We construct and estimate a structural principal/agent model of contract renegotiation in the French urban transport sector in a context where operators are privately informed on their innate costs (adverse selection) and can exert cost-reducing managerial effort (moral hazard). This model captures two important features of the industry. First, only two types of contracts are used in practice by local public authorities to regulate the service: cost-plus and fixed-price contracts with positive subsidies. Second, these subsidies increase over time. Such increasing subsidies are consistent with the theoretical hypothesis that principals cannot commit not to renegotiate and contracts are renegotiation-proof. We compare this situation to the hypothetical case with full commitment. The distribution of innate costs of operators is shifted upwards under this hypothetical scenario. The welfare gains of commitment are significant and accrue mostly to operators. Estimates of the weights that local governments give to the operator’s profit in their objective functions and of the social value of the cost-reducing managerial effort are obtained as by-products.
1 Introduction

Real world contractual relationships are ongoing processes in changing environments. Parties lay down arrangements for trading goods and services covering several periods. However they often recontract as new information on market demand and costs structure becomes available. Although economic theory has devoted considerable attention to understanding dynamic contractual relationships and especially how contracts may be renegotiated over time, the empirical literature on those issues lags much behind both in terms of volume and scope. This gap is a real concern both for theorists who may need empirical evidence to target their effort towards sensible issues but also for applied economists who might be de facto missing the theoretical models that could be amenable to empirical analysis.

The main lesson of the theoretical literature is that renegotiation matters for contract design. Renegotiation has a positive impact because it improves contracting *ex post*. However, once those efficiency gains are anticipated, renegotiation has also perverse effects on contractual parties’ *ex ante* incentives: information may be incorporated in contract design only at a slow pace;\(^1\) the threat of regulatory hold-up may impede specific investments which requires costly governance and safeguards arrangements;\(^2\) and finally optimal risk-sharing arrangements may be disrupted.\(^3\) Overall, renegotiation imposes transaction costs on ex ante contracting. Those costs prevent from achieving the informationally constrained efficient solution that could have been reached if the parties had bound themselves to a long-term contract. An open issue from an empirical viewpoint is to assess the welfare losses associated with a limited commitment. Beyond, another important question is also to understand how those losses are distributed between contracting parties.

Answering those questions is crucial both for researchers to ascertain the relevance of a whole body of theoretical literature on renegotiation, but also for practitioners who may want to evaluate the performances of real-world contractual practices. In this respect, the French urban transportation sector offers a particularly attractive field for study. Motivated by a concern towards improving *ex ante* competition among potential operators, the

\(^1\)See the seminal paper by Dewatripont (1989) and the literature on adverse-selection under imperfect commitment (Hart and Tirole, 1988, Laffont and Tirole, 1993, Chapter 10, Rey and Salanié (1996), among others). Laffont and Martimort (2002, Chapter 9) provided some entries.

\(^3\)Fudenberg and Tirole (1990).
1993 Law on Transportation imposed that franchise contracts must be re-auctioned and “re-negotiated” every 5 years by public authorities in charge of regulating the service. Since then, practitioners in the industry have repeatedly complained that this institutional constraint on contract length is too tight. Expectations that welfare gains could be achieved by increasing contract duration is at the source of an ongoing political debate and some political activism by operators.

Motivation. This paper has two main objectives. First, we construct and estimate a structural principal/agent model of contract renegotiation in the French urban transport sector. A basic assumption of this model is that contracting takes place under asymmetric information: operators are privately informed on their innate costs at the time of contracting with public authorities. Second, we use those estimates to recover not only the welfare gains but also their distribution if full commitment were feasible. These gains are significant although unevenly distributed: operators are net winners when the length of the contract is extended whereas taxpayers/consumers lose.

Our model accounts for an important feature of the industry. Only two kinds of contracts are used in practice by local public authorities (principals) to regulate the service: cost-plus and fixed-price contracts. It is well-known from the works of Laffont and Tirole (1993, Chapter 1), Rogerson (1987), Melumad, Mookherjee and Reichelstein (1992) and Mookherjee and Reichelstein (2001) that such menus of linear contracts have strong incentive properties under asymmetric information. Menus facilitate self-selection of operators according to their private information on innate costs. In addition, linear contracts have also nice robustness properties under cost uncertainty. More importantly, from an implementation viewpoint, menus approximate quite well, and are even sometimes able to achieve what more complex nonlinear contracts would do. Rogerson (2003) argued that, in most real-world procurement contexts, a simple two-item menu (cost-plus/fixed-price) may suffice to achieve much of the gains from trade, even under asymmetric information.

