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Abstract. In estimation of nonparametric additive models, conventional methods, such as

backfitting and series approximation, cannot be applied when measurement errors are present

in covariates. We propose an estimator for such models by extending Horowitz and Mammen’s

(2004) two stage estimator for the errors-in-variables case. In the first stage, to adept to the ad-

ditive structure, we use a series method together with a ridge approach to deal with ill-posedness

brought by the mismeasurement. The uniform convergence rate for the first stage estimator is

derived. To establish the limiting distribution, we consider the second stage estimator obtained

by the one-step backfitting with a deconvolution kernel based on the first stage estimator.

1. Introduction

This paper studies estimation of the nonparametric additive regression model with a mismea-
sured covariate:

Y = µ+ g(X∗) +m1(Z1) + · · ·+mD(ZD) + U, (1.1)

where Y is a response variable, µ is an unknown intercept, X∗ is an error-free but unobservable
covariate, Z = (Z1, . . . , ZD) are observable covariates, U is an error term, and (g,m1, . . . ,mD)

are unknown functions to be estimated. If X∗ is observable, it is a standard nonparametric
additive model with the identity link function, which has been well studied in the literature; see,
e.g., Stone (1985, 1986), Buja, Hastie and Tibshirani (1989), Linton and Nielsen (1995), Linton
and Härdle (1996), Opsomer and Ruppert (1997), Fan, Härdle and Mammen (1998), Mammen,
Linton and Nielsen (1999), Opsomer (2000), and Horowitz and Mammen (2004). However,
when X∗ is mismeasured, these conventional methods are generally inconsistent to estimate the
unknown functions.

In this paper, we consider estimation of the nonparametric additive regression model in (1.1)
when the measurement X on X∗ involves a classical measurement error. More precisely, through-
out the paper, we assume that the measurement X is generated by

X = X∗ + ε, (1.2)

where ε is a measurement error and independent from X∗. Furthermore, for the most part of the
paper, we focus on the case where X is scalar and the density of ε is known to the researcher.
In the end of Section 2, we discuss generalizations to relax these assumptions.

We develop an estimator for the unknown functions g,m1, . . . ,mD and intercept µ by using
the observables (Y,X,Z) generated by (1.1) and (1.2) and study its asymptotic properties. In
particular, we extend the two-stage approach of Horowitz and Mammen (2004) to deal with
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the measurement error based on the deconvolution technique. In the first stage, Horowitz and
Mammen (2004) estimated the unknown functions by a series approximation method. In the
presence of a measurement error, the coefficients in the series approximation are estimated by
the ridge-based regularized estimator as in Hall and Meister (2007). In the second stage, Horowitz
and Mammen (2004) implemented the one-step backfitting based on local linear regression to
achieve asymptotic normality of the estimator. In our case, this stage is implemented by the
nonparametric deconvolution kernel regression.

There is an extensive literature on nonparametric additive models when all covariates are
accurately measured; see the papers cited above. A recent paper by Han and Park (2018) is
an exception. In particular, they also focus on the classical measurement errors, and develop a
new estimator for additive models by extending the smoothed backfitting approach of Mammen,
Linton and Nielsen (1999). However, there are two major differences between our work and theirs.
First, our second stage estimator achieves asymptotic normality, which is useful for statistical
inference, while they only derive the convergence rate of their estimator. Moreover, our first
stage estimator converges in a faster rate than their estimator. Second, our two stage estimator
can handle both the cases of ordinary smooth errors and supersmooth errors, while their method
cannot be easily adapted to the case of supersmooth measurement errors. Therefore, this paper
contributes to the literature on analysis of nonparametric additive models by developing the first
estimator that achieves the asymptotic normality in an errors-in-variables case, and making the
first attempt to handle the supersmooth measurement errors in covariates.

We also contribute to the literature of nonparametric deconvolution methods for measurement
error models. In particular, we employ the ridge-based regularization method by Hall and Meister
(2007) to estimate moments involving error-free unobservable covariates. Also for the second
stage backfitting, we apply the nonparametric deconvolution kernel regression; see, e.g., Stefanski
and Carroll (1990), Carroll and Hall (1988), Fan (1991a, 1991b), Fan and Masry (1992), Fan and
Truong (1993), Delaigle, Hall and Meister (2008), and Hall and Lahiri (2008).

The rest of the paper is organized as follows. Section 2 introduces the basic setup and develops
our two-stage estimator. Section 3 presents our main results. In Section 3.1, we derive the
convergence rate of the first stage estimator. In Section 3.2, we establish the limiting distribution
of the second stage estimator. Section 4 concludes. All proofs are in the Appendix.

2. Setup and estimator

Before presenting our estimator, we first show that the functions g,m1, . . . ,mD and intercept
µ in the model (1.1) can be identified from distribution of the observables (Y,X,Z). In this
paper, we consider the following setup.

Assumption 1.

(1) ε is independent of (Y,X∗, Z).
(2) The distribution of (ε,X∗, Z) is absolutely continuous with respect to the Lebesgue mea-

sure.
(3) The density fε of ε is known.
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(4) The density fX∗,Z of (X∗, Z) is bounded away from zero on I × [−1, 1]D, where I is
a known compact subset of the support of X∗, and [−1, 1] is the support of Zd for d =

1, . . . , D.
(5) E[U |X∗, Z] = 0.
(6) g,m1, . . . ,mD are normalized as

ˆ
I
g(w)dw =

ˆ 1

−1
m1(w)dw = · · · =

ˆ 1

−1
mD(w)dw = 0. (2.1)

Assumption 1 (1) claims that the measurement error discussed in this paper is classical. As-
sumption 1 (2) is to guarantee the existence of densities on which the following discussions rely.
Assumption 1 (3) is commonly used in the literature of nonparametric estimation with a mea-
surement error (see, Meister, 2009, for a review), and it could be relaxed by using auxiliary
information such as repeated measurements. See further discussions at the end of this section.
Assumptions 1 (5) and (6) are normalizations for identification.

Assumption 1 (4) requires all covariates to be continuously distributed on their support. As
in Horowitz and Mammen (2004), we assume that the observable covariates Z are supported
on [−1, 1]D. This is an innocuous assumption because we can always carry out some invertible
transformation to achieve it and work with the transformed variables. However, this argument
fails for the unobservable covariate X∗. Indeed, such a transformation does not preserve the
additive structure in (1.2) except when it is linear. Thus, even though the distribution of ε is
known, it is difficult to recover the distribution of X∗ from the transformation of X through
deconvolution. Also, the support of ε is typically unknown, and so is the support of X∗. With
these considerations, we do not impose any condition on the support of X, X∗, and ε, but focus
on estimation of the function g over some known compact set I of interest. It is assumed that
the density of X∗ is bounded away from zero on I so that the conditional expectations (on the
event X∗ ∈ I) are well defined.

Under Assumption 1, all unknown objects in the model (1.1) are identified. This result is
summarized in Theorem 1 as follows.

Theorem 1. Under Assumption 1, the functions g,m1, . . . ,mD and intercept µ are identified.

This theorem follows by an application of the marginal integration argument for the nonpara-
metric additive model combined with identification of the joint density of (Y,X∗, Z) based on
the deconvolution technique. The proof is provided in Appendix A.

We now introduce our estimation strategy. For expository purposes, we tentatively assume
that the error-free covariate X∗ is observed. To estimate µ, md over [−1, 1], and g over the
subset I under the normalization in (2.1), the first stage estimation of Horowitz and Mammen
(2004) is implemented by minimizing

n∑
j=1

I{X∗j ∈ I}

[
Yj − µ−

κ∑
k=1

pk(X
∗
j )θ

0
k −

D∑
d=1

κ∑
k=1

qk(Zd,j)θ
d
k

]2
, (2.2)

with respect to θ = (µ, θ01, . . . , θ
0
κ, θ

1
1, . . . , θ

1
κ, . . . , θ

D
1 , . . . , θ

D
κ )
′, where I{·} is the indicator func-

tion, {pk}∞k=1 and {qk}∞k=1 are basis functions supported on I and [−1, 1], respectively, and κ is
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a tuning parameter characterizing the accuracy of the series approximation. The trimming term
I{X∗j ∈ I} appears because we are interested in estimating g over I.

If X∗ is mismeasured, this method is obviously infeasible because X∗ is unobservable. Also
the least square estimation for the above criterion by replacing X∗j with observable Xj would
yield inconsistent estimates in general. In fact, implementing the least square estimation for (2.2)
by ignoring the measurement error cannot provide the coefficients to construct the estimator of
the unknown functions g,m1, . . . ,mD, but a weighted version of them, where the weight is the
conditional density fX∗|X,Z .

To estimate θ in (2.2), we consider the population counterpart of (2.2), that is

E[I{X∗ ∈ I}Y 2] + θ′E[PκP
′
κ]θ − 2E[Y P ′κ]θ, (2.3)

where Pκ = (p0(X
∗), p1(X

∗), . . . , pκ(X
∗), q01(Z1), . . . , q0κ(Z1), . . . , q01(ZD), . . . , q0κ(ZD))

′ with
p0(X

∗) = I{X∗ ∈ I} and q0k(Zd) = p0(X
∗)qk(Zd) for k = 1, . . . , κ and d = 1, . . . , D. Thus, once

we have estimators for E[PκP
′
κ] and E[Y P ′κ], denoted by Ê[PκP

′
κ] and Ê[Y P ′κ] respectively, θ

can be estimated by
θ̂ = (<Ê[PκP

′
κ])
−1<Ê[Y P ′κ], (2.4)

where <{·} denotes the real part of a complex-valued matrix or vector, and the inverse here
may be the Moore-Penrose inverse. Based on this, the first stage estimators of g and md for
d = 1, . . . , D are given by

ĝ(x∗) =

κ∑
k=1

pk(x
∗)θ̂0k, m̂d(zd) =

κ∑
k=1

qk(zd)θ̂
d
k. (2.5)

To implement the estimator in (2.5) based on (2.4), we need to estimate the expectations E[PκP
′
κ]

and E[Y P ′κ]. Any moment that does not involveX∗ can be estimated by the conventional method
of moments. For the moments depending on X∗, we need to employ a deconvolution technique.

We first consider estimation of E[Y pk(X
∗)] that appears in E[Y P ′κ]. To this end, we introduce

some notations. Let ‖f‖2 =
( ´
|f(w)|2dw

)1/2 be the L2-norm of a function f : R→ C, L2(R) =
{f : ‖f‖2 <∞} be the L2-space, and 〈f1, f2〉 =

´
f1(w)f2(w)dw be the inner product in L2(R),

where c denotes the complex conjugate of c ∈ C. Also let i =
√
−1 and f ft(t) =

´
f(x)eitxdx

be the Fourier transform of f . By Plancherel’s isometry (see Lemma 1 (1) in Appendix E), the
moment of interest is written as

E[Y pk(X
∗)] = 〈mfX∗ , pk〉 =

1

2π

〈
[mfX∗ ]

ft, pftk

〉
=

1

2π

ˆ
E[Y eitX ]

pftk (−t)
f ftε (t)

dt,

where m(·) = E[Y |X∗ = ·], and the last equality follows by the law of iterated expectations and
independence of ε and (Y,X∗) (Assumption 1 (1)). A naive estimator of this moment could be
given by replacing E[Y eitX ] by its sample analog n−1

∑n
j=1 Yje

itXj . However, it is well known
that this estimator is not well-behaved due to the fact that f ftε (t) → 0 as |t| → ∞. Intuitively,
the estimation error of the sample analog can be severely amplified in tails, so that the above
integral may not be well-behaved. To deal with such situations, it is common to introduce
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certain regularization scheme. Here we employ the ridge approach in Hall and Meister (2007)
and suggest to estimate E[Y pk(X

∗)] by

Ê[Y pk(X
∗)] =

1

2π

ˆ  1

n

n∑
j=1

Yje
itXj

 pftk (−t)f ftε (−t)|f ftε (t)|r

{|f ftε (t)| ∨ n−ζ}r+2
dt, (2.6)

where r ≥ 0 is a tuning parameter to control the smoothness of the integrand and n−ζ with
ζ > 0 is a ridge term to keep the denominator away from zero.

Similarly, the moments E[pk(X
∗)q0l(Zd)] and E[pk(X

∗)pl(X
∗)] appearing in E[PκP

′
κ] can be

estimated by

Ê[pk(X
∗)q0l(Zd)] =

1

2π

ˆ  1

n

n∑
j=1

ql(Zd,j)e
itXj

 [p0pk]
ft(−t)f ftε (−t)|f ftε (t)|r

{|f ftε (t)| ∨ n−ζ}r+2
dt,

Ê[pk(X
∗)pl(X

∗)] =
1

2π

ˆ  1

n

n∑
j=1

eitXj

 [pkpl]
ft(−t)f ftε (−t)|f ftε (t)|r

{|f ftε (t)| ∨ n−ζ}r+2
dt.

By applying these estimators to each element in (2.4), we can obtain the first stage estimator
(2.5).

In the literature of nonparametric deconvolution methods, the kernel approach is more fre-
quently utilized than the ridge one. However, the kernel-based method is not adaptive. This is
because, to obtain the optimal convergence rate, the smoothness of the target function have to
be known so that the kernel function can be chosen to adapt to it. Indeed, this disadvantage
of the kernel approach becomes more severe when there are multiple targets to be estimated at
the same time. In such a situation, even if the smoothness of all the targets are known, choos-
ing a kernel function to adapt for each component is a nontrivial task. It would be even more
challenging when the number of targets grows with the sample size, which is exactly the case
considered in this paper. Compared to the kernel-based method, the ridge approach can adapt
remarkably well to the targets with different smoothness via cross-validation methods, as shown
in Hall and Meister (2007).

