothing.

The second approach, called jackknife empirical likelihood (Jing, Yuan and Zhou, 2009, Mat-
sushita and Otsu, 2017), uses so-called jackknife pseudo-values as a moment function to construct
the empirical likelihood. In the jackknife method (Quenouille, 1956, and Shao and Tu, 1995, for a
review), the jackknife (bias-corrected) estimator and variance estimator are given by the sample
average and variance of the pseudo-values, respectively. Therefore, the jackknife pseudo-values
may be treated as if they are sample observations (Tukey, 1958). Jing, Yuan and Zhou (2009)
employed this idea to construct the empirical likelihood and applied it to one- and two-sample
U-statistics. We note that their results are confined to U-statistics with fixed kernels and do
not cover statistics with varying kernels because of smoothing parameters. The general theory
of jackknife empirical likelihood for semiparametric estimators is developed by Matsushita and
Otsu (2017). This paper applies their general results to weighted average derivatives and treat-
ment effects and confirms Wilks’ phenomena in these contexts (i.e., convergence of the jackknife
empirical likelihood statistics to the chi-squared distribution).

The contributions described so far are applications of the general theory of semiparametric and
jackknife empirical likelihood methods to important econometric problems. Another contribution
of this paper is to generalize the existing delete-1 jackknife empirical likelihood method to the
delete-d version, where d grows with the sample size, and to study its general asymptotic property.
It is known that the delete-1 jackknife variance estimate may be inconsistent for non-smooth
objects, such as sample quantiles and quantile average derivatives or treatment effects. Shao
and Wu (1989) tackled this problem and showed that the delete-d jackknife can recover the
consistency of the variance estimate. We establish an analogous result for the delete-d jackknife
empirical likelihood and characterize a trade-off between the smoothness of the estimator of
interest and the growth rate of d. Intuitively, the less smooth the estimator is, the more we
delete.

This paper is organized as follows. In Section 2, we consider weighted average derivatives.
After introducing the basic setup in Section 2.1, Sections 2.2 and 2.3 discuss the semiparametric
and jackknife empirical likelihood methods, respectively. Section 3 discusses the semiparametric
and jackknife empirical likelihood methods for the average treatment effect. Section 4 outlines
the general theory of the delete-d jackknife empirical likelihood. In Section 4.1, we mention some
applications to quantile average derivatives and treatment effects. In Section 5, we report Monte
Carlo simulation results. Finally, Section 6 concludes.

2. Average derivative

2.1. Setup. The setup for this section is introduced as follows. Suppose we observe an in-
dependent and identically distributed (iid) sample {Yi, X ′i}ni=1 of (Y,X ′), where Y is a scalar
dependent variable and X is a k-dimensional vector of continuously distributed explanatory
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variables.1 Let m(x) = E[Y |X = x] be the conditional mean or regression function and
∇m(x) = (∂m(x)/∂x(1), . . . , ∂m(x)/∂x(k))′ be its partial derivatives. In this section, we are
interested in the weighted average derivative:

θ = E[w(X)∇m(X)], (2.1)

where w is a known scalar weight function.
The object θ appears in various contexts in empirical studies. As a popular example, consider

the single index model P{Y = 1|X = x} = G(x′β) for the binary dependent variable. If the
function G is known (e.g., the probit or logit), then the parameters β can be estimated by the
method of maximum likelihood. However, if G is unknown to the researcher (i.e., the model is
semiparametric), we cannot implement maximum likelihood estimation. In this case, by noting
that m(x) = G(x′β), the average derivative in (2.1) can be expressed as

θ = E[w(X)∇G(X ′β)]β,

where ∇G is the derivative of G. Therefore, θ is proportional to β (note: E[w(X)∇G(X ′β)] is
scalar). Since β is identified only up to scale, the above expression can be used as a basis to
construct an estimator for the slope parameters β.

As another example, consider the nonseparable model Y = g(X,U), where X and a vector of
unobserved variables U are independent. In this case, the average derivative θ may be expressed
as

θ = E[w(X)∇1g(X,U)],

where ∇1g(x, u) = (∂g(x, u)/∂x(1), . . . , ∂g(x, u)/∂x(k))′ is a vector of the partial derivatives with
respect to x. Thus, θ is interpreted as the weighted marginal effect of X averaged over X and
U .2

In order to estimate θ, we introduce an alternative representation of (2.1). Let f be the
probability density function of X. Under certain smoothness conditions (see Assumption A (i)
below), an application of multivariate integration by parts yields

θ =

∫
∇m(x){w(x)f(x)}dx = −

∫
m(x){f(x)∇w(x) + w(x)∇f(x)}dx

= E[Y s(X)], (2.2)

where s(x) = −∇w(x) − w(x)∇f(x)f(x) . This alternative representation suggests that the average
derivative θ can be estimated by the sample average using nonparametric estimates of the function
s(·), that is

θ̂ =
1

n

n∑
i=1

Yiŝ(Xi), (2.3)

1If X contains discrete variables such as dummies, the expectations below are understood as conditional expec-
tations for each category of the discrete variables.
2Stoker (1989) proposed various tests for functional forms of m(x), such as homogeneity, additivity, and symmetry
of derivatives, based on the average first and second derivatives of m(x). Our empirical likelihood approach can
be extended to test such hypotheses.
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where ŝ(·) is a sample counterpart of s(·) given by

ŝ(x) = −∇w(x)− w(x)
∇f̂(x)

f̂(x)
, (2.4)

f̂(x) = 1
nbk

∑n
i=1K

(
x−Xi
b

)
is the nonparametric kernel density estimator of f(x) with the

(differentiable) kernel function K(·) and the bandwidth b, and ∇f̂(x) is the vector of its partial
derivatives with respect to x.