5 Laffont and Tirole (1993, Chapter 1) showed that the optimal nonlinear cost reimbursement rule can be implemented with a menu of linear contracts when this rule is convex. Wilson (1993) and McAfee (2002) demonstrated that such menus might only contain a few items.
6 More specifically, Rogerson (2003) supposed that the firm’s innate cost which is its private information is uniformly distributed and showed that this simple menu can secure three-fourth of the surplus that an optimal contract would achieve. Chu and Sappington (2007) challenged this result beyond the case of a uniform distribution. On a related note, Bower (1993), Gasmì, Laffont and Sharkey (1999), Schmalensee (1989) and Reichelstein (1992) investigated the value of relying on a single linear contract and concluded also on the good welfare performances achieved with such rough contract design.
A second important feature of the urban transportation sector is that subsidies (or “compensations” as they are often called by practitioners) proposed to operators increase over time no matter the characteristics of the service. Our theoretical model provides a rationale for such patterns as resulting from the limited ability of local authorities to commit and the fact that, as time goes on, the operator’s cost structure gets better known by public authorities. This argument is already familiar from the agency literature on limited commitment.\footnote{Dewatripont (1989), Laffont and Tirole (1993, Chapter 10) and Laffont and Martimort (2002, Chapter 9) among others.} We revisit this general insight in a specific institutional context where two-item menus are the only feasible incentive mechanisms. Whereas the existing theoretical literature on limited commitment has focused on discrete types models, derived fully optimal renegotiation-proof contracts but is often criticized for its lack of tractability, our model below imports much of the tractability of Rogerson’s model into a framework where contracts are renegotiated over time.\footnote{Rogerson’s analysis is static and cannot by definition describe the rich dynamic patterns observed in our data set, in particular the steady increase in subsidies over time and the move towards fixed-price contracts as time goes on.} In doing so, we look for a theoretical modeling that is consistent with our data set. Considering a continuum of types is a prerequisite to evaluate a meaningful distribution of cost parameters in our empirical model. This allows us to neatly characterize the probabilities of various contractual regimes (cost-plus, fixed-price, and changes over time between those two options). This is an important preliminary step of our estimation procedure based on a maximum likelihood criterion.

\emph{Empirical analysis.} Turning more specifically to the empirical part of our study, we consider the two scenarios of full and limited commitment with renegotiation and estimate structural parameters of the model under each hypothesis. To understand the estimation bias that arises when wrongly assuming full commitment, it is useful to come back on the basic intuition behind the trade-off between \textit{ex post} efficiency and \textit{ex ante} incentives that appears under renegotiation. Roughly speaking, since renegotiation raises subsidies in later periods of contracting, even operators which are not efficient may end up choosing fixed-price contracts at the renegotiation stage. Even though it brings efficiency gains, renegotiation increases informational rents for the most efficient operators which makes them less eager to reveal their types at earlier stages of the relationship. From the public authorities’ viewpoint, renegotiation is found more attractive \textit{ex post} when the social value of managerial effort is greater so that the efficiency gains from renegotiation dominate its costs in terms of extra information rents left to operators. Neglecting the
possibility of renegotiation and wrongly assuming that a full commitment regime prevails amounts thus to underestimate the social value of managerial effort, introducing biases in the estimation of the distribution of innate costs that tend to overestimate information rents. Estimating this distribution for the set of operators in our data set under either a full commitment or a renegotiation scenario, we find that operators are slightly more efficient before undertaking any cost-reducing activities when assuming renegotiation.

From our empirical analysis, we estimate also the weight of the operator’s profit in the public authority’s objective function. This weight depends on the political color of the public authority. In particular, right-wing principals are more prone to give up information rents to operators.