To conduct statistical inference, we construct the second stage estimator for which we can
establish the asymptotic distribution. If X∗ is observable, we can implement the one-step back-
fitting as in Horowitz and Mammen (2004), where the second stage estimator of g is given by the
nonparametric kernel or local polynomial fitting from the residuals Yj−µ̂−

∑D
d=1 m̂d(Zd,j) by the

first stage estimates on the covariate X∗j . When X∗ is mismeasured and unobservable, we modify
this second stage estimation by applying the deconvolution kernel regression. In particular, let

Kh(w) =
1

2π

ˆ
e−itw

K ft(th)

f ftε (t)
dt,

be the deconvolution kernel, where K is a kernel function and h is a bandwidth. The second
stage estimator of g is defined as

g̃(x∗) =

∑n
j=1Kh(x

∗ −Xj)
[
Yj − µ̂−

∑D
d=1 m̂d(Zd,j)

]∑n
j=1Kh(x∗ −Xj)

.
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The second stage estimator of md, however, cannot be a direct practice of the deconvolution
kernel regression because the unobservable X∗ is now present in the dependent variable Yj −
µ̂ − ĝ(X∗j ) −

∑D
d′ 6=d m̂d′(Zd′,j) in a nonlinear way instead of being a covariate. One immediate

thought would be to first estimate g(x∗) + md(zd) by the deconvolution kernel regression of
Yj − µ̂ −

∑D
d′ 6=d m̂d′(Zd′,j) on (X∗j , Zd,j), then deduct ĝ(x∗). This, however, would make the

estimator of md dependent on the choice of x∗, which would not be welcomed in practice.
Alternatively, we consider the standard kernel regression of Yj−µ̂−

∑D
d′ 6=d m̂d′(Zd′,j) on Zd,j , and

then deduct an estimator of E[g(X∗)|Zd] to estimate md. The conditional moment E[g(X∗)|Zd]
can be estimated based on estimates of g, and the joint density of X∗ and Zd. For the joint
density of X∗ and Zd, we use the deconvolution density estimator. For the unknown function g,
it is natural to employ its first stage estimator ĝ. However, since ĝ(x∗) is a valid estimator of
g(x∗) only when x∗ ∈ I, the second stage estimation of md should be conditional on X∗ ∈ I. In
particular, we consider

md(zd) = E
[
Y − µ− g(X∗)−

∑
d′ 6=d

md′(Zd′)|Zd = zd, X
∗ ∈ I

]

=

´
I E
[
Y − µ− g(X∗)−

∑
d′ 6=dmd′(Zd′)|Zd = zd, X

∗ = x∗
]
fZd,X∗(zd, x

∗)dx∗´
I fZd,X∗(zd, x

∗)dx∗
,

which suggests the following second stage estimator of md:

m̃d(zd) =

∑n
j=1

´
I Kh(x

∗ −Xj)
[
Yj − µ̂− ĝ(x∗)−

∑
d′ 6=d m̂d′(Zd′,j)

]
dx∗Kh(zd − Zd,j)∑n

j=1

´
I Kh(x∗ −Xj)dx∗Kh(zd − Zd,j)

,

with Kh(w) = K(w/h) for a (conventional) kernel function K.
In the next section, we investigate the asymptotic properties of the first and second stage

estimators of g,m1, . . . ,mD. Before proceeding further, we comment on a major limitation of
our estimator, Assumption 1 (3). This assumption says the measurement error density fε is
known to the researcher, which is unrealistic in econometric analysis. In general, with a single
noisy measurement of X∗, fε cannot be identified. However, identification of fε can be restored
if we have two or more independent noisy measurements of X∗. Under repeated measurements
of X∗, we can obtain an estimator of fε by applying existing methods, such as Li and Vuong
(1998), Delaigle, Hall and Meister (2008), and Comte and Kappus (2015). Then by replacing fε
with its estimator, we can adapt our two-stage estimation method for the case of unknown fε.
Although formal analysis is beyond the scope of this paper, our asymptotic theory in the next
section will provide a building block to analyze such a plug-in estimator for the case of unknown
fε. In particular, we expect that as far as the estimator of fε converges at a sufficiently fast rate,
similar asymptotic results in the next section can be established.

We note that the proposed method can be generalized to the case of vector X, i.e.,

Y = µ+ g1(X
∗
1 ) + · · ·+ gL(X

∗
L) +m1(Z1) + · · ·+mD(ZD) + U,

where X∗1 , . . . , X∗L are not observable, and instead we observe noisy measurements X1, . . . , XL.
Suppose the measurement errors ε1, . . . , εL are classical and mutually independent. In this case,
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the first stage estimator can be constructed in a similar way as above. Also the second stage
estimator is obtained as

g̃l(x
∗
l ) =

∑n
j=1

´
Il−
∏L
l′=1Kh(x

∗
l′ −Xl′,j)

[
Yj − µ̂−

∑
l′ 6=l ĝl′(x

∗
l′)−

∑D
d=1 m̂d(Zd,j)

]
dx∗l−∑n

j=1

´
Il−
∏L
l′=1Kh(x

∗
l′ −Xl′,j)dx

∗
l−

,

m̃d(zd) =

∑n
j=1

´
I
∏L
l′=1Kh(x

∗
l′ −Xl′,j)

[
Yj − µ̂−

∑L
l=1 ĝl(x

∗
l )−

∑
d′ 6=d m̂d′(Zd′,j)

]
dx∗Kh(zd − Zd,j)∑n

j=1

´
I
∏L
l′=1Kh(x

∗
l′ −Xl′,j)dx∗Kh(zd − Zd,j)

,

for l = 1, . . . , L and d = 1, . . . , D, where Il− = I1×· · ·×Il−1×Il+1×· · ·×IL, I = I1 × · · · × IL,
dx∗l− = dx∗1 . . . dx

∗
l−1dx

∗
l+1 . . . dx

∗
L, and dx

∗ = dx∗1 . . . dx
∗
L. We expect that analogous results as

in the next section can be established for this estimator as well.

3. Asymptotic properties

3.1. First stage estimator. We now study the asymptotic properties of the first stage estimator
in (2.5). Let ‖A‖ = [trace(A†A)]1/2 be the Frobenius norm of a complex matrix A, and A† be
A’s conjugate transpose. Let λmax(A) and λmin(A) denote the largest and smallest eigenvalues
of a Hermite matrix A respectively. Let Fα,c = {f ∈ L2(R) :

´
|f ft(t)|2(1 + |t|2)αdt ≤ c} denote

the Sobolev class of order α > 0 and c > 0.1 Let δk,k′ be the Kronecker delta, which equals
to 0 if k 6= k′, and equals to 1 if k = k′. Based on these notations, we impose the following
assumptions.

Assumption 2.

(1) {Yj , Xj , Zj}nj=1 is i.i.d.
(2) E[Y 2|X∗, Z] <∞.
(3) fX∗, fX∗|Zd=zd, fX∗|Zd=zd,Zd′=zd′ , E[Y |X∗]fX∗, and E[Y |X∗ = ·, Zd = zd]fX∗|Zd=zd be-

long to Fα,csob for all d, d′ = 1, . . . , D and zd, zd′ ∈ [−1, 1].
(4) {pk}∞k=1 is a series of basis functions on I such that

´
I pk(w)dw = 0 for all k, and´

I pk(w)pk′(w)dw = δk,k′ for all k, k′.
(5) {qk}∞k=1 is a series of basis functions on [−1, 1] such that

´ 1
−1 qk(w)dw = 0 for all k, and´ 1

−1 qk(w)qk′(w)dw = δk,k′ for all k, k′.
(6) λmin(E[PκP

′
κ]) ≥ λ > 0 for all κ.

(7) sup(x∗,z)∈I×[−1,1]D ‖Pκ(x∗, z)‖ = O(κ1/2) as κ→∞.
(8) There exists θ0 = (µ0, θ

0
0, θ

1
0, . . . , θ

D
0 ) such that

sup
x∗∈I
|g(x∗)− P ′κ,0(x∗)θ00| = O(κ−2), sup

zd∈[−1,1]
|md(zd)− P ′κ,d(zd)θd0 | = O(κ−2),

where Pκ,0(x∗) = (p1(x
∗), . . . , pκ(x

∗)) and Pκ,d(zd) = (q1(zd), . . . , qκ(zd)) for d = 1, . . . , D.

1Even though it seems somewhat different, the Sobolev condition imposed here is essentially equivalent to the one
used in Meister (2009, eq. (2.30)), which imposes

´
|f ft(t)|2|t|2α < c. First, it is easy to see that

´
|f ft(t)|2(1 +

|t|2)α < c implies
´
|f ft(t)|2|t|2α < c. For the other direction, we have

´
|f ft(t)|2(1+|t|2)αdt ≤ 2α

´
|t|≤1

|f ft(t)|2dt+
2α
´
|f ft(t)|2|t|2αdt < c′, where the first inequality follows by 2α|t|2α ≥ (1 + |t|2)α ⇔ |t| ≥ 1, and the second

inequality follows by f ∈ L2(R) and Meister (2009, eq. (2.30)).
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(9) r ≥ 0, ζ > 0, and κ→∞ as n→∞.

Assumption 2 (1) and (2) are standard for cross section data. Extensions to more general data
environments are beyond the scope of this paper. Assumption 2 (3) lists the Sobolev conditions
for several densities and regression functions, which restrict smoothness of the underlying objects
to control orders of the bias terms in the estimation. Assumption 2 (4) and (5) are conditions
on the basis functions {pk}∞k=1 and {qk}∞k=1. Similar conditions are adopted by Horowitz and
Mammen (2004) for the first stage estimator without measurement errors. Assumption 2 (6)-(8)
are commonly used for series-based estimation; see, e.g., Newey (1997, Assumptions 2 and 3).
Assumption 2 (9) contains mild requirements of the tuning constants: r and ζ for the ridge
regularization, and κ for the series approximation. See the remark at the end of this subsection
for further discussion.

It is known in the literature that the convergence rate of a deconvolution-based estimator
depends on the smoothness of the measurement error density fε. Intuitively, the deconvolution-
based estimators typically involve the characteristic function of ε in the denominator. The
smoother fε is, the faster its characteristic function would decay to zero in tails, which would
slow down the convergence of the resulting estimator. Therefore, for the density of the mea-
surement error fε, we consider the following two categories that are commonly employed in the
deconvolution literature.
fε is said to be ordinary smooth of order β, if there exist some constants cos,1 > cos,0 > 0 and

β > 0 such that

cos,0(1 + |t|)−β ≤ |f ftε (t)| ≤ cos,1(1 + |t|)−β for all t ∈ R.

fε is said to be supersmooth of order β, if there exist some constants css,1 > css,0 > 0, β0 > 0,
and β > 0 such that

css,0 exp(−β0|t|β) ≤ |f ftε (t)| ≤ css,1 exp(−β0|t|β) for all t ∈ R.

In particular, the characteristic function of an ordinary smooth error distribution decays at a
polynomial rate, while the characteristic function of a supersmooth error distribution decays at
an exponential rate. Typical examples of ordinary smooth densities are the Laplace and gamma
densities, and typical examples of supersmooth densities are the normal and Cauchy densities.
To facilitate the discussion of the convergence rate of the first stage estimator, we impose the
following assumptions to specify the smoothness of the error distribution.

Assumption 3. fε is ordinary smooth of order β > 1/2.

Assumption 4. (1) fε is supersmooth of order β > 0.
(2) r = 0 and 0 < ζ < 1

4 .

Assumption 4 (2) contains further conditions on smoothing parameters r and ζ. In the su-
persmooth case, by setting r = 0, we can maximize flexibility in the choice of ζ. Given r = 0,
Assumption 4 (2) guarantees that the variance of the first stage estimation error converges to
zero in a polynomial rate, and would be dominated by the bias of the first stage estimation error,
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which converges to zero in a logarithmic rate in the supersmooth case. Under these assumptions,
the convergence rate of the first stage estimator in (2.5) is obtained as follows.

Theorem 2. Suppose that Assumptions 1 and 2 hold true.

(1) Under Assumption 3, it holds

‖θ̂ − θ0‖ = Op

(
κn

ζ+ ζ
2β
− 1

2 + κ
1
2n
−αζ

β + κ−2
)
,

sup
x∗∈I
|ĝ(x∗)− g(x∗)| = Op

(
κ

3
2n

ζ+ ζ
2β
− 1

2 + κn
−αζ

β + κ−
3
2

)
,

sup
zd∈[−1,1]

|m̂d(zd)−md(zd)| = Op

(
κ

3
2n

ζ+ ζ
2β
− 1

2 + κn
−αζ

β + κ−
3
2

)
,

for d = 1, . . . , D.
(2) Under Assumption 4, if r = 0 and 0 < ζ < 1

4 , it holds

‖θ̂ − θ0‖ = Op

(
κ

1
2 (log n)

−α
β + κ−2

)
,

sup
x∗∈I
|ĝ(x∗)− g(x∗)| = Op

(
κ(log n)

−α
β + κ−

3
2

)
,

sup
zd∈[−1,1]

|m̂d(zd)−md(zd)| = Op

(
κ(log n)

−α
β + κ−

3
2

)
,

for d = 1, . . . , D.

It is worth noting that the number of regressors D does not appear in the convergence rate
obtained in Theorem 2, which is due to the additive structure of the regression function combined
with the series approximation. This immunity to curse of dimensionality of the additive model
has been well-documented for the error-free case, and we contribute to the literature by allowing
for the measurement error.

The last terms in the convergence rates above characterize magnitudes of series approximation
errors, which are identical to those of the error-free case; see Horowitz and Mammen (2004,
Theorem 1). For ĝ and m̂d in the ordinary smooth case, the first two terms κ

3
2n

ζ+ ζ
2β
− 1

2 and
κn
−αζ

β in the convergence rates characterize magnitudes of the estimation bias and variance,
respectively. For the supersmooth case, the term κ(log n)

−α
β characterizes magnitudes of the

estimation bias, while the variance of the estimation error is dominated under Assumption 4
(2). If the smoothness parameters α and β are known, we can choose κ and ζ to achieve the
optimal convergence rates. In particular, when fε is ordinary smooth, by setting κ = n

2α
7α+10β+5

and ζ = 5β
7α+10β+5 , the optimal convergence rate of ĝ and m̂d is obtained as n−

3α
7α+10β+5 .

We now compare our convergence rates with the ones in Han and Park (2018) for the smoothed
backfitting estimator. When α = 2 (i.e., g is twice continuously differentiable) and β > 1/2, Han
and Park (2018) showed that their backfitting estimator of g achieves the uniform convergence
rate n−

1
4+4β , which is slower than the convergence rate n−

6
19+10β of our first stage estimator ĝ.

When fε is supersmooth, by setting κ = (log n)
2α
5β , the optimal convergence rate of ĝ and m̂d

is obtained as (log n)−
3α
5β . In the error-free case, by Horowitz and Mammen (2004, Theorem 1),

the optimal convergence rate to estimate g and md is n−
3
10 , which is obtained by setting κ = n

1
5 .
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When fε is ordinary smooth of order β > 1/2 and α = 2,2 the optimal convergence rate of our
ĝ and m̂d is slower than n−

1
4 , then is slower than n−

3
10 , which is the optimal convergence rate

obtained in Horowitz and Mammen (2004). In the case of supersmooth fε, ĝ and m̂d converge
in a logarithmic rate, which is certainly slower than the polynomial rate obtained in Horowitz
and Mammen (2004). However, these slower convergence rates are quite reasonable because a
contaminated sample should be more difficult to work with.

To implement the first stage estimator, we need to choose three tuning parameters, κ, r,
and ζ. For the series length κ, to the best of our knowledge, there is no theoretical study on
the optimal choice even for the error-free additive model. As suggested in Horowitz and Lee
(2005), one practical way is to construct a BIC-type criterion function for κ, and choose κ to
minimize it. In our setup, the BIC-type criterion is obtained by the sample counterpart of the
least square objective function (2.3) with a penalty term for κ. For the tuning parameters r
and ζ in the ridge-type regularization, we can follow the suggestions in Hall and Meister (2007).
The choice of r, which controls the shape of the smoothing regime, is less important. For
example, Hall and Meister (2007) set r = 2 for the ordinary smooth case and r = 0 for the
supersmooth case in their numerical study. On the other hand, ζ plays the role of the ridge
smoothing parameter, and its choice is crucial. For example, the moment estimator in (2.6) is
interpreted as the one for E[Y pk(X

∗)] =
´
m(x)fX∗(x)pk(x)dx. Thus, we can adapt the cross-

validation method in Hall and Meister (2007, pp. 1539-40), which minimizes an estimate of´
| ̂m(x)fX∗(x)−m(x)fX∗(x)|2dx with respect to ζ, to the criterion weighted by pk(x)2.

3.2. Second stage estimator. In this subsection, we derive the asymptotic distributions of the
second stage estimators g̃ and m̃d. To this end, we impose further assumptions.

Assumption 5.

(1) fX∗ is continuously differentiable, ‖fX‖∞ <∞, and g is twice continuously differentiable.
(2) supxE[|U |2+η|X = x] <∞ for some constant η > 0.
(3)
´
wK(w)dw = 0,

´
w2K(w)dw <∞, ‖K ft‖∞ <∞, and ‖K ft′‖∞ <∞.

(4) h→ 0 as n→∞.