The average derivative has been studied extensively in the literature of semiparametric econo-
metrics and statistics (e.g., Stoker, 1986, Härdle and Stoker, 1989, Härdle et al., 1992, Newey
and Stoker, 1993, and Horowitz and Härdle, 1996), and has been applied in various empirical
studies (e.g., Stoker (1989) for cost functions, Härdle, Hildenbrand and Jerison (1991) for de-
mand analysis, Deaton and Ng (1998) for the effect of a tax and subsidy policy change, and
Coppejans and Sieg (2005) for nonlinear pricing in labor markets). One popular choice for the
weight function is w(x) = f(x) (called the density weighted average derivative), which implies
s(x) = −2∇f(x) and a simple estimator θ̂ = − 2

n

∑n
i=1 Yi∇f̂(Xi). This estimator was studied in

detail by Powell, Stock and Stoker (1989) and Cattaneo, Crump and Jansson (2010).

2.2. Semiparametric empirical likelihood. We first introduce the semiparametric empirical
likelihood approach by Bravo, Escanciano and van Keilegom (2015) and Matsushita and Otsu
(2016). To motivate this approach, let us begin with a naive application of the conventional
empirical likelihood approach. Suppose the derivative ∇m(·) is known. Then the empirical
likelihood function for θ = E[w(X)∇m(X)] is constructed as

`(θ) = −2 sup
{pi}ni=1

{
n∑
i=1

log(npi) : pi ≥ 0,
n∑
i=1

pi = 1,
n∑
i=1

pi{w(Xi)∇m(Xi)− θ} = 0

}
,

which converges to the chi-squared distribution under mild regularity conditions. Based on
this result, it seems reasonable to consider a feasible version of `(θ) by replacing ∇m(·) with a
nonparametric estimate ∇m̂(·). The empirical likelihood function with nonparametric plug-in
estimates was studied in Hjort, McKeague and van Keilegom (2009). In particular, they showed
that this plug-in version converges to a weighted chi-squared distribution in general, where the
weights involve unknown nonparametric objects to be estimated. In other words, the plug-in
empirical likelihood is not asymptotically pivotal and computation of the critical values requires
an additional estimation step. Obviously the major reason for the lack of pivotalness is the
presence of estimation error for ∇m(·) that will inflate the sampling variation in the moment
function, w(Xi)∇m̂(Xi)− θ.

The above consideration motivates us to modify the moment function to accommodate the
whole sampling variation in the sample moment n−1

∑n
i=1w(Xi)∇m̂(Xi) − θ (or equivalently

θ̂−θ). This idea has been investigated in the literature for different examples (e.g., Bertail, 2006,
Zhu and Xue, 2006, and Xue and Xue, 2011). Recently Bravo, Escanciano and van Keilegom
(2015) have established a general theory to correct the moment function by utilizing the pathwise
derivative with respect to the nonparametric component.
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We apply this approach to the weighted average derivatives. For the estimator in (2.3), it is
known that

θ̂ − θ =
1

n

n∑
i=1

ψi(θ) + op(n
−1/2),

under certain regularity conditions (e.g., Stoker, 1986, and Newey and Stoker, 1993), where

ψi(θ) = w(Xi)∇m(Xi)− θ + s(Xi){Yi −m(Xi)}. (2.5)

Indeed ψi(θ) is the efficient score function for θ because the variance E[ψi(θ)ψi(θ)
′] equals the

semiparametric efficiency bound of θ. Let m̂(x) = 1
f̂(x)

1
nbk

∑n
i=1 YiK

(
x−Xi
b

)
be the nonpara-

metric kernel regression estimator of m(x). The sample counterpart of the efficient score ψi(θ)
is given by

ψ̂i(θ) = w(Xi)∇m̂(Xi)− θ + ŝ(Xi){Yi − m̂(Xi)}. (2.6)

By using this counterpart as the moment function for θ, we propose the following empirical
likelihood function

`S(θ) = −2 sup
{pi}ni=1

{
n∑
i=1

log(npi) : pi ≥ 0,

n∑
i=1

pi = 1,

n∑
i=1

piψ̂i(θ) = 0

}
. (2.7)

Intuitively we add the correction term ŝ(Xi){Yi − m̂(Xi)} in (2.6) to construct the empirical
likelihood. The definition in (2.7) involves optimization for n-variables {p1, . . . , pn} and is less
practical. However, by applying the Lagrange multiplier method, we can obtain its dual form:

`S(θ) = 2 sup
λ

n∑
i=1

log(1 + λ′ψ̂i(θ)), (2.8)

which involves optimization only for k-variables λ. In practice, we compute `S(θ) using this dual
form. To study the asymptotic property of `S(θ), we impose the following assumptions.

Assumption A.

(i): {Yi, X ′i}ni=1 is an iid sample from (Y,X ′) ∈ R × X, where X ⊂ Rk is compact. For
some p ≥ 2, E[|Y |p|X = x] is bounded and E|Y |p < ∞. E[ψi(θ)ψi(θ)

′] is positive
definite, and it holds infx:w(x)>0 f(x) > 0. w(x) is known, bounded, and continuously
differentiable. For some s ≥ 2, f(x) is (s+ 1) times differentiable, and f(x) and its first
(s+ 1) derivatives are bounded and continuous. m(x) is continuously differentiable, and
f(x)m(x) and its first derivative are bounded.

(ii): K(u) is even, bounded, and twice differentiable with bounded derivatives, and satisfies∫
K(u)du = 1,

∫
K(u)uj11 · · ·u

jk
k du = 0 for any vector of non-negative integers (j1, . . . , jk)

such that j1 + · · · + jk < s and
∫
|K(u)|(1 + |u|s)du < ∞. Also,

∫
|K̇(u)|du < ∞,∫

|K̄(u)|du < ∞, where K̇(u) = ∂K(u)/∂u and K̄(u) = sup|r|≥u |∂(K(r), K̇(r)′)/∂r|,
respectively.