Finally, using our estimates of the operator’s innate cost distributions and other parameters of the model, we evaluate the welfare gains that would be obtained when moving to the full commitment solution. The intertemporal subsidies under full commitment are higher than under renegotiation, so that taxpayers are the net losers from a hypothetical increase in the contract length. However, the overall welfare gains are significant. Taxpayers bear an increase in tax burden of 8 million Euros whereas operators see their expected information rent increase by roughly 8.2 million Euros. This result clearly explains the operators’ political activism in pushing for reforms that would increase contracts length.

Literature review. Our model borrows on the recent empirical literature on contracts and regulation. First, as already explained, we contribute to the ongoing empirical debate on whether complex menus of contracts are actually implemented in practice, or, on the contrary, regulators use menus with a reduced number of items. In a pioneering paper, Wolak (1994) estimated the production function of a Californian water utility, and argues that regulatory mechanisms à la Baron and Myerson (1982) are used. Assuming instead cost observability as in Laffont and Tirole (1993), Gasmi, Laffont and Sharkey (1997), Brocas, Chan and Perrigne (2006) and Perrigne and Vuong (2007) considered complex regulatory schemes to estimate costs and demand parameters of structural regulatory models. Other empirical studies argue instead that principals do not use such complex mechanisms. Bajari and Tadelis (2001) focused on the private construction industry in the U.S. and argued that most contracts are either cost-plus or fixed-price. The reason for such restricted menus is that public authorities look for an appropriate trade-off between providing ex ante incentives with fixed-price contracts and avoiding ex post transaction
costs due to costly renegotiation with cost-plus arrangements. Considering contracts in
the automobile insurance industry, Chiappori and Salanié (2000) restricted the analysis
to simple menus with two types of coverage. In the field of transportation, Gagnepain and
Ivaldi (2002) focused on the incentive effects of cost-plus and fixed-price contracts. They
measured actual welfare related to real regulatory practices, and compared this measure
to what could be achieved if more complex second-best mechanisms were implemented.
The present paper improves significantly upon Gagnepain and Ivaldi (2002) by explicitly
modeling contract design by public authorities and giving more attention to the dynamic
choice of contracts by operators.

A second important feature of our empirical model is related to the dynamic nature
of the contractual relationship between the principal and the agent. Dionne and Doherty
(1994) focused on the car insurance industry in California and suggested that insurers
may use long-term contracts as a device to enhance efficiency and attract portfolios of
dominantly low-risk drivers. Our empirical analysis shows how long-term contracts may
benefit both to public authorities and transport operators.

Finally, our analysis assumes that local public authorities may be tempted to favor
private interests when designing contracts. The political color of the local government
influences the distribution of welfare among the different actors involved in their provision.
Empirical tests on capture and ideology in politics are given in Kalt and Zupan (1984,
1990). Those papers provided evidence on the fact that policymakers’ ideology may have
a significant impact on regulatory outcome, in a way that is similar to what happens in
the French transportation sector.

Organization of the paper. Section 2 gives an overview of the French urban transportation
industry. Section 3 presents our theoretical model and solves for the optimal menu of con-
tracts (fixed-prices/cost-plus) both under full commitment and renegotiation. We derive
there the important property that subsidies increase over time under a renegotiation-proof
scenario. Section 4 develops our empirical method. Section 5 evaluates the magnitude
of the welfare gains when moving to full commitment but also the distribution of those
gains between operators and taxpayers. Section 6 concludes by highlighting a few alleys
for further research. Proofs of the theoretical model are developed in an Appendix.
2 The French Urban Transportation Industry

As in most countries around the world, urban transportation in France is a regulated activity. Local transportation networks cover each urban area of significant size. For each network, a local authority (a city, a group of cities or a district) contracts with a single operator to provide the service. Regulatory rules prevent the presence of several suppliers of transportation services on the same urban network. A distinguishing feature of France compared to most other OECD countries is that about eighty percent of local operators are private and are owned by three large companies, two of them being private while the third one is semi-public. These companies, with their respective type of ownership and market share (in terms of number of networks operated) are in 2002: KEOLIS (private, 30%), TRANSDEV (semi-public, 19%), CONNEX (private, 25%). In addition there are a small private group, AGIR, and a few public firms under local government control.

2.1 Economic Environment

The 1982 French Law was enacted to facilitate decentralized decision-making on urban transportation and to provide a guide for regulation. As a result, each local authority organizes now its own transportation system by setting the route structure, the capacity level, the quality of service, the fare structure, the conditions for subsidizing the service, the level of investment and the nature of ownership. The local authority may operate the network directly or it may delegate that task to an operator. In this case, a formal contract defines the regulatory rules that the operator must follow as well as the cost-reimbursement scheme between the public authority and the operator.