Assumption 5 collects regularity conditions used to derive the asymptotic distributions of
g̃ and m̃. Assumption 5 (1) contains the smoothness conditions about the density fX∗ and
regression function g, which are used to control the estimation bias. Assumption 5 (2) is used to
apply Lyapunov’s central limit theorem. Assumption 5 (3) is on the kernel function K, which
is commonly employed for the bias control in nonparametric estimation. Assumption 5 (4) is
standard for series-based estimators (as used in the first stage estimation) and kernel-based
estimators (as used in the second stage estimation).

For the ordinary smooth case, we impose the following assumptions.

Assumption 6.

2Here we set α = 2 because Horowitz and Mammen (2004) assumed that mj is twice continuously differentiable
in their Assumption A2. See also Meister (2009, pp.186-187).
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(1) ‖f ft′ε ‖∞ < ∞, |s|β|f ftε (s)| → cε, and |s|β+1|f ft′ε (s)| → βcε for some constant cε > 0 as
|s| → ∞.

(2)
´
|s|β{|K ft(s)|+ |K ft′(s)|}ds <∞,

´
|s|2β|K ft(s)|2ds <∞.

(3) κ3n2ζ+
ζ
β
−1 → 0 and κn−

αζ
β → 0 as n→∞.

Assumption 6 (1) is commonly used in deconvolution problems with an ordinary smooth
error. It goes further than Assumption 3, as Assumption 6 (1) characterizes the exact limit,
rather than the upper and lower bounds, of the error characteristic function and its derivative
in tails. Assumption 6 (2) requires smoothness of the kernel function K. Assumption 6 (3) is to
eliminate estimation errors from the first stage. According to Theorem 2, it guarantees that the
first stage estimator is uniformly consistent when the measurement error is ordinary smooth of
order β. To derive the asymptotic distribution of g̃, we add the following assumptions.

Assumption 7.

(1) For each x∗ ∈ I, E
[∣∣g(X∗) + U − g(x∗)

∣∣2|X = x
]
as a function of x is continuous for

almost all x.
(2) nh2β+1 →∞ as n→∞.

Assumption 7 (1) is a technical assumption. Given Assumption 5, it would be satisfied if all
densities are continuous. Assumption 7 (2) imposes an upper bound on the speed of bandwidth
h decaying to zero, which controls the estimation variance brought by the measurement error,
and thus is characterized by the smoothness order of the measurement error distribution.

For the supersmooth case, we impose the following assumptions.

Assumption 8.

(1) K ft is supported on [−1, 1].
(2) κ(log n)−

α
β → 0 as n→∞.

Assumption 8 (1) directly assumes the kernel function K is infinite order smooth, rather
than adapting smoothness of the kernel function to that of the measurement error density as
in the ordinary smooth case. Assumption 8 (2), parallel to Assumption 6 (3), is to eliminate
estimation errors from the first stage. According to Theorem 2, it guarantees that the first stage
estimator is uniformly consistent when the measurement error density is supersmooth. To derive
the asymptotic distribution of g̃, we add the following assumptions.

Assumption 9.

(1) nhe−2β0h−β →∞ as n→∞.
(2) E|G1,n,1|2he−2β0h

−β →∞ as n→∞, where G1,n,1 is defined as in Appendix C.

Assumption 8 (1) requires the bandwidth h to decay at most in a logarithmic rate, which is
due to the fact that the error characteristic function in the denominator decays at an exponential
rate. Assumption 8 (2) is a technical assumption used to verify Lyapunov’s condition in the proof
of Theorem 3. Primitive conditions as in Fan and Masry (1992, Condition 3.1) could be derived.
To keep the exposition simple, following Delaigle, Fan and Carroll (2009), we stick to the current
form of Lyapunov’s condition.
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Under these assumptions, the asymptotic distribution of the second stage estimator g̃ is ob-
tained as follows. Let Bias{g̃(x∗)} = g(x∗)− E[g̃(x∗)].

Theorem 3. Suppose that Assumptions 1, 2, and 5 hold true.

(1) Under Assumptions 3, 6, and 7, it holds

g̃(x∗)− g(x∗)− Bias{g̃(x∗)}√
V ar[g̃(x∗)]

d→ N(0, 1).

(2) Under Assumptions 4, 8, and 9, it holds

g̃(x∗)− g(x∗)− Bias{g̃(x∗)}√
V ar[g̃(x∗)]

d→ N(0, 1).

The asymptotic normality of g̃ is provided in a normalized form. It is interesting to note that
the measurement error barely has any effect on the bias term Bias{g̃(x∗)}. Indeed, it can be
shown that the dominant term of Bias{g̃(x∗)} is the same as that of Horowitz and Mammen’s
(2004) second stage estimator of g, which is of order h2. On the other hand, the measurement
error affects on the manner of divergence of V ar[g̃(x∗)] to infinity. In particular, when fε is
ordinary smooth, as shown in Appendix C, V ar[g̃(x∗)] explodes in the rate of h−(2β+1). In the
case of supersmooth fε, deriving the exact exploding rate of V ar[g̃(x∗)] is difficult in general.
Thus, the lower bound on the exploding rate of V ar[g̃(x∗)] is obtained under Assumption 9
rather than the exact rate, as shown in Appendix C.

Since X∗ is not directly observable, it is difficult to adapt the penalized least square method
in Horowitz and Mammen (2004) to select the bandwidth parameter h to implement the second
stage estimator. Even for the conventional nonparametric deconvolution regression, it is not clear
how to implement the standard data-driven selection for h, such as cross validation (see, pp. 123-
5 of Meister, 2009). One practical way to select h is to apply the SIMEX-based cross validation
method in Delaigle and Hall (2008) by setting the dependent variable as Yj − µ̂−

∑D
d=1 m̂d(Zd,j)

for the second stage estimation. However, the theoretical analysis is beyond the scope of this
paper.

We now consider the asymptotic distribution of m̃d. For the ordinary smooth case, we impose
the following assumptions.

Assumption 10.

(1) I = supp g = [b1, b2].
(2) fε is ordinary smooth of order β > 2.
(3) For each (x∗, z∗) ∈ I× [−1, 1] and d = 1, . . . , D, E

[∣∣g(X∗)+md(Zd)+U−md(zd)
∣∣2|X =

x, Zd = z
]
as a function of (x, z) is continuous for almost all (x, z).

(4) sups
∣∣gft (− s

h

)
s
h2

∣∣→ 0 as n→∞.
(5) nh2β →∞ as n→∞.

Assumption 10 (1) assumes that I equals to suppX∗ and it is a closed interval with known
boundary points b1 < b2. It is stronger than Assumption 1 (4), where we assume that I is
a compact subset of suppX∗ of our interest. However, this assumption is difficult to avoid in
the current derivation of the asymptotic normality of m̃d because we have an extra layer of
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integration of x∗ over I in the definition of m̃d, and need to be specific for the smoothness of
the integration. In Assumption 10 (2), we require β > 2, which is a technical assumption to
guarantee

´
|K ft(s)||s|β−2ds <∞. Assumption 10 (3) plays a similar role as Assumption 7 (1).

Again, given Assumption 5, it would be satisfied if all densities are continuous. Assumption
10 (4) is an additional smoothness condition on g to make the estimation noise of g negligible
in the estimation of md. In particular, it requires that gft should decay to zero fast enough.
Assumption 10 (5) imposes an upper bound on the decay rate of h to zero. This is different from
Assumption 7 (2) due to the extra layer of integration with respect to x∗ in the definition of m̃d.

To derive the asymptotic distribution of m̃d for the supersmooth case, we impose the following
assumptions.

Assumption 11.

(1) I = supp g = [b1, b2].
(2) nh3e−2β0h−β →∞ as n→∞.
(3) E|Gd1,n,1|2h3e−2β0h

−β → ∞ as n → ∞, where Gd1,n,1 is defined as in Appendix D for
d = 1, . . . , D.

Assumption 11 (2) plays a similar role as Assumption 9 (1). This assumption requires the
bandwidth h to decay at an even slower rate due to the extra integration in the definition of m̃d.
Assumption 11 (3) is a technical assumption used to verify Lyapunov’s condition in the proof
of Theorem 4, which is imposed to keep the presentation simple. Similar to Assumption 9 (2),
primitive conditions, like Fan and Masry (1992, Condition 3.1), could be derived.

The asymptotic distribution of the second stage estimator m̃d for md is obtained as follows.
Let Bias{m̃d(zd)} = md(zd)− E[m̃d(zd)].

Theorem 4. Suppose that Assumptions 1, 2, and 5 hold true.

(1) Under Assumption 6 and 10, it holds

m̃d(zd)−md(zd)− Bias{m̃d(zd)}√
V ar[m̃d(zd)]

d→ N(0, 1).

(2) Under Assumption 4, 8, and 11, it holds

m̃d(zd)−md(zd)− Bias{m̃d(zd)}√
V ar[m̃d(zd)]

d→ N(0, 1).

Similar to g̃, the asymptotic normality of m̃d is also provided in a normalized form. Again,
it can be shown that the dominant term of Bias{m̃d(zd)} is the same as that of the error-free
second stage estimator of md as in Horowitz and Mammen (2004), which has the order of h2, and
the measurement error slows down the divergence rate of V ar[m̃d(zd)] to infinity. In particular,
when fε is ordinary smooth, as shown in Appendix D, V ar[m̃d(zd)] diverges at the rate of h−2β ,
which is slower than that of g̃ due to the extra layer of integration with respect to x∗. In the
case of supersmooth fε, again, the lower bound on the divergence rate of V ar[m̃d(zd)] is obtained
under Assumption 11 rather than the exact rate, as shown in Appendix D.
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4. Conclusion

In this paper, we consider the nonparametric additive model in the presence of a mismeasured
covariate and develop a novel estimation strategy. The estimation procedure is separated into two
stages. In the first stage, to adept to the additive structure, we employ a series approximation
method combined with a ridge regularization approach to deal with ill-posedness brought by the
measurement error. We derive the convergence rate for the first stage estimator. To establish the
limiting distribution, we consider the second stage estimator obtained by the one-step backfitting
with a deconvolution kernel based on the first stage estimator. The asymptotic normality of the
regression functions is derived in a normalized form.

Further research is needed to explore optimal convergence rates, adaptive estimation, and
extensions to models with non-identity link functions and situations where the measurement
error distribution is unknown but auxiliary information such as repeated measurements are
available.
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Appendix A. Proof of Theorem 1

Let z = (z1, . . . , zD), z−d = (z1, . . . , zd−1, zd+1, . . . , zD), A(I) be the length of the set I, and
f ftY,X,Z(y, ·, z)(t) =

´
fY,X,Z(y, x, z)e

itxdx. By Assumption 1 and Lemma 1 (2), the joint density
fY,X∗,Z is identified as

fY,X∗,Z(y, x
∗, z) =

1

2π

ˆ
e−itx

∗ f
ft
Y,X,Z(y, ·, z)(t)

f ftε (t)
dt,

and the conditional mean E[Y |X∗, Z] is also identified. Thus, by Assumption 1, g,m1, . . . ,mD

and µ are identified as

µ = 2−DA(I)−1
ˆ
(x∗,z)∈I×[−1,1]D

E[Y |X∗ = x∗, Z = z]dx∗dz,

g(x∗) = 2−D
ˆ
[−1,1]D

E[Y |X∗ = x∗, Z = z]dz − µ,

md(zd) = 2−(D−1)
ˆ
[−1,1]D−1

E[Y |X∗ = x∗, Z = z]dz−d − µ− g(x∗),

for d = 1, . . . , D. �

Appendix B. Proof of Theorem 2

First, we show the convergence rate of ‖θ̂ − θ∗‖2. Let M̂κ = <Ê[PκP
′
κ], Ĉκ = <Ê[Y P ′κ],

Mκ = E[PκP
′
κ], Cκ = E[PκY ], θ∗ =M−1κ Cκ, and rκ = E[Y |X∗, Z]− P ′κθ0. Observe that

‖θ̂ − θ∗‖2 = ‖M̂−1κ Ĉκ −M−1κ Cκ‖2 = ‖M̂−1κ (Ĉκ − Cκ) + M̂−1κ (Mκ − M̂κ)θ
∗‖2

≤ 2‖M̂−1κ (Ĉκ − Cκ)‖2 + 2‖M̂−1κ (Mκ − M̂κ)θ
∗‖2

≤ 2λmax(M̂
−2
κ ){‖Ĉκ − Cκ‖2 + ‖M̂κ −Mκ‖2‖θ∗‖2},

where the first inequality follows by Jensen’s inequality, and the second inequality follows by
λmax(A) = sup‖δ‖=1 δ

′Aδ and λmax(A
′A) ≤ ‖A‖2.

Note ‖M̂κ −Mκ‖2 ≤ ‖Ê[PκP
′
κ] −Mκ‖2 and ‖Ĉκ − Cκ‖2 ≤ ‖Ê[PκY ] − Cκ‖2. So the orders

of ‖M̂κ −Mκ‖2 and ‖Ĉκ − Cκ‖2 are obtained by Lemma 4. We also note that λmax(M̂
−2
κ ) =

λ−2min(M̂κ), and λmin(A) = inf‖δ‖=1 δ
′Aδ. Thus, the upper bound of λmax(M̂

−2
κ ) follows by

inf
‖δ‖=1

δ′M̂κδ ≥ inf
‖δ‖=1

δ′(M̂κ −Mκ)δ + λmin(Mκ),(
inf
‖δ‖=1

δ′(M̂κ −Mκ)δ
)2
≤ ‖M̂κ −Mκ‖2

p→ 0,

and λmin(Mκ) ≥ λ > 0. Moreover, we note Cκ = E[PκE[Y |X∗, Z]] and

‖θ∗‖2 = C ′κM
−2
κ Cκ ≤ λmax(M

−1
κ )CκM

−1
κ Cκ ≤ λ−1E[E[Y |X∗, Z]2] <∞,

where the first inequality follows by the property of the maximum eigenvalue, and the second
inequality follows by the matrix Cauchy-Schwarz inequality in Tripathi (1999, Theorem 1), and
the last inequality is due to the fact that g,m1, · · · ,mD are all bounded and are supported on
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I and [−1, 1] respectively. Combining these results, we have

‖θ̂ − θ∗‖2 =

 Op

(
κ2n

2ζ+ ζ
β
−1

+ κn
− 2αζ

β

)
, under Assumption 3

Op

(
κ(log n)

− 2α
β

)
, under Assumption 4

.

Since θ∗ = θ0 +M−1κ E[Pκrk], we have

‖θ∗ − θ0‖2 = E[P ′κrk]M
−2
κ E[Pκrk] ≤ λmax(M

−1
κ )E[P ′κrk]M

−1
κ E[Pκrk] ≤ λ−1E[r2k] = O(κ−4),

where the last equality follows by Assumption 2 (8). Therefore, the convergence rate of ‖θ̂− θ0‖
follows by the triangle inequality.