These assumptions are mild and standard in the literature (see, e.g., Cattaneo, Crump and
Jansson, 2013). The asymptotic distribution of the empirical likelihood statistic `S(θ) is pre-
sented as follows. The proof is given in Appendix A.1.
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Proposition 1. Consider the setup of this section and impose Assumption A. Suppose√
logn
nbk+2 = o(n−1/6) and bs = o(n−1/4). Then

`S(θ)
d→ χ2(k).

Remark 1. This proposition says that the semiparametric empirical likelihood statistic `S(θ) is
asymptotically pivotal and converges to the χ2(k) distribution. Based on this proposition, the
100(1− α)% asymptotic confidence set for θ is constructed as ELCSα = {θ : `S(θ) ≤ χ2

1−α(k)},
where χ2

1−α(k) is the (1− α)-th quantile of the χ2(k) distribution. This property of asymptotic
pivotalness is particularly attractive in our setup because the asymptotic variance of the average
derivative estimator θ̂ takes a complicated form due to the influence from the nonparametric
estimation of the density f and its derivative. Although we can express the asymptotic variance
of θ̂ based on the influence function in (2.5), whether we can precisely estimate the asymptotic
variance so that the resulting t-ratio is reliable for inference on θ is another problem entirely. In
contrast, our empirical likelihood statistic `S(θ) is internally studentized and circumvents such
asymptotic variance estimation.

Remark 2. When we are concerned with the slope parameters β in the binary choice model
P{Y = 1|X = x} = G(x′β), we need to introduce a normalization on θ (e.g., the first element
of θ equals 1 or |θ| = 1). For example, if we normalize θ = (1, ϑ′)′, then the empirical likelihood
(ratio) statistic for ϑ can be obtained as LS(ϑ) = `S(1, ϑ)−minϑ `S(1, ϑ). By applying a similar
argument to Smith (1997), we can show that LS(ϑ) converges to the χ2(d− 1) distribution.

Remark 3. If we are interested in the confidence set for some element of θ (say, the j-th element
θj), our empirical likelihood statistic LS(θj) can be obtained by replacing ψ̂i(θ) in (2.8) with

ψ̃i(θj) = w(Xi)∇jm̂(Xi)− θj + ŝj(Xi){Yi − m̂(Xi)},

where ŝj(x) = −∇jw(x) − w(x)
∇j f̂(x)

f̂(x)
and “∇j” means the derivative with respect to the j-th

element of x. By an analogous argument, we can show that LS(θj)
d→ χ2(1), and the confidence

set for θj is given by {θj : LS(θj) ≤ χ2
1−α(1)}. We note that in this case, the Lagrange multiplier

λ to compute LS(θj) is scalar, and the computational cost is cheaper than the vector case.

Remark 4. We note that the conditions on the bandwidth b to compute f̂ and∇f̂ do not require
undersmoothing, i.e., we only require nb4s → 0 instead of nb2s → 0. Thus, for example, the MSE
optimal bandwidth is allowed. This desirable property is known in the empirical likelihood
literature for several setups (e.g., Zhu and Xue, 2006, Bravo, Escanciano and van Keilegom,
2015). Proposition 1 shows that a similar result holds for the present setup. Intuitively, the
main term (i.e., w(Xi)∇m̂(Xi)− θ) and the adjustment term (i.e., s(Xi){Yi − m̂(Xi)}) in (2.6)
share the same form for the smoothing bias and these bias terms are automatically cancelled out.
We emphasize that in contrast to the empirical likelihood confidence set ELCSα, the Wald-type
(or t-ratio-based) confidence set using the asymptotic variance estimator based on the efficient
score function in (2.5) requires undersmoothing for the bandwidth.
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Remark 5. Another interesting finding is that the condition
√

logn
nbk+2 = o(n−1/6) on the upper

bound of the decay rate of the bandwidth is also weaker than the conventional requirement√
logn
nbk+2 = o(n−1/4). This point is clarified by Rothe and Firpo (2016) in the context of doubly-

robust estimators satisfying certain orthogonality conditions. In our setup, the general result of
Rothe and Firpo (2016) implies that the rate o(n−1/6) is sufficient for the asymptotic normality
of θ̂ because the second order variance term has a smaller order. We find that the same result
applies to our semiparametric empirical likelihood statistic.

Remark 6. Matsushita and Otsu (2016) extended the semiparametric empirical likelihood ap-
proach to the semiparametric three-step estimators considered in Hahn and Ridder (2013). In
the present setup, their method can be applied to the case where some elements of X are gen-
erated (or estimated) variables. In this case, we need to introduce an additional correction term
to the moment function ψi(θ) to recover the asymptotic pivotalness.

2.3. Jackknife empirical likelihood. We next consider an alternative inference approach
based on the jackknife empirical likelihood. To begin with, we introduce the conventional jack-
knife method. Let θ̂ be some estimator of θ and θ̂(−i) be its leave-i-out version, i.e., the estimator
computed by the sample without the i-th observation. Then the jackknife bias estimator for θ̂
is given by (n − 1)(θ̄ − θ̂) with θ̄ = n−1

∑n
i=1 θ̂

(−i). By subtracting this bias estimate, the
bias-corrected estimator is written as

θ̃ = θ̂ − θ̄ =
1

n

n∑
i=1

θ̃i,

where θ̃i = nθ̂ − (n − 1)θ̂(−i). The object θ̃i, called the jackknife pseudo-value (Tukey, 1958),
may be interpreted as an iid copy of θ̂. By using these pseudo-values, the jackknife estimate for
the variance of θ̂ is obtained by (n − 1)−1

∑n
i=1(θ̃i − θ̃)2. See Shao and Tu (1995) for a review

on the jackknife method.
These ideas of the jackknife estimate and its variance estimate suggest that the moment

functions for empirical likelihood may be constructed by those pseudo-values. Based on the
average derivative estimator θ̂ defined in (2.3), we consider the following jackknife pseudo-value