Since 1993, beauty contests are required to allocate the building and management of new infrastructures for urban transportation when the renewal of contracts comes to an end. In practice, however, and till recently, very few networks have changed operators from one regulatory period to the other. Documentary investigation sheds light on the fact that awarding transport operations through tenders does not necessarily guarantee ex ante competition since local transport authorities usually receive bids from one single candidate, namely the operator already in place. Several reasons potentially explain this phenomenon. First, local authorities are either reluctant to really implement the law

9For an overview of the regulation of urban transit systems in the different countries of the European Union, in the United States and Japan, see IDEI (1999).
or do not have enough expertise to launch complex calls for tenders. Second, the three groups owning most of the urban transport operators in France are usually located on specific geographical areas. This restricts competition in awarding transport operations in urban areas where regulatory contracts come to an end. These groups also operate other municipal services such as water distribution or garbage collection, which makes it even harder for the regulator to credibly punish the operator in case of bad performance.

In most urban areas, operating costs are twice as high as commercial revenues on average. Budgets are rarely balanced without subsidies. One reason is that operators face universal service obligations and may have to operate in low demand areas. Prices are maintained at a low level in order to ensure affordable access to all consumers of public transportation. Moreover, special fares are provided to targeted groups like pensioners and students. Subsidies are taken from the State’s budget, the local authority’s budget, and a special tax paid by any local firm (employing more than nine full-time workers). In addition to the price distortions causing deficits, informational asymmetries that affect the cost side make it more difficult to resume these deficits. This aspect is discussed in more details in the sequel.

Performing a welfare analysis of regulatory schemes requires a database that encompasses both the performance and the organization of the French urban transport industry. The basic idea is to consider each system in an urban area during a time period as a realization of a regulatory contract. Such a database has been created in the early 1980s. It results from an annual survey conducted by the Centre d’Etude et de Recherche du Transport Urbain (CERTU, Lyon) with the support of the Groupement des Autorités Responsables du Transport (GART, Paris), a nationwide trade organization that gathers most of the local authorities in charge of a urban transport network. This rich source is probably unique in France as a tool for comparing regulatory systems both across space and over time. For our study, we have selected all urban areas of more than 100,000 inhabitants for homogeneity purposes. Indeed, smaller cities may entail service and network characteristics that differ significantly from those in bigger urban areas. Discarding these smaller cities allows us to identify in a more satisfactory manner differences in inefficiencies and cost-reducing activities across operators. The sample does not include the largest networks of France, i.e., Paris, Lyon and Marseille, as they are not covered by the survey. Overall, the panel data set covers 49 different urban transport networks over the period 1987-2001. Note finally that we focus only on transport networks where
the operator is not public. This rules out the so-called Regies municipales where the service is provided by a public entity (this is mostly the case in large cities such as Paris, Lyon and Marseille). We may indeed expect that those cases are less concerned with the principal-agent problem at the heart of our investigation.

We assume that the network operator has both private information about its innate technology (adverse selection) and that its cost-reducing effort is non-observable (moral hazard). Because French local authorities exercise their new powers on transportation policy since the enactment of the 1982 Law only, and since they usually face serious financial difficulties, their limited auditing capacities is recognized among practitioners. A powerful and well-performed audit system needs effort, time and money. French experts on urban transportation blame local authorities for being too lax in assessing operating costs, mainly because of a lack of knowledge of the technology. The number of buses required for a specific network, the costs incurred on each route, the fuel consumption of buses (which is highly dependent on drivers’ skills), the drivers’ behavior toward customers, the effect of traffic congestion on costs, are all aspects for which operators have much more data and a better understanding than public authorities. This suggests the presence of adverse selection on innate technology in the first place. Given the technical complexity of these issues, it should be even harder for the local authority to assess whether and to what extent operators undertake efforts to provide appropriate and efficient management. Moral hazard issues arise on top of the adverse selection problem. When compounded, those informational asymmetries play a crucial role in the design of contractual arrangements and financial objectives.