Next, we prove the convergence rates of ĝ and m̂d. Let θ̂ = (µ̂, θ̂0, . . . , θ̂D), where θ̂0 is the
vector of estimated coefficients corresponding to Pκ,0, and θ̂d is the vector of estimated coefficients
corresponding to Pκ,d for d = 1, . . . , D. Note supx∗∈I ‖Pκ,0(x∗)‖ ≤ sup(x∗,z)∈I×[−1,1]D ‖Pκ(x∗, z)‖,
supzd∈[−1,1] ‖Pκ,d(zd)‖ ≤ sup(x∗,z)∈I×[−1,1]D ‖Pκ(x∗, z)‖, ‖θ̂0 − θ00‖ ≤ ‖θ̂ − θ0‖, and ‖θ̂d − θd0‖ ≤
‖θ̂ − θ0‖ for d = 1, . . . , D. Then the convergence rate of ĝ is given by

sup
x∗∈I
|ĝ(x∗)− g(x∗)| ≤ sup

x∗∈I
|Pκ,0(x∗)′(θ̂0 − θ00)|+ sup

x∗∈I
|rκ,0(x∗)|

≤ sup
x∗∈I
‖Pκ,g(x∗)‖ · ‖θ̂0 − θ00‖+O(κ−2)

=

 Op

(
κ

3
2n

ζ+ ζ
2β
− 1

2 + κn
−αζ

β + κ−
3
2

)
, under Assumption 3

Op

(
κ(log n)

−α
β + κ−

3
2

)
, under Assumption 4

,

where the last inequality is obtained by using the Cauchy-Schwartz inequality and Assumption
2 (8), and the last equality follows by Assumption 2 (7) and Theorem 2. Similarly, the uniform
convergence rate of m̂d for d = 1, . . . , D follows by

sup
zd∈[−1,1]

|m̂d(zd)−md(zd)| ≤ sup
zd∈[−1,1]

|Pκ,d(zd)′(θ̂d − θd0)|+ sup
zd∈[−1,1]

|rκ,md(zd)|

≤ sup
zd∈[−1,1]

‖Pκ,d(zd)‖ · ‖θ̂d − θd0‖+O(κ−2)

=

 Op

(
κ

3
2n

ζ+ ζ
2β
− 1

2 + κn
−αζ

β + κ−
3
2

)
, under Assumption 3

Op

(
κ(log n)

−α
β + κ−

3
2

)
, under Assumption 4

,

where the last inequality is obtained by Cauchy-Schwartz inequality and Assumption 2 (8), and
the last equality follows by Assumption 2 (7) and Theorem 2. �

Appendix C. Proof of Theorem 3

To simplify the presentation, we suppress dependence on x∗, where g is evaluated, in the following
discussion. Let An = 1

n

∑n
j=1Kh(x

∗ − Xj) and a = fX∗(x
∗)
´
K(w)dw. Decompose g̃ − g =
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1
n

∑n
j=1Gn,j , where Gn,j = G1,n,j +G2,n,j +G3,n,j +G4,n,j and

G1,n,j =
1

2πa

ˆ
e−it(x

∗−Xj)K
ft(th)

f ft
ε (t)

[
Yj − µ−

D∑
d=1

md(Zd,j)− g(x∗)
]
dt,

G2,n,j =
1

2πa

ˆ
e−it(x

∗−Xj)K
ft(th)

f ft
ε (t)

[
µ+

D∑
d=1

md(Zd,j)− µ̂−
D∑
d=1

m̂d(Zd,j)
]
dt,

G3,n,j =
a− An
An

G1,n,j , G4,n,j =
a− An
An

G2,n,j .

The proof is divided into three steps. First, we consider the case when fε is ordinary smooth.
Step 1: Show ∑n

j=1G1,n,j − nE[G1,n,1]√
nV ar[G1,n,1]

d→ N(0, 1). (C.1)

By Lyapunov’s central limit theorem, it is sufficient for (C.1) to show

lim
n→∞

E|G1,n,1|2+η

nη/2
[
E|G1,n,1|2

](2+η)/2 = 0, (C.2)

for some constant η > 0. Let µg,2+η(x) = E[|g(X∗) + U − g(x∗)|2+η|X = x]fX(x). By the law
of iterated expectation, we can write E|G1,n,1|2+η as

E|G1,n,1|2+η =
ˆ
x

∣∣∣∣ 1

2πa

ˆ
t
e−it(x

∗−x)K
ft(th)

f ftε (t)
dt

∣∣∣∣2+η µg,2+η(x)dx. (C.3)

If η > 0, we have

E|G1,n,1|2+η

≤ h−(β+1)η

(2π)ηa(2+η)

(
hβ+1

ˆ
|K ft(th)|
|f ftε (t)|

dt

)η
× h2β+1

4π2

ˆ
x

∣∣∣∣ˆ
t
e−it(x

∗−x)K
ft(th)

f ftε (t)
dt

∣∣∣∣2 µg,2+η(x)dx
= O(h−(β+1)(η+2)+1), (C.4)

where the equality follows by Lemmas 5 and 7. On the other hand, if η = 0, we have

E|G1,n,1|2 =
h−(2β+1)

a2

(
h2β+1

4π2

ˆ
x

∣∣∣∣ˆ
t
e−it(x

∗−x)K
ft(th)

f ftε (t)
dt

∣∣∣∣2 µg,2+η(x)dx
)

=
h−(2β+1)µg,2(x

∗)

2πa2c2ε

ˆ
|s|2β|K ft(s)|2ds{1 + op(1)}, (C.5)

where the second equality follows by Lemma 7. Thus, (C.4) and (C.5) together imply that (C.1)
holds true if nh→∞ as n→∞.

Step 2: Show ∑n
j=1G2,n,j − nE[G2,n,1]√

nV ar[G1,n,1]

p→ 0. (C.6)

For the numerator, we note
n∑
j=1

G2,n,j − nE[G2,n,1] = Op

(√
nE|G2,n,1|2

)
, (C.7)

17



and

E|G2,n,1|2 =

ˆ
x
E

[∣∣∣µ+

D∑
d=1

md(Zd,1)− µ̂−
D∑
d=1

m̂d(Zd,1)
∣∣∣2∣∣∣∣∣X = x

] ∣∣∣∣ˆ
t
e−it(x

∗−x)K
ft(th)

f ftε (t)
dt

∣∣∣∣2 fX(x)dx
≤

(
|µ̂− µ|+

D∑
d=1

sup
zd∈[−1,1]

|m̂d(zd)−md(zd)|

)2

×4π2h−(2β+1)

{
h2β+1

4π2

ˆ
x

∣∣∣∣ˆ
t
e−it(x

∗−x)K
ft(th)

f ftε (t)
dt

∣∣∣∣2 fX(x)dx
}

= Op

(
κ3n

2ζ+ ζ
β
−1
h−(2β+1) + κ2n

− 2αζ
β h−(2β+1) + κ−3h−(2β+1)

)
, (C.8)

where the last equality follows by Theorem 2 and Lemma 7. For the denominator,

aE[G1,n,1] =
1

2π

ˆ
e−itx

∗
K ft(th){E[eitX

∗
g(X∗)]− E[eitX

∗
]g(x∗)}dt

= E[Kh(x
∗ −X∗)g(X∗)]− E[Kh(x

∗ −X∗)]g(x∗)

=

ˆ
Kh(x

∗ − w)g(w)fX∗(w)dw − g(x∗)
ˆ
Kh(x

∗ − w)fX∗(w)dw,

= O(h2), (C.9)

where the last equality follows by the second order differentiability of fX∗ , the third order
differentiability of g, the symmetry of K,

´
K(w)w2dw <∞, and the factˆ

Kh(x
∗ − w)g(w)fX∗(w)dw − g(x∗)

ˆ
Kh(x

∗ − w)fX∗(w)dw

= fX∗(x
∗)g′′(x∗)

ˆ
K(w)w2dwh2 + o(h2).

Then (C.9) and (C.5) imply that V ar[G1,n,1] is strictly dominated by E|G1,n,1|2 for large n. Now
by (C.5), we have

1

V ar[G1,n,1]
= O(h(2β+1)). (C.10)

Thus, (C.6) holds true if κ
3
2n

ζ+ ζ
2β
− 1

2 + κn
−αζ

β + κ−
3
2 → 0 as n→∞.

Step 3: Show ∑n
j=1Gk,n,j − nE[Gk,n,1]√

nV ar[G1,n,1]

p→ 0, (C.11)

for k = 3, 4. For this, it is sufficient to show An − a = op(1). To see this, note

An = E[An] +Op

(
n−1/2

[
E|Kh(x

∗ −X)|2
]1/2)

. (C.12)

For the first term in (C.12), we have

E[An] = E

[
1

2π

ˆ
K ft(th)

f ftε (t)
e−it(x

∗−X)dt

]
=

1

2π

ˆ
e−itx

∗
K ft(th)f ftX∗(t)dt

= E[Kh(x
∗ −X∗)] =

ˆ
K(u)fX∗(x

∗ − uh)du = a+O(h), (C.13)

where the second equality follows by Assumption 1 (1), the third equality follows by Plancherel’s
isometry (Lemma 1 (1)), and the fourth equality follows by the change of variables, and the last
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equality follows by the differentiability of fX∗ . For the second term in (C.12), by Lemma 7, we
have E|Kh(x

∗ −X)|2 = O(h−(2β+1)) and thus

An − a = O(h) +Op(n
−1/2h−(β+1/2)), (C.14)

which implies that (C.11) follows by (C.1) and (C.6) if h→ 0 and nh2β+1 →∞.
Combining (C.1), (C.6), and (C.11), we have

g̃(x∗)− g(x∗)− Bias{g̃(x∗)}√
V ar[G1,n,1]

d→ N(0, 1),

where Bias{g̃(x∗)} = E[Gn,1]. To conclude for the ordinary smooth case, note V ar[g̃(x∗)] =
1
nV ar

[∑4
k=1Gk,n,1

]
. By Cauchy-Schwartz inequality, the covariance terms are dominated by the

variance terms, then for V ar[g̃(x∗)]/V ar[G1,n,1]
p→ 1, it is sufficient to show V ar[Gk,n,1]/V ar[G1,n,1]

p→
0 for k = 2, 3, 4, which immediately follows by (C.8), (C.10), and (C.12).

The proof for the supersmooth case is similar to that of the ordinary smooth case. So we only
state the differences here. First, we update the upper bound results. In Step 1 of the ordinary
smooth case, to verify the Lyapunov condition (C.2), by (C.3), parallel to (C.4), for η > 0, we
have

E|G1,n,1|2+η ≤
supx µg,2+η(x)

(2πa)2+η

(ˆ
|K ft(th)|
|f ftε (t)|

dt

)η ˆ
x

∣∣∣∣ˆ
t
e−it(x

∗−x)K
ft(th)

f ftε (t)
dt

∣∣∣∣2 dx
= O

(
h−(1+η)eβ0(2+η)h

−β
)
, (C.15)

where the last equality follows by Lemma 8 and supx µg,2+η(x) < ∞. For the latter, we note
‖g‖∞ < cg for some cg > 0 and

|g(X∗) + U − g(x∗)|2+η ≤ {|g(X∗)|+ |U |+ |g(x∗)|}2+η ≤ {2cg + |U |}2+η ≤ c1 + c2|U |2+η,

for constants c1 = 21+η(2cg)
2+η and c2 = 21+η. Hence, supx µg,2+η(x) <∞ follows by ‖fX‖∞ <

∞ and supxE[|U |2+η|X = x] <∞. By a similar argument as in (C.15), we have
ˆ
x

∣∣∣∣ˆ
t
e−it(x

∗−x)K
ft(th)

f ftε (t)
dt

∣∣∣∣2 fX(x)dx ≤ ‖fX‖∞
ˆ
x

∣∣∣∣ˆ
t
e−it(x

∗−x)K
ft(th)

f ftε (t)
dt

∣∣∣∣2 dx
= O

(
h−1e2β0h

−β
)
, (C.16)

where the equality follows by ‖fX‖∞ < ∞ and Lemma 8. Therefore, for the parallel result to
(C.8), by Theorem 2 and (C.16),

E|G2,n,1|2 = Op

(
κ(log n)

−α
β h−1e2β0h

−β
+ κ−

3
2h−1e2β0h

−β
)
, (C.17)

For the parallel result to (C.12), using (C.16), we have

An − a = O(h) +Op

(
n−1/2h−1/2eβ0h

−β
)
, (C.18)

which implies that (C.11) still hold if h→ 0 and nhe−2β0h−β →∞.
To verify Lyapunov’s condition (C.2) and to check the first stage estimation error is negligible

as in (C.6), besides (C.15), we also need the parallel result to (C.5). However, it is very difficult
to derive the parallel result to Lemma 7 in general for the case of supersmooth fε. In the
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deconvolution literature, the lower bound of E|G1,n,1|2 is commonly used to verify (C.2) in the
case of supersmooth fε. Primitive conditions, like Fan and Masry (1992, Condition 3.1), can be
imposed to this end. In this paper, to avoid the unnecessary complication, we directly assume
the lower bound of E|G1,n,1|2 in Assumption 8 (3). Hence, under Assumption 8 (3), both (C.2)
and (C.6) hold true, and the conclusion follows. �

Appendix D. Proof of Theorem 4

Similar to the proof of Theorem 3, we suppress dependence on zd in the following discussion,
at which md is evaluated. Let Adn = 1

n

∑n
j=1

´
x∗∈I Kh(x

∗ − Xj)dx
∗Kh(zd − Zd,j) and ad =´

x∗∈I fX∗,Zd(x
∗, zd)dx

∗( ´ K(w)dw
)2. First, similar to the proof of Theorem 3, we have m̃d(zd)−

md(zd) =
1
n

∑n
j=1G

d
n,j , where G

d
n,j = Gd1,n,j +Gd2,n,j +Gd3,n,j +Gd4,n,j and

Gd1,n,j =
1

ad

ˆ
x∗∈I

Kh(x
∗ −Xj)dx

∗Kh(zd − Zd,j)
[
Yj − µ−

∑
d′ 6=d

md′(Zd′,j)−md(zd)
]

− 1

ad

ˆ
x∗∈I

Kh(x
∗ −Xj)g(x

∗)dx∗Kh(zd − Zd,j),

Gd2,n,j =
1

ad

ˆ
x∗∈I

Kh(x
∗ −Xj)dx

∗Kh(zd − Zd,j)
[
µ+

∑
d′ 6=d

md′(Zd′,j)− µ̂−
∑
d′ 6=d

m̂d′(Zd′,j)
]

− 1

ad

ˆ
x∗∈I

Kh(x
∗ −Xj){ĝ(x∗)− g(x∗)}dx∗Kh(zd − Zd,j),

Gd3,n,j =
ad − Adn

Adn
Gd1,n,j , Gd4,n,j =

ad − Adn
Adn

Gd2,n,j ,

and the rest of the proof follows by three steps. First, we consider the ordinary smooth case.
Step 1: Show

lim
n→∞

E|Gd1,n,1|2+η

nη/2
[
E|Gd1,n,1|2

](2+η)/2 = 0, (D.1)

for some constant η > 0. For the numerator, by Jensen’s inequality,

E|Gd1,n,1|2+η ≤
2(1+η)

(ad)2+η
E

∣∣∣∣ˆ
x∗∈I

Kh(x
∗ −X)dx∗Kh(zd − Zd){md(Zd) + g(X∗) + U −md(zd)}

∣∣∣∣2+η
+

2(1+η)

(ad)2+η
E

∣∣∣∣ˆ
x∗∈I

Kh(x
∗ −X)g(x∗)dx∗Kh(zd − Zd)

∣∣∣∣2+η .
For the first term, we have

E

∣∣∣∣ˆ
x∗∈I

Kh(x
∗ −X)dx∗Kh(zd − Zd){md(Zd) + g(X∗) + U −md(zd)}

∣∣∣∣2+η
= O

(
h−η

(ˆ
|K ft(th)|
|f ftε (t)|

dt

)η
E

∣∣∣∣ˆ
x∗∈I

Kh(x
∗ −X)dx∗Kh(zd − Zd)

∣∣∣∣2
)

= O(h−(η+2)β−2η),

where the first equality follows by the law of iterated expectation, ‖md‖∞ < ∞, ‖g‖∞ < ∞,
supu,v E[|U |2+η|X = u, Zd = v] <∞, and

E
[
|md(Zd) + g(X∗) + U −md(zd)|2+η |X = u, Zd = v

]
≤ 41+η

(
2‖md‖2+η∞ + ‖g‖2+η∞ + E[|U |2+η|X = u, Zd = v]

)
,
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and the second equality follows by Lemmas 5 and 9.
By a very similar argument, we have

E

∣∣∣∣ˆ
x∗∈I

Kh(x
∗ −X)g(x∗)dx∗Kh(zd − Zd)

∣∣∣∣2+η = O(h−(η+2)β−2η),

which implies E|Gd1,n,1|2+η = O(h−(η+2)β−2η). Also, by Lemma 9, there exists a constant c > 0

such that E|Gd1,n,1|2 ≥ ch−2β for all n large enough. Thus, (D.1) holds true if nh4 → ∞ as
n→∞.