ζ̂i(θ) = n(θ̂ − θ)− (n− 1)(θ̂(−i) − θ), (2.9)

where θ̂(−i) is the leave-i-out version of θ̂, that is

θ̂(−i) =
1

n− 1

n∑
j 6=i

Yj ŝ
(−i)(Xj),

and ŝ(−i)(x) is defined as in (2.4) but using the leave-i-out kernel density estimator f̂ (−i)(x) =
1

(n−1)bk
∑n

j 6=iK
(
x−Xj

b

)
. By utilizing this jackknife pseudo-value as our moment function for θ,

we propose the jackknife empirical likelihood function

`J(θ) = −2 sup
{pi}ni=1

{
n∑
i=1

log(npi) : pi ≥ 0,

n∑
i=1

pi = 1,

n∑
i=1

piζ̂i(θ) = 0

}
. (2.10)
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By applying the Lagrange multiplier method, the dual form of `J(θ) is written as

`J(θ) = 2 sup
λ

n∑
i=1

log(1 + λ′ζ̂i(θ)). (2.11)

In practice, we compute `J(θ) by using this dual form. The asymptotic distribution of the
empirical likelihood ratio is presented as follows.

Proposition 2. Consider the setup of this section and impose Assumption A. Suppose√
logn
nbk+2 = o(n−1/4) and bs = o(n−1/2). Then

`J(θ)
d→ χ2(k).

The proof is similar to that of the delete-d jackknife empirical likelihood in Proposition 4
below. See also Matsushita and Otsu (2017) for details.

Remark 7. Similar to the semiparametric empirical likelihood, the jackknife empirical likelihood
statistic is also asymptotically pivotal and converges to the χ2(k) distribution. The 100(1−α)%

asymptotic confidence set is obtained by {θ : `J(θ) ≤ χ2
1−α(k)}. We can also show that both the

semiparametric and jackknife empirical likelihood statistics are asymptotically equivalent and
have the same local power function. However, we should note that Proposition 2 is obtained
under the assumption of undersmoothing (i.e., nb2s → 0). This is due to the fact that the
moment function ζ̂i(θ) for the jackknife empirical likelihood does not result in a cancellation of
the bias terms as in the semiparametric empirical likelihood. This is considered as a drawback of
the jackknife empirical likelihood. On the other hand, in Matsushita and Otsu (2017), we show
that a modification of the jackknife empirical likelihood achieves a desirable robustness property
for small bandwidths.

3. Treatment effect

In this section, we consider inference on the average treatment effect. Let Yi(1) and Yi(0)

denote potential outcomes of unit i with and without exposure to a treatment, respectively. Let
Di ∈ {0, 1} be an indicator variable for the treatment such that Di = 1 if unit i is exposed
to the treatment and Di = 0 otherwise. We observe Zi = (Yi, X

′
i, Di)

′, where Yi = DiYi(1) +

(1−Di)Yi(0) is the observable outcome, and Xi is a k-dimensional vector of covariates. We are
interested in the average treatment effect τ = E[Yi(1)− Yi(0)].

Under the so-called unconfoundedness assumption (i.e., Y (1) and Y (0) are independent of D,
conditional on X), the average treatment effect can be identified as

τ = E

[
Y D

ϕ(X)
− Y (1−D)

1− ϕ(X)

]
,

where ϕ(x) = P{D = 1|X = x} is the propensity score (see, Rosenbaum and Rubin, 1983).
Based on this expression, τ may be estimated as

τ̂ =
1

n

n∑
i=1

[
YiDi

ϕ̂(Xi)
− Yi(1−Di)

1− ϕ̂(Xi)

]
, (3.1)
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where ϕ̂(x) = 1
f̂(x)

1
nbk

∑n
i=1DiK

(
x−Xi
b

)
is the kernel estimator of ϕ(x) with f̂(x) = 1

nbk

∑n
i=1K

(
x−Xi
b

)
.

Hirano, Imbens and Ridder (2003) studied the asymptotic properties of τ̂ .
Based on the influence function of τ̂ , Bravo, Escanciano and van Keilegom (2015) investigated

the semiparametric empirical likelihood statistic as in (2.7) with the moment function

ψ̂ATEi (θ) =
YiDi

ϕ̂(Xi)
− Yi(1−Di)

1− ϕ̂(Xi)
− θ − {Di − ϕ̂(Xi)}q̂(Xi),

where
q̂(Xi) =

µ̂1(Xi)

ϕ̂(Xi)
− µ̂0(Xi)

1− ϕ̂(Xi)
,

and µ̂1(x) = 1
f̂(x)

1
nbk

∑n
i=1DiYiK

(
x−Xi
b

)
and µ̂0(x) = 1

f̂(x)
1
nbk

∑n
i=1(1 − Di)YiK

(
x−Xi
b

)
are

the kernel estimators of E[Y |X,D = 1] and E[Y |X,D = 0], respectively. Bravo, Escanciano
and van Keilegom (2015, Proposition E2) showed that under mild regularity conditions, it holds
`S(τ)

d→ χ2(1).
Here we focus on the jackknife empirical likelihood approach. Based on the average treatment

effect estimator τ̂ defined in (3.1), we consider the jackknife pseudo-value

ζ̂ATEi (θ) = n(τ̂ − τ)− (n− 1)(τ̂ (−i) − τ),

where τ̂ (−i) is the leave-i-out version of τ̂ , that is

τ̂ (−i) =
1

n− 1

n∑
j 6=i

[
YjDj

ϕ̂(−i)(Xj)
− Yj(1−Dj)

1− ϕ̂(−i)(Xj)

]
,

and ϕ̂(−i)(x) is a leave-i-out version of ϕ̂(x). Then the jackknife empirical likelihood function is
defined as in (2.10) and its asymptotic property is obtained as follows.

Assumption B.