Before turning to the description of the contracts, two additional remarks are worth being made. First, private information on demand is not a relevant issue in our industry. Local governments are well-informed about the transportation needs of citizens. The number of trips performed over a certain period is easily observed, and the regulator has a very precise idea of how the socio-demographic characteristics of a urban area fluctuate over time. Given the level of demand, the regulator sets the service capacity provided by the operator. Second, we do not address the issue of determining what should be the optimal rate-of-return on capital. The rolling stock is owned by the local government for a vast majority of networks. In this case, the regulator is responsible for renewing the vehicles, as well as guaranteeing a certain level of capital quality.
2.2 Regulatory Contracts

Table 1 sheds light on several features of the regulatory contracts, which are worth emphasizing. As already mentioned, two types of regulatory contracts are implemented in the French urban transport industry. Over the period of observation, fixed-price contracts are employed in 55.5% of the cases. Fixed-price regimes are high-powered incentive schemes, while cost-plus regimes do not provide any incentives for cost reduction.

On average, contracts are signed for a period of 5 to 6 years, which allows us to observe in most cases several regulatory arrangements for the same network. Overall, we observe 136 different contracts. We observe the contract from its starting point for 94 cases. In the same network, the regulatory scheme may switch from cost-plus to fixed-price or from fixed-price to cost-plus between two regulatory periods. We thus observe 20 changes of regulatory regimes, most of them (i.e., 17) being switches from cost-plus to fixed-price regimes. These changes occur because the same local authority may be willing to change regulatory rules, or because a new government is elected and changes the established rules. Note however that the arrival of a new government does not imply an early renegotiation of the contract before its term. New local governments are committed to the contracts signed by the former authority. We detect 22 changes of local governments in our database. Finally, as already suggested, very few changes of operators are observed over our period of observation; only 2 new operators proposed services between 1987 and 2001.

3 Theoretical Model

Our theoretical model takes into account the various features of the French urban transport industry stressed above and adapts the lessons of the contracting literature under imperfect commitment to fit with those empirical features. First, in our regulatory framework, operators choose between either a fixed-price or a cost-plus contract. Second, contracts may evolve over time with increasing subsidies. We will argue below that such patterns arise when subsidies are “renegotiation-proof.” This positive model is then compared to an hypothetical setting where regulators could commit and optimal subsidies remain constant over time.

Consider a local authority (the “principal”). Generalizing the objective functions used respectively in Baron and Myerson (1982) and Laffont and Tirole (1993), the preferences
of this principal are defined as:

\[W = S - (1 + \lambda)t(c) + \alpha U \quad \text{where } \alpha < 1 + \lambda \text{ and } \lambda > 0. \]

The gross surplus generated by the service \(S \) is supposed to be fixed. Implicitly, we consider a setting where the elasticity of demand is small even in the long-run which seems a reasonable assumption in the case of transportation.\(^{10}\)

The payment offered by the local government to the firm (the “agent”) depends on whether fixed-price or cost-plus contracts are used. For a fixed-price contract, the principal offers a fixed payment \(t(c) \equiv b \) for any realized cost \(c \). With a cost-plus contract, the principal reimburses the cost \(c \) incurred by the firm and \(t(c) \equiv c \) for all \(c \). Raising subsidies from the local government’s general budget with distortionary taxation entails some dead-weight loss that is captured by introducing a cost of public funds \(\lambda > 0 \).

Local public authorities differ in terms of the weights they give to the operator’s profit \(U \) in their objective functions. To have a meaningful trade-off between the dual objectives of extracting the contractor’s information rent and inducing efficient cost-reducing effort, we assume that \(\alpha < 1 + \lambda \) so that, overall, one extra euro left to the firm is socially costly. Various motivations can be found for such modeling of the preferences of local governments. For instance, the parameter \(\alpha \) might capture the firm’s bargaining power at the time of awarding franchises and reflect \textit{ex ante} competition on these markets.\(^{11}, \, 12\)

In view of our empirical study, we have to distinguish local governments according to their political inclination, which corresponds to different weights left to the private operator in their objective functions. Rightist (resp. leftist) local governments are certainly more eager to commend more (resp. less) rent for the private firm.\(^{13}\)

Turning now to the cost structure, we follow Laffont and Tirole (1993, Chapter 1) and Rogerson (2003) in considering that the observable cost of one unit of the service \(c \) blends

\(^{10}\)Oum et al. (1992).