Step 2: Show
E|Gd2,n,1|2

V ar(G2
1,n,1)

→ 0. (D.2)

For the numerator, we have

E|Gd2,n,1|2 ≤ 2

a2d
E

∣∣∣∣∣∣
ˆ
x∗∈I

Kh(x
∗ −X)dx∗Kh(zd − Zd)

[
µ+

∑
d′ 6=d

md′(Zd′)− µ̂−
∑
d′ 6=d

m̂d′(Zd′)
]∣∣∣∣∣∣

2

+
2

a2d
E

∣∣∣∣ˆ
x∗∈I

Kh(x
∗ −X){ĝ(x∗)− g(x∗)}dx∗Kh(zd − Zd)

∣∣∣∣2 . (D.3)

For the first term, we have

E

∣∣∣∣∣∣
ˆ
x∗∈I

Kh(x
∗ −X)dx∗Kh(zd − Zd)

[
µ+

∑
d′ 6=d

md′(Zd′)− µ̂−
∑
d′ 6=d

m̂d′(Zd′)
]∣∣∣∣∣∣

2

=

ˆ
u,v
E

∣∣∣∣∣∣µ+
∑
d′ 6=d

md′(Zd′)− µ̂−
∑
d′ 6=d

m̂d′(Zd′)

∣∣∣∣∣∣
2∣∣∣∣∣∣X = u, Zd = v


×
∣∣∣∣ˆ
x∗∈I

Kh(x
∗ − u)dx∗Kh(zd − v)

∣∣∣∣2 fX,Zd(u, v)dudv
≤

|µ̂− µ|+ ∑
d′ 6=d

sup
zd′∈[−1,1]

|m̂d′(zd′)−md′(zd′)|

2

h−2β

{
h2βE

∣∣∣∣ˆ
x∗∈I

Kh(x
∗ −X)dx∗Kh(zd − Zd)

∣∣∣∣2
}

= Op

(
h−2βκ

3
2n

ζ+ ζ
2β
− 1

2 + h−2βκn
−αζ

β + h−2βκ−
3
2

)
,

where the first equality follows by the law of iterated expectation and the last equality follows
by Theorem 2 and Lemma 9. By a similar argument, we have

E

∣∣∣∣ˆ
x∗∈I

Kh(x
∗ −X){ĝ(x∗)− g(x∗)}dx∗Kh(zd − Zd)

∣∣∣∣2
= Op

(
h−2βκ

3
2n

ζ+ ζ
2β
− 1

2 + h−2βκn
−αζ

β + h−2βκ−
3
2

)
,
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which implies E|Gd2,n,1|2 = Op

(
h−2βκ

3
2n

ζ+ ζ
2β
− 1

2 + h−2βκn
−αζ

β + h−2βκ−
3
2

)
. For the denomina-

tor, by Lemma 9, we have E|Gd1,n,1|2 ≥ ch−2β . Also, we note

adE[Gd1,n,1] =

ˆ
x∗∈I

1

2π

ˆ
e−itx

∗
K ft(th) {E[{md(Zd) + g(X∗)}Kh(zd − Zd)|X∗]fX∗}ft (t)dtdx∗

−
ˆ
x∗∈I

md(zd) + g(x∗)

2π

ˆ
e−itx

∗
K ft(th) {E[Kh(zd − Zd)|X∗]fX∗}ft (t)dtdx∗

=

ˆ
x∗∈I

E[{md(Zd) + g(X∗)}Kh(x
∗ −X∗)Kh(zd − Zd)]dx∗

−
ˆ
x∗∈I
{md(zd) + g(x∗)}E[Kh(x

∗ −X∗)Kh(zd − Zd)]dx∗ = O(h2), (D.4)

where the first equality follows by Assumption 1 (1), the second equality follows by the convolu-
tion theorem (Lemma 1 (2)), and the last equality follows by the twice continuous differentiability
of g, md, and fX∗,Zd , the symmetry of K,

´
K(w)w2dw <∞, and the following factˆ

Kh(x
∗ − w1)Kh(zd − w2){g(w1) +md(w2)}fX∗,Zd(w1, w2)dw

−{g(x∗) +md(zd)}
ˆ
Kh(x

∗ − w1)Kh(zd − w2)fX∗,Zd(w1, w2)dw

=

ˆ
K(w1)K(w2)

[
g(x∗ − w1h) +md(zd − w2h)

]
fX∗,Zd(x

∗ − w1h, zd − w2h)dw

−{g(x∗) +md(zd)}
ˆ
K(w1)K(w2)fX∗,Zd(x

∗ − w1h, zd − w2h)dw

= fX∗,Zd(x
∗, zd){g′′(x∗) +m′′d(zd)}

ˆ
K(w)w2dw

ˆ
K(w)dwh2 + o(h2).

Since V ar[G1,n,1] is dominated by E|G1,n,1|2, we obtain

1

V ar[Gd1,n,1]
= O(h2β). (D.5)

Thus, (D.2) holds true if κ
3
2n

ζ+ ζ
2β
− 1

2 + κn
−αζ

β + κ−
3
2 → 0 as n→∞.

Step 3: Show
Adn − ad = op(1). (D.6)

To see this, we note

Adn = E[Adn] +Op

n−1/2 [E ∣∣∣∣ˆ
x∗∈I

Kh(x
∗ −X)dx∗Kh(zd − Zd)

∣∣∣∣2
]1/2

For the first term E[Adn], we have

E[Adn] =

ˆ
x∗∈I

1

2π

ˆ
t
e−itx

∗
K ft(th)

{
E[Kh(zd − Zd)|X∗]fX∗

}ft
(t)dtdx∗

=

ˆ
x∗∈I

E[Kh(x
∗ −X∗)Kh(zd − Zd)]dx∗

=

ˆ
x∗∈I

ˆ
u,v
K(u)K(v)fX∗,Zd(x

∗ − uh, zd − vh)dudvdx∗ = ad +O(h2),
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where the first equality follows by the law of iterated expectation, the second equality follows by
the Plancherel’s isometry (Lemma 1 (1)), the third equality follows by the change of variables,
and the last equality follows by the standard bias reduction argument with the twice continuously
differentiability of fX∗,Zd , the symmetry of K,

´
K(w)w2dw <∞, and the compactness of I. For

the second order term, by Lemma 9, we have E
∣∣´
x∗∈I Kh(x

∗ −X)dx∗Kh(zd − Zd)
∣∣2 = O(h−2β),

and it follows
Adn − ad = O(h) +Op(n

−1/2h−β),

which implies (D.6) holds true if h→ 0 and nh2β →∞ as n→∞.
Combining (D.1), (D.2), and (D.6), by a similar argument as in the proof of Theorem 3, we

have
m̃d(zd)−md(zd)− Bias{m̃d(zd)}√

V ar[m̃d(zd)]

d→ N(0, 1),

where Bias{m̃d(zd)} = E[Gdn,1].
The proof for the supersmooth case follows a similar route as the ordinary smooth case. So

we only state the difference as follows. First, by Lemmas 8 and 10, for η ≥ 0, we have

E

∣∣∣∣∣∣
ˆ

x∗∈I

Kh(x
∗ −X)dx∗Kh(zd − Zd){md(Zd) + g(X∗) + U −md(zd)}

∣∣∣∣∣∣
2+η

= O

(
h−η

(ˆ
|K ft(th)|
|f ftε (t)|

dt

)η
E

∣∣∣∣ˆ
x∗∈I

Kh(x
∗ −X)dx∗Kh(zd − Zd)

∣∣∣∣2
)

= O
(
h−(2η+3)e(η+2)β0h−β

)
.

By a very similar argument, we have

E

∣∣∣∣ˆ
x∗∈I

Kh(x
∗ −X)g(x∗)dx∗Kh(zd − Zd)

∣∣∣∣2+η = O
(
h−(2η+3)e(η+2)β0h−β

)
.

Thus, by Assumption 11, (D.1) and (D.5) hold true.
Also, by Lemma 10, we have

Adn − ad = O(h) +Op(n
−1/2h−3/2eβ0h

−β
),

which implies Adn − ad = op(1) if h→ 0 and nh3e−2β0h−β →∞, and the conclusion follows. �

Appendix E. Lemmas

For ζ > 0, let Gε,n,ζ = {t ∈ R : |f ftε (t)| < n−ζ} be the region over which the ridge regularization
is implemented, and Gcε,n,ζ = R\Gε,n,ζ . First, we introduce Lemmas 1-3 to prepare for the proof
of Lemma 4, which is used in the proof of Theorem 2.

Lemma 1. For f1, f2, f ∈ L1(R) ∩ L2(R) and c ∈ R, we have
(1) 〈f1, f2〉 = 1

2π 〈f
ft
1 , f

ft
2 〉,

(2)
( ´

f1(w − w′)f2(w′)dw′
)ft

(t) = f ft1 (t)f
ft
2 (t),

(3)
(
f1f2

)ft
(t) = 1

2π

´
f ft1 (t− s)f ft2 (s)ds,

(4) f ft(t− s) = {f(w)e−isw}ft(t),
(5) f ft(ct) =

[
f(·/c)/c

]ft
(t).
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Proof: Lemma 1 (1) is known as Plancherel’s isometry and its proof can be found in Meister
(2009, Theorem A.4). One of its useful special case is when f1 = f2 = f , which gives Parseval’s
identity, ‖f‖22 = 1

2π‖f
ft‖22. Lemma 1 (2) is known as the convolution theorem and its proof can

be found in Meister (2009, Theorem A.5). Lemma 1 (3) can be understood as the convolution
theorem with respect to the inverse Fourier transform, which will be used in the following dis-
cussion, and its proof is attached as follows. Lemma 1 (4) immediately follows by the definition
of the Fourier transform. Lemma 1 (5) is known as the linear stretching property of the Fourier
transform, and its proof is in Meister (2009, Lemma A.1 (e)).

We now prove Lemma 1 (3). Let δ(w) be the Dirac delta function. Then, we have

1

2π

ˆ
f ft1 (t− s)f ft2 (s)ds =

1

2π

ˆ
s

ˆ
w
f1(w)e

i(t−s)wdw

ˆ
w′
f2(w

′)eisw
′
dw′ds

=

ˆ
w
f1(w)e

itw

ˆ
w′

{ 1

2π

ˆ
s
eis(w

′−w)ds
}
f2(w

′)dw′

=

ˆ
w
f1(w)e

itw

ˆ
w′
δ(w′ − w)f2(w′)dw′ =

ˆ
f1(w)f2(w)e

itwdw,

where the third equality follows by δ(w) = 1
2π

´
eitwdt and the last equality follows by the

property of the Dirac delta function, that is
´
δ(w′ − w)f(w′)dw′ = f(w). �

Lemma 2. Suppose Assumptions 1 and 2 hold true.
(1) If fε is ordinary smooth of order β > 0, thenˆ

Gε,n,ζ

|f ftX∗(t)|2dt = O
(
n
− 2αζ

β

)
, sup

zd∈[−1,1]

ˆ
Gε,n,ζ

|f ftX∗|Zd=zd(t)|
2dt = O

(
n
− 2αζ

β

)
,

sup
zd,zd′∈[−1,1]

ˆ
Gε,n,ζ

|f ftX∗|Zd=zd,Zd′=zd′ (t)|
2dt = O

(
n
− 2αζ

β

)
.

(2) If fε is supersmooth of order β > 0, thenˆ
Gε,n,ζ

|f ftX∗(t)|2dt = O
(
(log n)

− 2α
β

)
, sup

zd∈[−1,1]

ˆ
Gε,n,ζ

|f ftX∗|Zd=zd(t)|
2dt = O

(
(log n)

− 2α
β

)
,

sup
zd,zd′∈[−1,1]

ˆ
Gε,n,ζ

|f ftX∗|Zd=zd,Zd′=zd′ (t)|
2dt = O

(
(log n)

− 2α
β

)
.

Proof of Lemma 2 (1): If fε is ordinary smooth of order β, cos,0(1+ |t|)−β < |f ftε (t)| for t ∈ R,
and it follows (1 + |t|)−β < c−1os,0n

−ζ for t ∈ Gε,n,ζ . Note that Jensen’s inequality (1 + |t|) ≤
√
2(1 + |t|2)1/2 implies (1 + t2)−α < 2α(1 + |t|)−2α, and it follows (1 + t2)−α < 2αc

− 2α
β

os,0 n
− 2αζ

β .
Also note that

´
Gε,n,ζ

|f ftX∗(t)|2(1+ t2)αdt ≤
´
|f ftX∗(t)|2(1+ t2)αdt < csob by fX∗ ∈ Fα,csob . Then,

we have ˆ
Gε,n,ζ

|f ftX∗(t)|2dt =

ˆ
Gε,n,ζ

|f ftX∗(t)|2(1 + t2)α(1 + t2)−αdt

≤ 2αc
− 2α
β

os,0 n
− 2αζ

β

ˆ
Gε,n,ζ

|f ftX∗(t)|2(1 + t2)αdt = O
(
n
− 2αζ

β

)
. (E.1)

By a similar argument, using fX∗|Zd=zd ∈ Fα,csob and fX∗|Zd=zd,Zd′=zd′ ∈ Fα,csob for any zd, zd′ ∈
[−1, 1], we obtain the second and third statements.
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Proof of Lemma 2 (2): If fε is supersmooth of order β, css,0 exp(−β0|t|β) < n−ζ for t ∈ Gε,n,ζ ,
and it implies that there exists some constant C > 0 such that (1 + t2)−α ≤ C(log n)

− 2α
β for

t ∈ Gε,n,ζ , which follows by

css,0 exp(−β0|t|β) < n−ζ ⇒ |t|β > β−10

[
log(css,0) + ζ log(n)

]
⇒ 1 + |t|2 > 1 + β

− 2
β

0

[
log(css,0) + ζ log(n)

] 2
β

⇒ (1 + |t|2)−α <
(
1 + β

− 2
β

0

[
log(css,0) + ζ log(n)

] 2
β
)−α

.