(i): {Yi, Di, X
′
i}ni=1 is an iid sample from (Y,D,X ′) ∈ R×{0, 1}×X , where Y = DY (1) +

(1−D)Y (0) and (Y (1), Y (0)) ⊥ D|X. f(x) (the density function of X), ϕ(x), and µ1(x)
ϕ(x) −

µ0(x)
1−ϕ(x) are s times continuously differentiable with bounded derivatives, and infx∈X f(x) ≥
c > 0. ϕ̂(·), µ̂1(·), and µ̂0(·) are uniformly consistent over X .

(ii): K(u) is even, bounded, and satisfies
∫
K(u)du = 1,

∫
K(u)uj11 · · ·u

jk
k du = 0 for any

vector of non-negative integers (j1, . . . , jk) such that j1 + · · · + jk < s,
∫
|K(u)|(1 +

|u|s)du <∞. There exist C,L > 0 and v > 1 such that |K(u)| ≤ C|u|−v for all |u| > L.

Proposition 3. Consider the setup of this section and impose Assumption B. Suppose
√

logn
nbk

=

o(n−1/4) and bs = o(n−1/2). Then
`J(θ)

d→ χ2(k).

Similar comments to Propositions 1 and 2 apply. Assumption B is analogous to that of Bravo,
Escanciano and van Keilegom (2015, Proposition E2) except for the undersmoothing condition
nb2s → 0. Their semiparametric empirical likelihood requires only nb4s → 0. The proof is similar
to that of the delete-d jackknife empirical likelihood in Proposition 4 below.
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Here we present the jackknife empirical likelihood method based on the estimator τ̂ in (3.1).
We expect that a similar result can be obtained for other estimators, such as the the propensity
score matching estimator by Heckman, Ichimura and Todd (1998).

4. Delete-d jackknife empirical likelihood: General theory

In this section, we develop a general theory for the delete-d jackknife empirical likelihood. This
is a novel extension of the (delete-one) jackknife empirical likelihood by Jing, Yuan and Zhou
(2009) to more general setups, and is considered a natural counterpart of the delete-d jackknife
method (Shao and Wu, 1989).

We first introduce some notation. Take any estimator θ̂ for a k-vector of parameters θ.
Assume that θ̂ = θ̂(X1, . . . , Xn) is invariant under permutation of the arguments. Let d be an
integer less than n, and Sn,d be the collection of subsets of {1, . . . , n} with size n− d. For each
s = {i1, . . . , in−d} ∈ Sn,d, let θ̂s = θ̂(Xi1 , . . . , Xin−d

) be a leave-d-out counterpart of θ̂, and “
∑

s”
mean the summation over s ∈ Sn,d. Note that Sn,d has N =

(
n
d

)
elements.

Based on the above notation, the delete-d jackknife variance estimator is defined as

Vd =
n− d
dN

∑
s

(θ̂s − θ̂)(θ̂s − θ̂)′. (4.1)

It is known that the delete-1 jackknife variance estimator V1 is consistent for sufficiently smooth
estimators. On the other hand, if the estimator is not smooth, V1 may be an inconsistent
estimator of the variance of θ̂ (see, Miller, 1974). The most popular example of failure of the
delete-1 jackknife is the sample quantile. If θ is scalar, we typically have (see, Shao and Wu,
1989, pp. 1176-1177)

nV1
d→ σ2

4
ξ2,

where σ2 is the asymptotic variance of
√
n(θ̂− θ) and ξ ∼ χ2(2). Therefore, v1 is an inconsistent

estimator of σ2. For this problem, Shao and Wu (1989) showed that the delete-d jackknife
variance estimator with diverging d (but slower than n) may recover consistency for σ2 and
characterized a trade-off between smoothness of the estimator and growth rate of d.

In this section, we introduce and study a delete-d version of the jackknife empirical likelihood
approach. Define the delete-d jackknife pseudo value as

ζ̃s(θ) = (θ̂ − θ) +
1

d

√
(n− d)(N − d)εs(θ̂ − θ̂s), (4.2)

where εs = +1 with probability 0.5 and −1 otherwise. The perturbation εs is introduced to
remove correlations of the second terms in (4.2) across s. Note that when d = 1, the delete-d
pseudo value ζ̃s(θ) reduces to the delete-1 version in (2.9) except for the perturbation. Based on
these pseudo values, (the dual form of) the delete-d jackknife empirical likelihood is defined as

˜̀
J(θ) =

2

d
sup
λ

∑
s

log(1 + λ′ζ̃s(θ)). (4.3)

For the estimator θ̂, we impose the following assumptions.

11



Assumption D. Suppose the estimator θ̂ admits the expansion

θ̂ = θ +
1

n

n∑
i=1

φi +Rn, (4.4)

where {φi} is an iid sequence with mean zero and finite variance Ω. Also the remainders Rn and
Rn,s for θ̂s satisfy

n(n− d)

d
|V ar(Rn −Rn,s)| → 0. (4.5)

Finally,
√

n(n−d)
N−d maxs |Rn −Rn,s|

p→ 0.

The assumption for the expansion in (4.4) is mild and typically satisfied for
√
n-consistent

estimators. Also, since (4.5) implies Rn = op(n
−1/2) (Shao and Wu, 1989, Lemma 1), the central

limit theorem guarantees that
√
n(θ̂ − θ) converges in distribution to N(0,Ω). The condition in

(4.5) is a key for characterizing the trade-off between the smoothness of the estimator and the
growth rate of d. The same condition is employed by Shao and Wu (1989, eq. (3.4)). Intuitively,
if the estimator is less smooth, then the remainder component |E[RnR

′
n]| tends to be of larger

order (or slower decay) and we need d to grow faster so that (4.5) is guaranteed.
Shao and Wu (1989) provided various results and examples to verify the condition in (4.5).