\(^{11}\)In this sector, \textit{ex ante} competition is not so fierce. Indeed, different operators avoid head-to-head competition and generally make tenders for markets in distinct urban areas. The decision n\(^0\) 05-D-38 of the French \textit{Conseil de la Concurrence} shows that competition authorities are well-aware of this downstream collusion between potential operators. In more than 60 % of cases, there is indeed only a single bidder. This potential horizontal collusion is captured in ad hoc way in our framework through the parameter \(\alpha \). The benefit of such ad hoc specification of the intensity of potential downstream competition is to fit real-world practices while it fortunately eases the analysis of the contractual dynamics.

\(^{12}\)Following the insights of Baron (1989), Laffont (1996) and Faure-Grimaud and Martimort (2003), these preferences might also result from the fight of various political forces within local public authority.

\(^{13}\)Laffont (1996) developed related political economy models of regulation relying on such arguments.
together an adverse selection component θ related to the innate efficiency of the service and a cost-reducing managerial effort e. We postulate the standard functional form:

$$c = \theta - e.$$

Effort is costly to provide for the firm’s management and the corresponding non-monetary disutility function $\psi(e)$ is increasing and convex ($\psi' > 0$, $\psi'' > 0$) with $\psi(0) = 0$. The intrinsic efficiency parameter θ is drawn once for all before contracting from the interval $[\hat{\theta}, \overline{\theta}]$ according to the common knowledge cumulative distribution $F(\cdot)$ which has an everywhere positive and atomless density $f(\cdot)$. Following the screening literature, we assume that the monotone hazard rate property holds, $\frac{d}{d\theta}(R(\theta)) > 0$ where $R(\theta) = \frac{F(\theta)}{f(\theta)}$ so that all optimization problems considered below are quasi-concave.\(^{14}\)

With those notations in hand, we may as well write the firm’s profit as:

$$U = t(c) - c - \psi(e)$$

where $t(c)$ is the payment received from the public authority.

3.1 Full Commitment

In this section, we assume that the local government offers to the operator a long-term contract which covers two contracting periods. The public authority has all bargaining power at the contracting stage when doing so. The principal can commit to any pattern of subsidies and cost reimbursement rules over time. Of course, it is when the principal has such ability to commit that he can reach the highest possible intertemporal welfare. This gives us an attractive benchmark against which to assess the alternative model under limited commitment and renegotiation. This benchmark is also useful when we move to our empirical analysis and evaluate the costs of renegotiation.

Let δ be the discount factor and let us normalize the length of the first-period accounting period with the weight $\beta = \frac{1}{1+\delta}$.

Consider first the case of a long-term fixed-price contract. Such a contract entails subsidies (b_1, b_2) over both periods. With a fixed-price contract, the principal is able to pass

\(^{14}\)It is worth noticing for the sake of our empirical analysis that the same operator could have different realizations of the innate cost parameter on two different markets. This assumption captures the fact that costs of a particular network are to a large extent idiosyncratic.
onto the firm’s management all incentives to save on costs. Let \(e^* \) be the corresponding first-best effort such that \(\psi'(e^*) = 1 \), and denote by \(k = e^* - \psi(e^*) \) its social value.\(^{15}\) Such a long-term contract yields to the firm the (normalized) intertemporal payoff

\[
\beta b_1 + (1 - \beta) b_2 - \theta + k.
\]

Instead, with a long term cost-plus contract, the firm’s manager exerts no effort and the firm’s payoff is zero.\(^{16}\)

Only the most efficient operators such that \(\theta \leq \theta^* \) choose fixed-price contracts. By incentive compatibility, if any given type prefers a fixed-price contract, it must be that all types which are more efficient does so also. The types space is thus split into two subsets. Efficient operators take fixed-price whereas inefficient ones are on cost-plus.

The corresponding cut-off \(\theta^* \) characterizes a marginal operator who is just indifferent between the long-term cost-plus and fixed-price contracts:

\[
\theta^* = \beta b_1 + (1 - \beta) b_2 + k.
\]

In particular, the most efficient operators such that \(\theta \leq \theta^* \) earns an information rent worth \(\theta^* - \theta \) whereas inefficient operators such that \(\theta \geq \theta^* \) earns no such rent.