Then, similar to the previous ordinary smooth case, we haveˆ
Gε,n,ζ

|f ftX∗(t)|2dt =

ˆ
Gε,n,ζ

|f ftX∗(t)|2(1 + t2)α(1 + t2)−αdt

≤ C(log n)
− 2α
β

ˆ
Gε,n,ζ

|f ftX∗(t)|2(1 + t2)αdt = O
(
(log n)

− 2α
β

)
. (E.2)

By a similar argument, using fX∗|Zd=zd ∈ Fα,csob and fX∗|Zd=zd,Zd′=zd′ ∈ Fα,csob separately for
any zd, zd′ ∈ [−1, 1], we have the second and third statements. �

Lemma 3. Suppose Assumptions 1 and 2 hold true.
(1) If fε is ordinary smooth of order β with β > 1/2(r + 1), then

ˆ
|f ftε (t)|2r+2

{|f ftε (t)| ∨ n−ζ}2r+4
dt = O

(
n
ζ(2β+1)

β

)
.

(2) If fε is supersmooth of order β > 0, then
ˆ

|f ftε (t)|2r+2

{|f ftε (t)| ∨ n−ζ}2r+4
dt = O

(
n2ζ(r+2)

)
.

Proof of Lemma 3 (1): By the definition of Gε,n,ζ , we have
ˆ

|f ftε (t)|2r+2

{|f ftε (t)| ∨ n−ζ}2r+4
dt = n2ζ(r+2)

ˆ
Gε,n,ζ

|f ftε (t)|2r+2dt+

ˆ
Gcε,n,ζ

1

|f ftε (t)|2
dt. (E.3)

If fε is ordinary smooth of order β, cos,0(1 + |t|)−β ≤ |f ftε (t)| ≤ cos,1(1 + |t|)−β for t ∈ R.
For t ∈ Gε,n,ζ , we have cos,0(1 + |t|)−β ≤ |f ftε (t)| < n−ζ , which implies (1 + |t|)−β < c−1os,0n

−ζ .
Thus, there exists some constant 0 < η < 2β(r + 1) − 1 such that (1 + |t|)−2β(r+1)+1+η <

c
− 2β(r+1)−1−η

β

os,0 n
− ζ(2β(r+1)−1−η)

β for t ∈ Gε,n,ζ if β > 1/2(r+1). Also note
´
Gε,n,ζ

(1 + |t|)−1−ηdt→ 0

as n→∞ because 1+ |t| > c
1
β

os,0n
ζ
β for t ∈ Gε,n,ζ and

´
(1+ |t|)−1−ηdt <∞ for any η > 0. Thus,

we have the following result:ˆ
Gε,n,ζ

|f ftε (t)|2r+2dt ≤ c2os,1

ˆ
Gε,n,ζ

(1 + |t|)−2β(r+1)+1+η(1 + |t|)−1−ηdt

≤ cos,1c
− 2β(r+1)−1−η

β

os,0 n
− ζ(2β(r+1)−1−η)

β

ˆ
Gε,n,ζ

(1 + |t|)−1−ηdt

= O

(
n
− ζ(2β(r+1)−1−η)

β

)
. (E.4)
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For t ∈ Gcε,n,ζ , |f ftε (t)|−2 ≤ n2ζ . If fε is ordinary smooth of order β > 0, cos,1(1 + |t|)−β ≥

|f ftε (t)| ≥ n−ζ for t ∈ Gcε,n,ζ , which implies |t| < c
1
β

os,1n
ζ
β . Then, it follows

ˆ
Gcε,n,ζ

|f ftε (t)|−2dt ≤ n2ζ
ˆ
Gcε,n,ζ

dt ≤ 2c
1
β

os,1n
ζ(2β+1)

β = O

(
n
ζ(2β+1)

β

)
. (E.5)

Combining (E.3), (E.4), and (E.5), the conclusion follows.
Proof of Lemma 3 (2): For t ∈ Gcε,n,ζ , |f ftε (t)| ≥ n−ζ , which implies |f ftε (t)|−2r−4 ≤ n2ζ(r+2).
Then, we have ˆ

|f ftε (t)|2r+2

{|f ftε (t)| ∨ n−ζ}2r+4
dt ≤ n2ζ(r+2)

ˆ
|f ftε (t)|2r+2dt. (E.6)

If fε is supersmooth of order β > 0, we have
ˆ
|f ftε (t)|2r+2dt ≤ 2c2r+2

ss,1

ˆ +∞

0
exp

(
− (2r + 2)β0|t|β

)
dt, (E.7)

where the inequality follows by the smoothness of fε and the symmetry of the integration. Note
t2 exp(−(2r+2)β0|t|β)→ 0 as t→∞. Due to the strict monotonicity of t2 and exp((2r+2)β0|t|β),
there exists a constant δ such that exp((2r + 2)β0|t|β) > t2 for any t > δ. Then, we have

ˆ +∞

0
exp

(
− (2r + 2)β0|t|β

)
dt =

ˆ δ

0
+

ˆ +∞

δ
exp

(
− (2r + 2)β0|t|β

)
dt

≤ δ +

ˆ +∞

δ
t−2dt = δ + δ−1 <∞. (E.8)

Combining (E.6), (E.7), and (E.8), the conclusion follows. �

Let IMκ = {(p,Q) : E[p(X∗)Q] is an element of Mκ} be the index set characterizing the com-
ponents ofM , where p is a product of {p0, p1, . . . , pκ} andQ is a product of {1, q1(Z1), . . . , qκ(ZD)}.

Lemma 4. Suppose Assumptions 1 and 2 hold true.
(1) Under Assumption 3, it holds

|Ê[PκP
′
κ]−Mκ|2 = Op

(
κ2n

2ζ+ ζ
β
−1

+ κn
− 2αζ

β

)
, |Ê[PκY ]−Cκ|2 = Op

(
κn

2ζ+ ζ
β
−1

+ n
− 2αζ

β

)
.

(2) Under Assumption 4 with r ≥ 0 and 0 < ζ < 1
2(r+2) , it holds

|Ê[PκP
′
κ]−Mκ|2 = Op

(
κ(log n)

− 2α
β

)
, |Ê[PκY ]− Cκ|2 = Op

(
(log n)

− 2α
β

)
.

Proof of Lemma 4: Since the proof is similar, we focus on the proof for |Ê[PκP
′
κ]−Mκ|2. Let

Bp,Q = E{Ê[p(X∗)Q]}−E[p(X∗)Q] be the bias of the proposed estimator of the element of Mκ

characterized by p and Q. Let Vp,Q = Ê[p(X∗)Q]−E{Ê[p(X∗)Q]}, and Vp,Q,j be its component
associated with the j-th observation, i.e., Vp,Q = 1

n

∑n
j=1 Vp,Q,j . First, note that

E|Ê[PκP
′
κ]−Mκ|2 =

1

n2

n∑
j,j′=1

∑
(p,Q)∈IMκ

E
[
(Bp,Q + Vp,Q,j)(Bp,Q + Vp,Q,j′)

]
=

∑
(p,Q)∈IMκ

|Bp,Q|2 +
1

n

∑
(p,Q)∈IMκ

E|Vp,Q,1|2 ≡ B + V,

where the second equality follows by Assumption 2 (1).
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For the bias term B, Lemma 1 (1) and the law of iterated expectation imply

E[p(X∗)Q] = 〈E[Q|X∗]fX∗ , p〉 =
1

2π

ˆ
E[QeitX

∗
]pft(−t)dt,

and

E{Ê[p(X∗)Q]} =
1

2π

ˆ
E

 1

n

n∑
j=1

Qje
itXj

 f ftε (−t)|f ftε (t)|rpft(−t)
{|f ftε (t)| ∨ n−ζ}r+2

dt

=
1

2π

ˆ
E[QeitX

∗
]
|f ftε (t)|r+2pft(−t)
{|f ftε (t)| ∨ n−ζ}r+2

dt.

So, the bias term B can be written as

B =
∑

(p,Q)∈IMκ

∣∣∣∣ 12π
ˆ (

|f ftε (t)|r+2

{|f ftε (t)| ∨ n−ζ}r+2
− 1

)
E[QeitX

∗
]pft(−t)dt

∣∣∣∣2 ≡ B1 + · · ·+B7,

where B1, . . . , B7 are summations of the terms whose (p,Q) has the form (p0, 1), (pk, 1), (pkpl, 1),
(p0, qk(Zd)), (pk, ql(Zd)), (p0, qk(Zd)ql(Zd)), and (p0, qk(Zd)ql(Zd′)) separately for k, l = 1, . . . , κ

and d, d′ = 1, . . . , D with d 6= d′.
Since the proof is similar for B1, B2, and B3, we focus on the proof of B3. Note

B3 =

κ∑
k,l=1

∣∣∣∣ 12π
ˆ (

|f ftε (t)|r+2

{|f ftε (t)| ∨ n−ζ}r+2
− 1

)
f ftX∗(t)(pkpl)

ft(−t)dt
∣∣∣∣2

=
κ∑

k,l=1

∣∣∣∣ 1

4π2

ˆ ˆ (
|f ftε (t)|r+2

{|f ftε (t)| ∨ n−ζ}r+2
− 1

)
f ftX∗(t)p

ft
k (−t− s)pftl (s)dsdt

∣∣∣∣2

=
κ∑

k,l=1

∣∣∣∣ 1

4π2

ˆ ˆ (
|f ftε (u− v)|r+2

{|f ftε (u− v)| ∨ n−ζ}r+2
− 1

)
f ftX∗(u− v)pftk (−u)pftl (v)dudv

∣∣∣∣2

≤ 1

16π4

ˆ
v

{
κ∑
k=1

∣∣∣∣〈( |f ftε (u− v)|r+2

{|f ftε (u− v)| ∨ n−ζ}r+2
− 1

)
f ftX∗(u− v), pftk (u)

〉
u

∣∣∣∣2
}

κ∑
l=1

|pftl (v)|2dv

≤ κ

4π2

ˆ
Gε,n,ζ

|f ftX∗(t)|2dt = O(κ%Bn ),

where %Bn = n
− 2αζ

β under Assumption 3 and (log n)
− 2α
β under Assumption 4, the second equality

follows by Lemma 1 (2), the third equality follows by the change of variables (u, v) = (t+ s, s),
the last equality follows by Lemma 2, and the last inequality follows by Lemma 1 (1), the
orthonormality of {pl}κl=1, and the fact

κ∑
k=1

∣∣∣∣〈( |f ftε (u− v)|r+2

{|f ftε (u− v)| ∨ n−ζ}r+2
− 1

)
f ftX∗(u− v), pftk (u)

〉
u

∣∣∣∣2

= 4π2
κ∑
k=1

∣∣〈h1(w)e−ivw, pk(w)〉w∣∣2 ≤ 4π2
∥∥h1(w)e−ivw∥∥22

≤ 2π

∥∥∥∥( |f ftε (t)|r+2

{|f ftε (t)| ∨ n−ζ}r+2
− 1

)
f ftX∗(t)

∥∥∥∥2
2

= 2π

ˆ

Gε,n,ζ

|f ftX∗(t)|2dt,
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where h1 denotes the Fourier inverse of
(

|f ftε (t)|r+2

{|f ftε (t)|∨n−ζ}r+2 − 1
)
f ftX∗(t), the first equality follows by

Lemma 1 (1) and (4), the first inequality follows by the orthonormality of {pk}κk=1, the second
inequality follows by |e−ivw| = 1 and Lemma 1 (1), and the last equality follows by the definition
of Gε,n,ζ . By similar arguments, we have B1, B2 = O(%Bn ).

Since the proof is similar for B4 and B5, we focus on the proof of B5. Note

B5 = 2
D∑
d=1

κ∑
k,l=1

∣∣∣∣ 12π
ˆ (

|f ftε (t)|r+2

{|f ftε (t)| ∨ n−ζ}r+2
− 1

)
E[ql(Zd)e

itX∗ ]pftk (−t)dt
∣∣∣∣2

=
1

2π2

D∑
d=1

κ∑
k,l=1

∣∣∣∣〈( |f ftε (t)|r+2

{|f ftε (t)| ∨ n−ζ}r+2
− 1

)
E[ql(Zd)e

itX∗ ], pftk (t)

〉
t

∣∣∣∣2

≤ 1

π

D∑
d=1

ˆ
Gε,n,ζ

{
κ∑
l=1

∣∣∣∣ˆ f ftX∗|Zd=zd(t)fZd(zd)ql(zd)dzd

∣∣∣∣2
}
dt

≤ 1

π

D∑
d=1

ˆ
Gε,n,ζ

{ˆ
|f ftX∗|Zd=zd(t)|

2|fZd(zd)|
2dzd

}
dt

≤
2c2z,1D

π
max

d∈{1,··· ,D}
sup

zd∈[−1,1]

ˆ
Gε,n,ζ

|f ftX∗|Zd=zd(t)|
2dt = O(%Bn ),

where the first inequality follows by
κ∑
k=1

∣∣∣∣〈( |f ftε (t)|r+2

{|f ftε (t)| ∨ n−ζ}r+2
− 1

)
E[ql(Zd)e

itX∗ ], pftk (t)

〉
t

∣∣∣∣2 = 4π2
κ∑
k=1

∣∣〈h2,l,d, pk〉∣∣2 ≤ 4π2‖h2,l,d‖22,

where h2,l,d denotes the Fourier inverse of
(

|f ftε (t)|r+2

{|f ftε (t)|∨n−ζ}r+2 − 1
)
E[ql(Zd)e

itX∗ ], and

E[ql(Zd)e
itX∗ ] =

ˆ
zd

ˆ
x∗
eitx

∗
ql(zd)fX∗,Zd(x

∗, zd)dx
∗dzd

=

ˆ
zd

{ˆ
x∗
eitx

∗
fX∗|Zd=zd(x

∗)dx∗
}
fZd(zd)ql(zd)dzd =

ˆ
zd

f ftX∗|Zd=zd(t)fZd(zd)ql(zd)dzd,

the second inequality follows by the orthonormality of {ql}κl=1, the third inequality follows by that
fZd is supported on [−1, 1] and maxd∈{1,...,D} supzd∈[−1,1] |fZd(zd)| ≤ cz,1, and the last equality
follows by Lemma 2. Similarly, we have B4 = O(%Bn ).
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For B6, we have

B6 =
D∑
d=1

κ∑
k,l=1

∣∣∣∣ 12π
ˆ (

|f ftε (t)|r+2

{|f ftε (t)| ∨ n−ζ}r+2
− 1

)
E[qk(Zd)ql(Zd)e

itX∗ ]pft0 (−t)dt
∣∣∣∣2

≤ A(I)
2π

D∑
d=1

ˆ
Gε,n,ζ

κ∑
k,l=1

∣∣∣∣〈f ftX∗|Zd=zd(t)fZd(zd)qk(zd), ql(zd)〉zd
∣∣∣∣2 dt

≤ A(I)
2π

D∑
d=1

ˆ
Gε,n,ζ

κ∑
k=1

{ˆ
|f ftX∗|Zd=zd(t)fZd(zd)qk(zd)|

2dzd

}
dt

≤
A(I)c2ZD

2π

ˆ
Gε,n,ζ

max
d∈{1,··· ,D}

sup
zd∈[−1,1]

|f ftX∗|Zd=zd(t)|
2

{
κ∑
k=1

ˆ
|qk(zd)|2dzd

}
dt

=
2A(I)c2z,1Dκ

2π
max

d∈{1,··· ,D}
sup

zd∈[−1,1]

ˆ
Gε,n,ζ

|f ftX∗|Zd=zd(t)|
2dt = O(κ%Bn ),

where the first inequality follows by the Cauchy-Schwarz inequality and

E[qk(Zd)ql(Zd)e
itX∗ ] =

ˆ
zd

ˆ
x∗
eitx

∗
qk(zd)ql(zd)fX∗,Zd(x

∗, zd)dx
∗dzd

=

ˆ
zd

{ˆ
x∗
eitx

∗
fX∗|Zd=zd(x

∗)dx∗
}
fZd(zd)dzd =

ˆ
zd

f ftX∗|Zd=zd(t)fZd(zd)qk(zd)ql(zd)dzd,

the second inequality follows by the orthonormality of {ql}κl=1, the third inequality follows by
maxd∈{1,··· ,D} supzd∈[−1,1] |fZd(zd)| ≤ cZ , the second equality follows by the unity of qk, and the
last equality follows by Lemma 2. By a similar argument, we have B7 = O(%Bn ).