For example, if the estimator is sufficiently smooth (e.g., the functional T to define the estimator
θ̂ = T (Fn) for the empirical distribution Fn is Fréchet differentiable), then it typically holds that
|V ar(Rn−Rn,s)| = o(n−2) and the condition in (4.5) is satisfied even if d is bounded. Thus, for
sufficiently smooth θ̂, the jackknife variance estimator Vd is consistent even for fixed d. Also if
θ̂ is the sample quantile, then by Duttweiler (1973), the remainder decays more slowly and we
can obtain |E[RnR

′
n]| = O(n−3/2). In this case, the condition in (4.5) is satisfied if d diverges

faster than
√
n. The last condition in Assumption D is a mild requirement for the remainder to

control maximal deviations of the pseudo values.
The asymptotic property of the delete-d jackknife empirical likelihood statistic is presented as

follows.

Proposition 4. Consider the setup of this section. Under Assumption D, it holds

˜̀
J(θ)

d→ χ2(k).

4.1. Discussion: Quantile-based methods. As the sample quantile example suggests, the
delete-d jackknife empirical likelihood would be useful to deal with non-smooth objects, espe-
cially quantile-based parameters. In this subsection, we mention two examples: quantile average
derivative (Chaudhuri, Doksum and Samarov, 1997) and quantile treatment effect (Firpo, 2007).
Although formal analyses require a separate paper, we expect that the semiparametric and
delete-d jackknife empirical likelihood methods provide valid inference procedures.

First, the average derivative for the conditional quantile function is defined as in (2.1) by
replacing m(x) with the conditional (τ -th) quantile function mτ (x) = Qτ (Y |X = x). By using
some nonparametric estimator m̂τ for mτ and the integration by parts formula in (2.2), the
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parameter θDτ = E[w(X)∇mτ (X)] may be estimated by

θ̂Dτ = − 1

n

n∑
i=1

m̂τ (Xi)ŝ(Xi).

Based on Chaudhuri, Doksum and Samarov (1997), the efficient score function for θDτ is written
as

ψDi (θ) = w(Xi)∇mτ (Xi)− θ + s(Xi)
τ − I{Yi ≤ mτ (Xi)}
fY |X(mτ (Xi)|Xi)

.

In this case, the semiparametric empirical likelihood can be constructed as in (2.7) with the
sample counterpart of this score function. Also the delete-d jackknife empirical likelihood is
defined as in (4.3) by using θ̂Dτ .

Next, our approach may also be applied to quantile treatment effects. Let q1,τ = infq Pr{Yi(1) ≤
q} and q0,τ = infq Pr{Yi(0) ≤ q} be the τ -th quantiles of the potential outcomes Yi(1) and Yi(0),
respectively. The (τ -th) quantile treatment effect is defined as

θQTEτ = q1,τ − q0,τ .

Based on Firpo (2007), the efficient score function for θQTEτ is written as

ψQTEi (θ) = θ +
Di

ϕ(Xi)
· τ − I{Yi ≤ q1,τ}

f1(q1,τ )
− Di − ϕ(Xi)

ϕ(Xi)
· τ − E[I{Yi ≤ q1,τ}|Xi, Di = 1]

f1(q1,τ )

− 1−Di

1− ϕ(Xi)
· τ − I{Yi ≤ q0,τ}

f0(q0,τ )
− Di − ϕ(Xi)

1− ϕ(Xi)
· τ − E[I{Yi ≤ q0,τ}|Xi, Di = 0]

f0(q0,τ )
.

The semiparametric empirical likelihood can be constructed as in (2.7) with the sample counter-
part of this score function. Also the delete-d jackknife empirical likelihood is defined as in (4.3)
by using the quantile treatment effect estimator θ̂QTEτ by Firpo (2007).

5. Simulation

This section conducts a simulation study to evaluate the finite sample properties of the semi-
parametric and jackknife empirical likelihood inference methods. We focus on the weighted
average derivative and adopt the simulation designs considered in Cattaneo, Crump and Jansson
(2013).

In particular, we consider a Tobit model Yi = ỸiI{Ỹi ≥ 0} with Ỹi = Xiβ + εi, εi ∼iid N(0, 1),
and Xi ∼iid N(0, 1). We are interested in θ = βE[w(X)Φ(Xβ)], where Φ(·) is the standard
normal distribution function and the weight function is set as

w(x) = exp

(
− x4

τ4(τ4 − x4)

)
I{|x| < τ},

with the trimming constant τ = Φ−1(0.825). We set β = 1.
We compare three methods to construct confidence intervals for θ: (i) the Wald-type confidence

interval (Wald), (ii) the semiparametric empirical likelihood confidence interval (SPEL), and (iii)
the jackknife empirical likelihood confidence interval (JEL). We report results implemented by
the Gaussian kernel. The sample size is set to n = 1000 for each replication.
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Table 1 gives the actual coverage rates of all the intervals across 1,000 replications for five differ-
ent fixed bandwidths constructed as hn = cn−1/(4+k) with k = 1 and c ∈ {0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3}.
The nominal rate is 0.95. Wald intervals tend to under-cover in all cases. JEL intervals tend to
over-cover especially when the bandwidth is small. SPEL intervals tend to slightly under-cover,
but they are most robust to the choice of bandwidth compared to the other intervals.

c Wald SPEL JEL
0.7 0.915 0.946 0.952
0.8 0.916 0.934 0.935
0.9 0.904 0.943 0.936
1.0 0.902 0.936 0.940
1.1 0.908 0.935 0.952
1.2 0.904 0.931 0.938
1.3 0.894 0.931 0.939

Table 1. Coverage probabilities of nominal 95% confidence intervals

6. Conclusion

In this paper, we consider semiparametric and jackknife empirical likelihood inference methods
for average derivatives and treatment effects, and derive their asymptotic properties. Also, we
propose the delete-d jackknife empirical likelihood and establish the general asymptotic theory.
The extension to the delete-d version would be useful to deal with non-smooth objects, such as
quantile average derivatives and treatment effects. Our simulation results illustrate the usefulness
of our inference methods.
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Appendix A. Mathematical Appendix