Remark 1 The operator’s choice between taking either a long-term fixed price contract or a cost-plus one reveals information on the operator’s type. After this choice becomes publicly known, the public authority can assess whether that type is above the threshold \(\theta^* \) or not. Under full commitment, the public authority does not use such information to refine contractual offers in the future since no such offer is ever made.

Remark 2 Although the public authority offers a menu of two possible long-term contracts with either fixed-price or cost-plus in both periods, the actual choice made by the operator selects only one item within the menu. From an empirical viewpoint, the econometrician is only able to observe the resulting choice made by operators, i.e., a single

\(^{15}\)This parameter is by construction related to the firm’s internal organization and incentive structure. Any agency costs coming from the separation of ownership and control between the firm’s management and its shareholders is encapsulated into the \(\psi(\cdot) \) function.

\(^{16}\)The operator is not responsible for improving the quality of the service since the latter is set by the local authority and focuses on cost-reducing effort only. Quality entails various dimensions of the public transit operations such as the size of the network, the number and size of lines, the number of stops, the frequency of the service, and the age of the rolling stock.
choice (either long-term fixed-price or cost-plus) and not the specific negotiation process that leads to this choice. Details of the negotiation remain unknown. This process is captured in our theoretical model, and following the mechanism design tradition, by having principals offering not a single offer but instead menus among which agents with different types self-select.

The principal’s intertemporal expected welfare under full commitment can be expressed as:

\[W^F(b_1, b_2) = S - (1 + \lambda) \left((\beta b_1 + (1 - \beta)b_2) F(\beta b_1 + (1 - \beta)b_2 + k) + \int_{\beta b_1 + (1 - \beta)b_2 + k}^{\theta_F} \theta f(\theta) d\theta \right) + \alpha \int_{\beta b_1 + (1 - \beta)b_2 + k}^{\theta_F} (\beta b_1 + (1 - \beta)b_2 + k - \theta) f(\theta) d\theta. \]

The term \((\beta b_1 + (1 - \beta)b_2) F(\beta b_1 + (1 - \beta)b_2 + k)\) represents the expected subsidy under a long-term fixed-price contract knowing that only a mass of those type worth \(F(\beta b_1 + (1 - \beta)b_2 + k)\) is ready to accept such contract. The term \(\int_{\beta b_1 + (1 - \beta)b_2 + k}^{\theta_F} \theta f(\theta) d\theta\) is meant for the expected payment under a cost-plus contract. Finally, the last term represents the expected information rent which is left only to the most efficient firms under the fixed-price contract.

Optimization of this objective function yields the values of the optimal subsidies under full commitment.

Proposition 1 Under full commitment, the optimal fixed-price contract is the twice-repeated version of the static optimal fixed-price contract. It entails a subsidy \(b^F\) which is constant over time \(b^F_1 = b^F_2 = b^F\) and satisfies:

\[k = \left(1 - \frac{\alpha}{1 + \lambda} \right) R(b^F + k). \quad (1) \]

Only the most efficient firms with types \(\theta \leq \theta^F = b^F + k\) choose this long-term fixed-price contract. The least efficient firms with types \(\theta \geq \theta^F = b^F + k\) choose a long-term cost-plus contract.

That, under full commitment, the optimal contract is the twice replica of the optimal static contract is a by now standard result in the dynamic contracting literature.\(^\text{17}\) Given

\(^{17}\text{Baron and Besanko (1984) and Laffont and Martimort (2002, Chapter 8) for similar results in more general environments.}\)
that the economic environment is stationary, there is no reason to move from a cost-plus to a fixed-price contract over time. This explains why we initially focused on the binary choice between either a long-term fixed-price or a long-term cost-plus contract and do not consider asymmetric dynamic patterns with cost-plus contracts followed by fixed-prices for instance. Such profiles are certainly suboptimal under full commitment although, as we will see, they play a significant role under limited commitment.

The optimal menu of contracts trades off efficiency and rent extraction. Offering a fixed-price with a sufficiently large subsidy to all types would indeed ensure that the operator exerts the first-best effort whatever its innate technology. However, doing so also leaves too much information rent to the operator and this is socially costly. Offering instead a cost-plus contract to all types nullifies this rent while it also destroys any incentives to exert effort.