Combining these results, we obtain

B = O(κ%Bn ) =

 O
(
κn
− 2αζ

β

)
, under Assumption 3

O
(
κ(log n)

− 2α
β

)
, under Assumption 4

.

We now consider the variance term V . Similarly as the bias term, we decompose

V ≤ 1

n

∑
(p,Q)∈IMκ

E

∣∣∣∣ 12π
ˆ
QeitX

f ftε (−t)|f ftε (t)|rpft(−t)
{|f ftε (t)| ∨ n−ζ}r+2

∣∣∣∣2 ≡ V1 + · · ·+ V7,

where V1, . . . , V7 are summations of non-central second moments terms with (p,Q) in the forms
of (p0, 1), (pk, 1), (pkpl, 1), (p0, qk(Zd)), (pk, ql(Zd)), (p0, qk(Zd)ql(Zd)), and (p0, qk(Zd)ql(Zd′))

separately for k, l = 1, . . . , κ and d, d′ = 1, . . . , D with d 6= d′.
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Since the proof is similar for V1, V2, and V3, we focus on the proof of V3. Note

V3 =
1

n

κ∑
k,l=1

E

∣∣∣∣ 12π
ˆ
eitX

f ftε (−t)|f ftε (t)|r(pkpl)ft(−t)
{|f ftε (t)| ∨ n−ζ}r+2

dt

∣∣∣∣2

=
1

4π2n

κ∑
k,l=1

E

∣∣∣∣ 12π
ˆ
t

ˆ
s
eitX

f ftε (−t)|f ftε (t)|r

{|f ftε (t)| ∨ n−ζ}r+2
pftk (−t− s)pftl (s)dsdt

∣∣∣∣2

=
1

4π2n

κ∑
k,l=1

E

∣∣∣∣ 12π
ˆ
v

ˆ
u
ei(u−v)X

f ftε (−u+ v)|f ftε (u− v)|r

{|f ftε (u− v)| ∨ n−ζ}r+2
pftk (−u)pftl (v)dudv

∣∣∣∣2

≤ 1

16π4n

ˆ
v

ˆ
x

{
κ∑
k=1

∣∣∣∣〈ei(u−v)x f ftε (−u+ v)|f ftε (u− v)|r

{|f ftε (u− v)| ∨ n−ζ}r+2
, pftk (u)

〉
u

∣∣∣∣2
}
fX(x)dx

κ∑
l=1

|pftl (v)|2dv

≤ κ

4π2n

ˆ
|f ftε (t)|2r+2

{|f ftε (t)| ∨ n−ζ}2r+4
dt = O(κ%Vn ),

where %Vn = n
2ζ+ ζ

β
−1 under Assumption 3 and n2ζ(r+2)−1 under Assumption 4, the second

equality follows by Lemma 1 (2), the third equality follows by the change of variables (u, v) =

(t+ s, s), the last equality follows by Lemma 3, and the last inequality follows by Lemma 1 (1),
the unity of {pl}κl=1, and the following fact

κ∑
k=1

∣∣∣∣〈ei(u−v)x f ftε (−u+ v)|f ftε (u− v)|r

{|f ftε (u− v)| ∨ n−ζ}r+2
, pftk (u)

〉
u

∣∣∣∣2

= 4π2
κ∑
k=1

∣∣〈h3,x(w)e−ivw, pk(w)〉w∣∣2 ≤ 4π2‖h3,x(w)e−ivw‖22,

where h3,x denotes the Fourier inversion of eitx f ftε (−t)|f ftε (t)|r
{|f ftε (t)|∨n−ζ}r+2 with respect to t for every x in the

support of X, the first equality follows by Lemma 1 (1) and (4), the inequality follows by the
orthonormality of {pk}κk=1, the second equality follows by |e−ivw| = 1, |eitx| = 1, and Lemma 1
(1). By a similar argument, we have V1, V2 = O(%Vn ).

Since the proof is similar for other terms, we focus on the proof of V5, which is

V5 = 2
D∑
d=1

κ∑
k,l=1

E

∣∣∣∣ 12π
ˆ
ql(Zd)e

itX f
ft
ε (−t)|f ftε (t)|rpftk (−t)
{|f ftε (t)| ∨ n−ζ}r+2

dt

∣∣∣∣2

=
1

2π2n

D∑
d=1

κ∑
l=1

ˆ
zd

ˆ
x
|ql(zd)|2

κ∑
k=1

∣∣∣∣〈eitx f ftε (−t)|f ftε (t)|r

{|f ftε (t)| ∨ n−ζ}r+2
, pftk (t)

〉
t

∣∣∣∣2 fZd,X(zd, x)dxdzd
≤ cz,1Dκ

πn

ˆ
|f ftε (t)|2r+2

{|f ftε (t)| ∨ n−ζ}2r+4
dt = O(κ%Vn ).

By applying similar arguments, we obtain V4 = O(κ%Vn ) and V6, V7 = O(κ2%Vn ).
Combining these results,

V = O(κ2%Vn ) =

 O
(
κ2n

2ζ+ ζ
β
−1
)
, under Assumption 3

O
(
κ2n2ζ(r+2)−1) , under Assumption 4

.

30



Under Assumption 4, κ can only diverge in a logarithm rate so that κ(log n)−
2α
β converges to

zero. Therefore, for 0 < ζ < 1
2(r+2) and n large enough, we have κ2n2ζ(r+2)−1 � κ(log n)

− 2α
β ,

and the conclusion follows. �

Lemma 5. Under Assumptions 3 and 6, there exists ψ ∈ L1(R) such that

sup
n
hβ
|K ft(s)|
|f ftε (s/h)|

≤ ψ(s),

which implies that there exists a constant c > 0 such that hβ+1
´ |Kft(th)|
|f ftε (t)| dt ≤ c.

Proof of Lemma 5: Since lim|t|→∞ |t|β|f ftε (t)| = cε, there exists a constant cF such that
|t|β|f ftε (t)| > cε/2 for all t ≥ cF . Then for constants c1, c2 > 0 such that c1 > hβ and c2 > cFh

for all n, we have

hβ
|K ft(s)|
|f ftε (s/h)|

≤ hβ
max|s|≤cF h |K

ft(s)|
min|s|≤cF |f ftε (s)|

1{|s| ≤ cFh}+
|K ft(s)||s|β

(|s|/h)β|f ftε (s/h)|
1{|s| > cFh}

≤ c1c
−1
os,0(1 + cF )

β‖K ft‖∞1{|s| ≤ c2}+
2|K ft(s)||s|β

cε
≡ ψ(s), (E.9)

where integrability of ψ(s) follows by ‖K ft‖∞ <∞, the ordinary smoothness of fε, and
´
|K ft(s)||s|βds <

∞. The second statement immediately follows by the change of variables t = s/h. �

The following lemma is an extension of Fan (1991a, Lemma 2.1) to the multivariate case.

Lemma 6. Suppose Kn : Rd → C is a sequence of functions satisfying

Kn(x)→ K(x) and sup
n
|Kn(x)| ≤ K∗(x),

where K∗ satisfies
´
|K∗(x)|dx < ∞. If f is bounded and c is a continuity point of f , then for

any sequence h→ 0 as n→∞,ˆ
h−dKn(h

−1(c− x))f(x)dx = f(c)

ˆ
K(x)dx+ o(1).

Proof of Lemma 6: Note that∣∣∣∣ˆ h−dKn(h
−1(c− x))f(x)dx− f(c)

ˆ
K(x)dx

∣∣∣∣
≤

∣∣∣∣ˆ Kn(z)
[
f(c− zh)− f(c)

]
dz

∣∣∣∣+ |f(c)| ∣∣∣∣ˆ [Kn(z)−K(z)
]
dz

∣∣∣∣ ,
where the inequality follows by the change of variables z = c−x

h . The second term converges
to zero, which follows by Kn → K, supn |Kn| ≤ K∗,

´
|K∗(x)|dx < ∞, and the dominated

convergence theorem. For the first term,∣∣∣∣ˆ Kn(z){f(c− zh)− f(c)}dz
∣∣∣∣ ≤ sup

‖z‖≤δ
|f(c− z)− f(c)|

ˆ
|K∗(z)|dz + (‖f‖∞ + |f(c)|)

ˆ
‖z‖>δ/h

|K∗(z)|dz,

where δ → 0 and δ/h → ∞ as n → ∞. The first term on the right-hand side converges to zero
because f is continuous at c and

´
|K∗(x)|dx < ∞, and the second term also converges to zero

because f is bounded and
´
|K∗(x)|dx <∞. �
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Lemma 7. Suppose f is continuous at x∗, fε is ordinary smooth of order β, ‖f ft′ε ‖∞ < ∞,
|s|β
∣∣f ftε (s)∣∣ → cε, and |s|β+1

∣∣f ft′ε (s)
∣∣ → βcε, ‖K ft‖∞ < ∞, ‖K ft′‖∞ < ∞,

´
|s|β|K ft(s)|ds < ∞,

and
´
|s|β|K ft′(s)|ds <∞. Then

lim
n→∞

h2β+1

ˆ
x

1

4π2

∣∣∣∣ˆ
t

K ft(th)

f ftε (t)
e−it(x

∗−x)dt

∣∣∣∣2 f(x)dx =
f(x∗)

2πc2ε

ˆ
|s|2β|K ft(s)|2ds.

Proof of Lemma 7: First, observe that

lim
n→∞

hβ

2π

ˆ
K ft(s)

f ftε (s/h)
e−isxds = lim

n→∞

1

2π

ˆ
K ft(s)|s|β

(|s|/h)βf ftε (s/h)
e−isxds

=
1

2π

ˆ {
lim
n→∞

K ft(s)|s|β

(|s|/h)βf ftε (s/h)
1{|s| > cFh}

}
e−isxds =

1

2πcε

ˆ
K ft(s)|s|βe−isxds,

where the second and last equalities follow by Lemma 5 and the dominant convergence theorem.
Then it follows

h2β

4π2

∣∣∣∣ˆ K ft(s)

f ftε (s/h)
e−isxds

∣∣∣∣2 → 1

4π2c2ε

∣∣∣∣ˆ K ft(s)|s|βe−isxds
∣∣∣∣2 . (E.10)

Moreover, using integration by parts, we have
ˆ

K ft(s)

f ftε (s/h)
e−isxds =

1

ix

ˆ
K ft′(s)

f ftε (s/h)
e−isxds+

1

ixh

ˆ
K ft(s)f ft

′
ε (s/h)

f ft
2

ε (s/h)
e−isxds. (E.11)

Since |s|β|f ftε (s)| → cε and |s|β+1|f ft′ε (s)| → βcε as s→∞, there exists a constant cF > 0 such
that |s|β|f ftε (s)| > cε/2 and |s|β+1|f ft′ε (s)| < 5βcε/4 for any s satisfying |s| > cF . Then, we have∣∣∣∣∣ 1ix

ˆ
K ft′(s)

f ftε (s/h)
e−isxds

∣∣∣∣∣ ≤ 1

|x|

ˆ
|K ft′(s)|
|f ftε (s/h)|

ds

≤ h

|x|

(
2cF max|s|≤cF h |K

ft′(s)|
min|s|≤cF |f ftε (s)|

)
+
h−β

|x|

ˆ
|s|>cF h

|K ft′(s)||s|β

(|s|/h)β|f ftε (s/h)|
ds

≤ h

|x|
2cF c

−1
os,0(1 + cF )

β‖K ft′‖∞ +
h−β

|x|

(
2

cε

) ˆ
|K ft′(s)||s|βds = O(h−β|x|−1), (E.12)

and ∣∣∣∣∣ 1

ixh

ˆ
K ft(s)f ft

′
ε (s/h)

f ft
2

ε (s/h)
ds

∣∣∣∣∣ ≤ h−1

|x|

ˆ
|K ft(s)||f ft′ε (s/h)|
|f ftε (s/h)|2

ds

≤ 1

|x|

(
2cF max|s|≤cF h |K

ft(s)|max|s|≤cF |f
ft′
ε (s)|

min|s|≤cF |f ftε (s)|2

)
+
h−β

|x|

ˆ
|s|>cF h

|K ft(s)||s|β−1(|s|/h)β+1|f ft′ε (s/h)|
(|s|/h)2β|f ftε (s/h)|2

ds

≤ h

|x|
2cF c

−2
os,0(1 + cF )

2β‖K ft‖∞‖f ft
′

ε ‖∞ +
h−β

|x|

(
5β

cε

) ˆ
|K ft(s)||s|β−1ds = O(h−β|x|−1). (E.13)

Thus, Lemma 5, (E.11), (E.12), and (E.13) imply that there are a pair of constants c1, c2 > 0

such that

sup
n
h2β

∣∣∣∣ˆ K ft(s)

f ftε (s/h)
e−isxds

∣∣∣∣2 ≤ min{c1, c2|x|−2} (E.14)
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Therefore, the conclusion follows by

lim
n→∞

h2β+1

ˆ
1

4π2

∣∣∣∣∣∣
ˆ

t

K ft(th)

f ftε (t)
e−it(x

∗−x)dt

∣∣∣∣∣∣
2

f(x)dx

= lim
n→∞

ˆ
x

h2β−1

4π2

∣∣∣∣ˆ
s

K ft(s)

f ftε (s/h)
e−

is(x∗−x)
h ds

∣∣∣∣2 f(x)dx
=

f(x∗)

c2ε

ˆ
x

∣∣∣∣ 12π
ˆ
s
K ft(s)|s|βe−isxds

∣∣∣∣2 dx =
f(x∗)

2πc2ε

ˆ
|K ft(s)|2|s|2βds, (E.15)

where the first equality follows by the change of variables s = th, the second equality follows

by Lemma 6 with Kn(x) =
h2β

4π2

∣∣∣´ Kft(s)
f ftε (s/h)

e−isxds
∣∣∣2 and K∗(x) = min{c1, c2|x|−2}, and the third

equality follows by Lemma 1 (1). �

Lemma 8. Suppose Assumptions 4 and 8 hold true. There exists a constant c > 0 such that

he−β0h
−β
ˆ
|K ft(th)|
|f ftε (t)|

dt ≤ c, he−2β0h
−β
ˆ
x

∣∣∣∣ˆ
t
e−it(x

∗−x)K
ft(th)

f ftε (t)
dt

∣∣∣∣2 dx ≤ c.
Proof of Lemma 8: The first statement follows by
ˆ
|K ft(th)|
|f ftε (t)|

dt = h−1
ˆ
|K ft(s)|
|f ftε (s/h)|

ds ≤ c−1ss,0h
−1
ˆ
|s|≤1
|K ft(s)|eβ0(|s|/h)βds = O(h−1eβ0h

−β
),

where the first equality follows by the change of variables s = th, the inequality follows by the
supersmoothness of fε and the fact that K ft is supported on [−1, 1], and the last equality uses
‖K ft‖∞ <∞.