A.1. Proof of Proposition 1. Hereafter we suppress “(θ)” and denote ψi = ψi(θ) and ψ̂i =

ψ̂i(θ). Also define Σ = E[ψiψ
′
i]. Suppose

1√
n

n∑
i=1

ψ̂i
d→ N(0,Σ), (A.1)

1

n

n∑
i=1

ψ̂iψ̂
′
i

p→ Σ, (A.2)

max
1≤i≤n

|ψ̂i| = op(n
1/2). (A.3)

Let λ̂ be the solution of (2.8). By (A.1)-(A.3), the same argument as in the proof of Owen (1990,
eq. (2.14)) implies that λ̂ = Op(n

−1/2). The first-order condition for λ̂ satisfies

0 =
1

n

n∑
i=1

ψ̂i

1 + λ̂′ψ̂i
=

1

n

n∑
i=1

ψ̂i −
1

n

n∑
i=1

ψ̂iψ̂
′
iλ̂+

1

n

n∑
i=1

(λ̂′ψ̂i)
2

1 + λ̂′ψ̂i
ψ̂i,

where the second equality follows from the identity (1+x)−1 = 1−x+x2(1+x)−1. By (A.1)-(A.3)
and λ̂ = Op(n

−1/2), we have

λ̂ =

[
1

n

n∑
i=1

ψ̂iψ̂
′
i

]−1(
1

n

n∑
i=1

ψ̂i

)
+ op(n

−1/2).

Therefore, an expansion yields

2
n∑
i=1

log(1 + λ̂′ψ̂i) = 2
n∑
i=1

[
λ̂′ψ̂i −

1

2
(λ̂′ψ̂i)

2

]
+ op(1)

=

(
1√
n

n∑
i=1

ψ̂i

)′ [
1

n

n∑
i=1

ψ̂iψ̂
′
i

]−1(
1√
n

n∑
i=1

ψ̂i

)
+ op(1).

The conclusion follows by (A.1) and (A.2).
It remains to show (A.1)-(A.3). Below we provide a proof of (A.1). The result in (A.2) can

be shown in the same manner. The result in (A.3) follows by a similar argument in Owen (1990,
Lemma 3) using the Borel-Cantelli lemma.

Proof of (A.1). Decompose

1√
n

n∑
i=1

ψ̂i =
1√
n

n∑
i=1

[w(Xi)∇m̂(Xi)− θ + ŝ(Xi){Yi − m̂(Xi)}]

= M1 +M2 +M3,
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where

M1 =
1√
n

n∑
i=1

[w(Xi)∇m̂(Xi)− θ + s(Xi){Yi − m̂(Xi)}],

M2 =
1√
n

n∑
i=1

{ŝ(Xi)− s(Xi)}{Yi −m(Xi)},

M3 = − 1√
n

n∑
i=1

{ŝ(Xi)− s(Xi)}{m̂(Xi)−m(Xi)}.

Note that from integration by parts,

E[w(Xi)∇a(Xi)− s(Xi)a(Xi)] = 0, (A.4)

for any vector of differentiable function a(·). For M1, we denote

M1 =
1√
n

n∑
i=1

ηi(θ, ĥ),

where ĥ = (m̂,∇m̂) and ηi(θ, ĥ) = w(Xi)∇m̂(Xi)−θ+s(Xi){Yi−m̂(Xi)}. Since E[ηi(θ, h)] = 0,
we can decompose

M1 =
1√
n

n∑
i=1

ηi(θ, h) +
√
nE[ηi(θ, ĥ)]

+
1√
n

n∑
i=1

{ηi(θ, ĥ)− E[ηi(θ, ĥ)]} − 1√
n

n∑
i=1

{ηi(θ, h)− E[ηi(θ, h)]}

=
1√
n

n∑
i=1

ηi(θ, h) +
√
nE[ηi(θ, ĥ)] + op(1)

=
1√
n

n∑
i=1

ηi(θ, h) + op(1)

where the second equality follows from the stochastic equicontinuity argument (Chen, Linton
and van Keilegom, 2003) and the third equality follows from (A.4) with a = m̂. Therefore, the
central limit theorem implies M1

d→ N(0,Σ).
Let Ui = Yi −m(Xi). For M2, we further decompose

M2 =
1√
n

n∑
i=1

w(Xi)

{
∇f(Xi)

f(Xi)
− ∇f̂(Xi)

f̂(Xi)

}
Ui

=
1√
n

n∑
i=1

w(Xi)

f(Xi)
{∇f(Xi)−∇f̂(Xi)}Ui +

1√
n

n∑
i=1

w(Xi)

{
1

f(Xi)
− 1

f̂(Xi)

}
∇f̂(Xi)Ui

= M21 +M22.
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For M21,

M21 = − 1

n
√
n

n∑
i=1

n∑
j=1

w(Xi)

f(Xi)
Ui

{
1

bk+1
K ′
(
Xi −Xj

b

)
−∇f(Xi)

}

= − 1

n
√
n

n∑
i=1

n∑
j=1

w(Xi)

f(Xi)
Ui

{
1

bk+1
K ′
(
Xi −Xj

b

)
− E

[
1

bk+1
K ′
(
Xi −Xj

b

)∣∣∣∣Xi

]}

− 1

n
√
n

n∑
i=1

n∑
j=1

w(Xi)

f(Xi)
Ui

{
E

[
1

bk+1
K ′
(
Xi −Xj

b

)∣∣∣∣Xi

]
−∇f(Xi)

}

= − 1

n
√
n

n∑
i=1

n∑
j=1

ξij −
1√
n

n∑
i=1

w(Xi)

f(Xi)
Ui

{
E

[
1

bk+1
K ′
(
Xi −Xj

b

)∣∣∣∣Xi

]
−∇f(Xi)

}
,

where K ′(·) is the derivative of K(·) and

ξij =
w(Xi)

f(Xi)
Ui

{
1

bk+1
K ′
(
Xi −Xj

b

)
− E

[
1

bk+1
K ′
(
Xi −Xj

b

)∣∣∣∣Xi

]}
.