The second statement follows by
ˆ
x

∣∣∣∣ˆ
t
e−it(x

∗−x)K
ft(th)

f ftε (t)
dt

∣∣∣∣2 dx = 2π

ˆ
|K ft(th)|2

|f ftε (t)|2
dt = 2πh−1

ˆ
|K ft(s)|2

|f ftε (s/h)|2
ds

≤ 2πc−2ss,0h
−1
ˆ
|s|≤1
|K ft(s)|2e2β0(|s|/h)βds = O(h−1e2β0h

−β
),

where the first equality follows by Lemma 1 (1), the second equality follows by the change of
variables s = th, the inequality follows by the supersmoothness of fε and the fact that K ft is
supported on [−1, 1], and the last equality uses ‖K ft‖∞ <∞. �

Lemma 9. Under Assumptions 5, 6 and 10, there exist constants c2 ≥ c1 > 0 such that

c1 ≤ h2βE
∣∣∣∣ˆ
x∗∈I

Kh(x
∗ −X)dx∗Kh(zd − Zd)

∣∣∣∣2 ≤ c2,
c1 ≤ h2βE

∣∣∣∣∣∣
ˆ
x∗∈I

Kh(x
∗ −X)dx∗Kh(zd − Zd)

[
Y − µ−

∑
d′ 6=d

md′(Zd′)−md(zd)
]∣∣∣∣∣∣

2

≤ c2,

for all n large enough. Moreover, if supp g = I = [b1, b2] and sups
∣∣gft(− s

h)
s
h2

∣∣ → 0 as n → ∞,
then

lim
n→∞

h2βE

∣∣∣∣ˆ
x∗∈I

Kh(x
∗ −X)g(x∗)dx∗Kh(zd − Zd)

∣∣∣∣2 = 0,
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lim
n→∞

h2βE

{ ´
x∗∈I Kh(x

∗ −X)g(x∗)dx∗
´
x∗∈I Kh(x

∗ −X)dx∗

×|Kh(zd − Zd)|2
[
Y − µ−

∑
d′ 6=dmd′(Zd′)−md(zd)

] } = 0.

Proof of Lemma 9: By I = [b1, b2], decompose

h2βE

∣∣∣∣ˆ
x∗∈I

Kh(x
∗ −X)dx∗Kh(zd − Zd)

∣∣∣∣2
=

h2β

4π2

ˆ
u,v

∣∣∣∣ˆ
t
eitu

[
e−itb1 − e−itb2

it

]
K ft(th)

f ftε (t)
dtKh(zd − v)

∣∣∣∣2 fX,Zd(u, v)dudv ≡ J1 + J2 + J3,

where

J1 =
h2β

4π2

ˆ
u,v

∣∣∣∣∣
ˆ
|t|<M

eitu
[
e−itb1 − e−itb2

it

]
K ft(th)

f ftε (t)
dtKh(zd − v)

∣∣∣∣∣
2

fX,Zd(u, v)dudv,

J2 =
h2β

4π2

ˆ
u,v

∣∣∣∣∣
ˆ
|t|≥M

eitu
[
e−itb1 − e−itb2

it

]
K ft(th)

f ftε (t)
dtKh(zd − v)

∣∣∣∣∣
2

fX,Zd(u, v)dudv,

J3 =
h2β

2π2

ˆ
u,v
<


´
|t|<M eitu

[
e−itb1−e−itb2

it

]
Kft(th)
f ftε (t)

dt

×
´
|t|≥M eitu

[
e−itb1−e−itb2

it

]
Kft(th)
f ftε (t)

dt

 |Kh(zd − v)|2 fX,Zd(u, v)dudv,

and M is a constant such that |f ftε (t)||t|β > cε/2 and |f ft′ε (t)||t|β+1 < 5βcε/4 for any t satisfying
|t| > M . For J1, note that

|J1| ≤
h2β

4π2

(ˆ
|t|<M

∣∣∣∣e−itb1 − e−itb2it

∣∣∣∣ |K ft(th)|
|f ftε (t)|

dt

)2

E|Kh(zd − Zd)|2 = O(h2β−1),

where the second equality follows by
∣∣∣ e−itb1−e−itb2

it

∣∣∣ ≤ |b2−b1|, ‖K ft‖∞ <∞, ordinary smoothness
of fε, and hE|Kh(zd − Zd)|2 = fZd(zd)

´
K2(v)dv + o(h). Also, for J3,

|J3| ≤
h2β

π2

ˆ
|t|<M

∣∣∣∣e−itb1 − e−itb2it

∣∣∣∣ |K ft(th)|
|f ftε (t)|

dt

ˆ
|t|≥M

|K ft(th)|
|f ftε (t)||t|

dtE|Kh(zd − Zd)|2

= O

(
hβ−1

ˆ
|t|≥M

|K ft(s)||s|β−1

|f ftε (s/h)||s/h|β
ds

)
= O(hβ−1),

where the second equality follows by the choice of M and
´
|K ft(s)||s|β−1ds <∞.

So, J2 is the dominating term and decomposed as J2 = J2,1 + J2,2 + J2,3, where

J2,1 =
h2β

4π2

ˆ
u,v

∣∣∣∣∣
ˆ
|s|≥Mh

e
is(u−b1)

h
K ft(s)

f ftε (s/h)s
dsKh(zd − v)

∣∣∣∣∣
2

fX,Zd(u, v)dudv,

J2,2 =
h2β

4π2

ˆ
u,v

∣∣∣∣∣
ˆ
|s|≥Mh

e
is(u−b2)

h
K ft(s)

f ftε (s/h)s
dsKh(zd − v)

∣∣∣∣∣
2

fX,Zd(u, v)dudv,

J2,3 =
h2β

2π2

ˆ
u,v
<


´
|s|≥Mh e

is(u−b1)
h

Kft(s)
f ftε (s/h)s

ds

×
´
|s|≥Mh e

is(u−b2)
h

Kft(s)
f ftε (s/h)s

ds

 |Kh(zd − v)|2fX,Zd(u, v)dudv.
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For J2,1 and J2,2, we show

J2,1 →
fX,Zd(b1, zd)

2πc2ε

ˆ
|K ft(s)|2|s|2β−2ds

ˆ
K2(v)dv,

J2,2 →
fX,Zd(b2, zd)

2πc2ε

ˆ
|K ft(s)|2|s|2β−2ds

ˆ
K2(v)dv. (E.16)

In particular, letting Kn(u, v) =
h2β

4π2

∣∣∣´|s|≥Mh e
−isu Kft(s)

f ftε (s/h)s
dsK(v)

∣∣∣2, we have

J2,1 =

ˆ
h−2Kn

(
b1 − u
h

,
zd − v
h

)
fX,Zd(u, v)dudv,

J2,2 =

ˆ
h−2Kn

(
b2 − u
h

,
zd − v
h

)
fX,Zd(u, v)dudv.

Note Kn(u, v)→ K(u, v) = 1
4π2c2ε

∣∣e−isuK ft(s)sβ−1dsK(v)
∣∣2 and´

K(u, v)dudv = 1
2πc2ε

´
|K ft(s)|2|s|2β−2ds

´
K2(v)dv by Plancherel’s isometry. Then by Lemma

6, if there exists K∗ such that supn |Kn| ≤ |K∗| and
´
K∗(u, v)dudv <∞, (E.16) would follow.

To see this, using the integration by parts, we have

hβ
ˆ
|s|≥Mh

e−isu
K ft(s)

f ftε (s/h)s
ds =

hβe−isuK ft(s)

iuf ftε (s/h)s

∣∣∣∣Mh

−Mh

+
hβ

iu

ˆ
|s|≥Mh

e−isu
(

K ft(s)

f ftε (s/h)s

)′
ds,

where
∣∣∣hβe−iMhuKft(Mh)

iuf ftε (M)Mh

∣∣∣→ 0 and
∣∣∣hβeiMhuKft(−Mh)

iuf ftε (−M)Mh

∣∣∣→ 0 if β > 1, and

hβ
ˆ
|s|≥Mh

e−isu
(

K ft(s)

f ftε (s/h)s

)′
ds =

ˆ
|s|≥Mh

e−isu
K ft′(s)sβ−1

f ftε (s/h)(s/h)
β
ds+

ˆ
|s|≥Mh

e−isu
K ft(s)sβ−2

f ftε (s/h)(s/h)
β
ds

++

ˆ
|s|≥Mh

e−isu
K ft(s)sβ−1f ft

′
ε (s/h)(s/h)β+1[

f ftε (s/h)(s/h)
β
]2 ds,

with∣∣∣∣∣
ˆ
|s|≥Mh

e−isu
K ft′(s)sβ−1

f ftε (s/h)(s/h)
β
ds

∣∣∣∣∣ ≤
ˆ
|s|≥Mh

|K ft′(s)||s|β−1

|f ftε (s/h)||s/h|β
ds ≤ 2

cε

ˆ
|K ft′(s)||s|β−1ds,∣∣∣∣∣

ˆ
|s|≥Mh

e−isu
K ft(s)sβ−2

f ftε (s/h)(s/h)
β
ds

∣∣∣∣∣ ≤
ˆ
|s|≥Mh

|K ft(s)||s|β−2

|f ftε (s/h)||s/h|β
ds ≤ 2

cε

ˆ
|K ft(s)||s|β−2ds,

and∣∣∣∣∣
ˆ
|s|≥Mh

e−isu
K ft(s)sβ−1f ft

′
ε (s/h)(s/h)β+1[

f ftε (s/h)(s/h)
β
]2 ds,

∣∣∣∣∣ ≤
ˆ
|s|≥Mh

|K ft(s)||s|β−1|f ft′ε (s/h)||s/h|β+1[
|f ftε (s/h)||s/h|β

]2 ds

≤ 5β

cε

ˆ
|K ft′(s)||s|β−1ds.

By
´
|K ft′(s)||s|β−1ds <∞ and

´
|K ft(s)||s|β−2ds <∞, there exists a constant c2 > 0 such that

supn |Kn(u, v)| < c2|K(v)|2
u2

. Also, we note

hβ

∣∣∣∣∣
ˆ
|s|≥Mh

e−isu
K ft(s)

f ftε (s/h)s
ds

∣∣∣∣∣ ≤
ˆ
|s|≥Mh

|K ft(s)||s|β−1

|f ftε (s/h)||s/h|β
ds ≤ 2

cε

ˆ
|K ft(s)||s|β−1ds <∞.
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Then we can choose K∗(u, v) = min
(
c1|K(v)|2, c2|K(v)|2

u2

)
, and it is easy to verify that K∗

satisfies the required conditions and (E.16) is obtained.
For the cross-product term J2,3, by Cauchy-Schwarz inequality, we have

|J2,3| ≤ 2
√
J2,1J2,2 →

√
fX,Zd(b1, zd)fX,Zd(b2, zd)

πc2ε

ˆ
|K ft(s)|2|s|2β−2ds

ˆ
K2(v)dv

Thus, by J2,1 + J2,2 − |J2,3| ≤ J2 ≤ J2,1 + J2,2 + |J2,3|, if {fX,Zd(b1, zd) + fX,Zd(b2, zd)} >
2
√
fX,Zd(b1, zd)fX,Zd(b2, zd), there exist constants c2 ≥ c1 > 0 such that c1 ≤ J2 ≤ c2 as n→∞,

and the first statement follows by J1 = o(1) and J3 = o(1).
By replacing fX,Zd with E[|g(X∗) +md(Zd) + U −md(zd)|2|X,Zd]fX,Zd , a similar argument

yields the second statement.
The proofs of the rest two statements are similar, so we focus on the third statement. If

supp g = [b1, b2], we have

h2βE

∣∣∣∣ˆ Kh(x
∗ −X)g(x∗)dx∗Kh(zd − Zd)

∣∣∣∣2
=

h2β

4π2

ˆ
u,v

∣∣∣∣ˆ
t
eitugft(−t)K

ft(th)

f ftε (t)
dtKh(zd − v)

∣∣∣∣2 fX,Zd(u, v)dudv
=

h2β

4π2

ˆ
u,v

∣∣∣∣∣
ˆ
|t|≥M

eitugft(−t)K
ft(th)

f ftε (t)
dtKh(zd − v)

∣∣∣∣∣
2

fX,Zd(u, v)dudv + o(1),

where the last equality follows by a similar argument as in the proof of the first statement. Also,

hβ

∣∣∣∣∣
ˆ
|t|≥M

eitugft(−t)K
ft(th)

f ftε (t)
dtKh(zd − v)

∣∣∣∣∣
≤
ˆ
|s|≥Mh

∣∣gft(−s/h)(s/h2)∣∣ |K ft(s)||s|β−1

|f ftε (s/h)||s/h|β
dtK

(
zd − v
h

)
≤

2 sup|s|≥Mh |gft(−s/h)s/h2| ‖K‖∞
cε

ˆ
|K ft(s)||s|β−1ds,

and the conclusion follows because sups |gft(−s/h)s/h2| can be arbitrarily small for all n large
enough. The last statement can be shown in the same manner. �

Lemma 10. Under Assumptions 4, 5, 8 and 11, there exist constants c, c′ > 0 such that

h3e−2β0h
−β
E

∣∣∣∣ˆ
x∗∈I

Kh(x
∗ −X)dx∗Kh(zd − Zd)

∣∣∣∣2 ≤ c,
h3e−2β0h

−β
E

∣∣∣∣ˆ
x∗∈I

Kh(x
∗ −X)g(x∗)dx∗Kh(zd − Zd)

∣∣∣∣2 ≤ c′,
for all n large enough.

36



Proof of Lemma 10: Let I = [b1, b2]. For the first statement, we have

h3e−2β0h
−β
E

∣∣∣∣ˆ
x∗∈I

Kh(x
∗ −X)dx∗Kh(zd − Zd)

∣∣∣∣2
=

h3e−2β0h
−β

4π2

ˆ
u,v

∣∣∣∣ˆ eitu
[
e−itb1 − e−itb2

it

]
K ft(th)

f ftε (t)
dtKh(zd − v)

∣∣∣∣2 fX,Zd(u, v)dudv
≤ (b2 − b1)2

4π2

(
he−β0h

−β
ˆ
|K ft(th)|
|f ftε (t)|

dt

)2

hE|Kh(zd − Zd)|2,

where the inequality follows by Lemma 8. The conclusion follows by Lemma 8 and hE|Kh(zd −
Zd)|2 = fZd(zd)

´
K2(v)dv + o(h). The second statement is shown in the same manner by using

‖gft‖∞ <∞. �

37



References

[1] Buja, A., Hastie, T. and R. Tibshirani (1989) Linear smoothers and additive models, Annals of Statistics,

17, 453-510.

[2] Carroll, R. J. and P. Hall (1988) Optimal rates of convergence for deconvolving a density, Journal of the

American Statistical Association, 83, 1184-1186.

[3] Comte, F. and Kappus, J. (2015) Density deconvolution from repeated measurements without symmetry

assumption on the errors, Journal of Multivariate Analysis, 140, 31-46.

[4] Delaigle, A., Fan, J. and R. J. Carroll (2009) A design-adaptive local polynomial estimator for the errors-in-

variables problem, Journal of the American Statistical Association, 104, 348-359.

[5] Delaigle, A. and P. Hall (2008) Using SIMEX for smoothing-parameter choice in errors-in-variables problems,

Journal of the American Statistical Association, 103, 280-287.

[6] Delaigle, A., Hall, P. and A. Meister (2008) On deconvolution with repeated measurements, Annals of

Statistics, 36, 665-685.

[7] Fan, J. (1991a) Asymptotic normality for deconvolution kernel density estimators, Sankhyā, A 53, 97-110.
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