Note that E[ξij |Xj ] = 0 because E[Ui|Xi] = 0. The first term is a second-order degen-
erate U-statistics. So by using the variance formula (e.g., Serfling, 1980) and Chebyshev’s
inequality, we can show that M21 = Op

(
bs + 1√

nbk+2

)
. By a similar argument, we obtain

M22 = Op

(
bs + 1√

nbk+2

)
, which implies M2 = Op

(
bs + 1√

nbk+2

)
.

For M3, we decompose

M3 = − 1√
n

n∑
i=1

w(Xi)

f(Xi)
{∇f̂(Xi)−∇f(Xi)}{m̂(Xi)−m(Xi)}

+
1√
n

n∑
i=1

w(Xi)∇f̂(Xi)

f̂(Xi)f(Xi)
{f̂(Xi)− f(Xi)}{m̂(Xi)−m(Xi)},

and the same argument as in the proof of Rothe and Firpo (2016, Lemma 5) guarantees

M3 = Op

bs +
√
nb2s +

√
n

(√
log n

nbk+2

)3
 .

Combining these results, (A.1) is obtained.

A.2. Proof of Proposition 4. To simplify the presentation, we focus on the case where θ is
scalar. Hereafter we denote ζ̃s = ζ̃s(θ). Suppose

√
n

N

∑
s

ζ̃s
d→ N(0,Ω), (A.5)

dn

N(N − d)

∑
s

ζ̃2s
p→ Ω, (A.6)
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By (4.4) and the triangle inequality,

d
√
n

N − d
max
s
|ζ̃s| ≤

d

N − d
√
n(θ̂ − θ) +

√
n(n− d)

N − d
max
s
|Rn −Rn,s|

+

√
n(n− d)

N − d
max
s

∣∣∣∣∣ 1n
n∑
i=1

φi −
1

n− d
∑
i∈s

φi

∣∣∣∣∣
p→ 0, (A.7)

where the convergence follows from the last condition in Assumption D and maxi=1,...,n |φi| =

o(
√
n) by Owen (1990, Lemma 3) using E|φi|2 < ∞. Let λ̂ be the solution of (4.3). By (A.5)-

(A.7), the same argument as in the proof of Owen (1990, eq. (2.14)) implies λ̂ = Op

(
d
√
n

N−d

)
. By

proceeding as in the proof of Proposition 1,

λ̂ =

∑
s ζ̃s∑
s ζ̃

2
s

+ op

(
d
√
n

N − d

)
.

Therefore, an expansion yields

˜̀
J(θ) =

2

d

∑
s

[
λ̂ζ̃s −

1

2
(λ̂ζ̃s)

2

]
+ op(1) =

(√
n
N

∑
s ζ̃s

)2
dn

N(N−d)
∑

s ζ̃
2
s

+ op(1).

The conclusion follows by (A.5) and (A.6), which are shown below.

Proof of (A.5). By (4.4),
√
n

N

∑
s

ζ̃s =

√
n

N

∑
s

{
(θ̂ − θ) +

1

d

√
(n− d)(N − d)εs(θ̂ − θ̂s)

}

=
√
n(θ̂ − θ) +

√
n(n− d)(N − d)

dN

∑
s

εs(Rn −Rn,s)

+

√
n(n− d)(N − d)

dN

∑
s

εs

(
1

n

n∑
i=1

φi −
1

n− d
∑
i∈s

φi

)
≡ T1 + T2 + T3.

By the assumption in (4.4) and the central limit theorem, we have T1
d→ N(0,Ω). For T2, observe

that E[T2] = 0 and

V ar(T2) =

(
n(n− d)

d
V ar(Rn −Rn,s)

)(
N − d
dN

V ar(εs)

)
→ 0,

by (4.5). Thus, the Markov inequality implies T2
p→ 0. For T3, observe that E[T3] = 0 and

V ar(T3) =
n(n− d)(N − d)

d2N
V ar

(
1

n

n∑
i=1

φi −
1

n− d

n∑
i=d+1

φi

)
V ar(εs)

=
n(n− d)(N − d)

d2N

{
d

n2
+

d2

n2(n− d)

}
V ar(φi)V ar(εs)→ 0.

Thus, we obtain T3
p→ 0. Combining these results, (A.5) is obtained.
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Proof of (A.6). Decompose

dn

N(N − d)

∑
s

ζ̃2s =
dn

N(N − d)

∑
s

{
(θ̂ − θ) +

1

d

√
(n− d)(N − d)εs(θ̂ − θ̂s)

}2

=
dn

N − d
(θ̂ − θ)2 +

n(n− d)

d

1

N

∑
s

ε2s(θ̂ − θ̂s)2

+2
√
n(θ̂ − θ)

√
n(n− d)

N − d
1

N

∑
s

εs(θ̂ − θ̂s)

≡ A1 +A2 + 2A3.

For A1, since the assumption in (4.4) guarantees
√
n(θ̂ − θ) = Op(1), we have

A1 =
d

N − d
{
√
n(θ̂ − θ)}2 p→ 0.

For A2, since ε2s = 1 by construction, we have

A2 =
n(n− d)

d

1

N

∑
s

(θ̂ − θ̂s)2 = nVd,

where Vd is the delete-d jackknife variance estimator in (4.1) considered by Shao and Wu (1989).
Thus, Shao and Wu (1989, Theorem 1) directly imply

A2
p→ Ω.

For A3, a similar argument to the proof of (A.5) yields A3
p→ 0. Combining these results, the

result in (A.6) follows.
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