The intuition behind condition (1) is as follows. Suppose that the principal offers a fixed subsidy b in both period. By raising this subsidy by db, the principal ensures that with probability $f(b + k)db$, a firm with type in the interval $[b + k, b + k + db]$ will now exert effort e^* which generates an expected social benefit $(1 + \lambda)kf(b + k)db$. On the other hand, raising the subsidy entails a budgetary cost worth $(1 + \lambda)F(b + k)db$ since even firms with infra-marginal types will enjoy such an increase. This nevertheless also raises the social value of the rent left to the most efficient firms by a quantity $\alpha F(b + k)db$. Finally, an optimal subsidy b^F trades off the expected efficiency gains with the net cost of increasing information rent and solves:

$$(1 + \lambda)kf(b^F + k)db + \alpha F(b^F + k)db = (1 + \lambda)F(b^F + k)db.$$

Simplifying yields (1).

Increasing k or α increases the optimal subsidy b^F. Intuitively, when the firm’s effort is more socially valuable or when its rent is found more valuable by the public authority, the optimal subsidy under a fixed-price contract should be raised to induce more firms to operate under higher powered incentives which commands more rent for those firms.18

18An interesting issue is to investigate the welfare loss that the principal incurs by offering just a menu with only two items in a full commitment environment compared with respect to a nonlinear cost-sharing rule. This question is particularly important for practitioners. Using our estimates of the full commitment solutions below to recover key parameters for the types distribution, we address that question in another paper (Gagnepain, Ivaldi and Martimort, 2009).
3.2 Renegotiation

Overview and modeling choices. The full commitment assumption used in Section 3.1 turns out to misleading in view of real-world practices as explained above. Although the 1993 Law invites local authorities to re-auction the concession for a fixed period of 5 years, these authorities are either reluctant to really implement the law or do not have enough expertise to launch complex calls for tenders. In practice, local authorities consider the requirement of re-auctioning the contract at fixed dates as the opportunity to renegotiate a contract with the incumbent (the so-called “historical operator”) instead of really envisioning the possibility to contract with a new operator.

Theoretical studies to date have distinguished between two kinds of paradigms when it comes to model intertemporal contracting under limited commitment. The first concept is that of long-term contracting with contracts which can be renegotiated if parties find it attractive to do so.\(^{19}\) The second paradigm considers short-term contracting where parties cannot write any binding agreement for future rounds of contracting and only spot contracts for the current period can be enforced.\(^{20}\) Although contracts in the French transportation sector have a limited duration, the second of these paradigms does not capture the kind of relational contracting that characterizes a long-lived relationship between a local authority and its “historical operator.” The first paradigm better fits evidence, although it must be adapted to take into account that, even though a long-term contract cannot be signed in practice, the promise of having a future round of contracting between the public authority and the incumbent is sufficiently credible. In other words, although no long-term contracts really bind parties together, everything happens as if those parties credibly commit to promises for further rounds of contracting. The renegotiation paradigm can then be replaced by a “re-negotiation” view of contracting that, although technically similar, captures somewhat different real-world practices.

As soon as the local authority suffers from imperfect information on the operator’s type, the selection of a contract within the simple two-item menu at the early contracting stage reveals information on the firm’s type. The choice of a fixed-price contract is interpreted by the principal as being “good news” since it signals that the firm’s type is below some cut-off. Instead, the choice of cost-plus contracts brings “bad news.” In a dynamic

\(^{20}\)Guesnerie, Freixas and Tirole (1985) and Laffont and Tirole (1993, Chapter 9) among others.
environment, information on the cost structure is revealed over time and the principal would like to draft new agreements that incorporate this new knowledge. In particular, an increase over time in the subsidies under fixed-price contracts allows operators who have revealed themselves as being not very efficient earlier on to achieve productivity gains later on. Such increases in subsidies might thus be viewed as *ex post* attractive from the principal’s viewpoint. However, the major lesson of the renegotiation literature is that these *ex post* efficiency gains also come with *ex ante* costs in delaying information revelation so that, overall, renegotiation is costly from the principal’s viewpoint. Some of the most efficient firms may indeed prefer adopting cost-plus contracts earlier on to enjoy the greater subsidies that future fixed-price contracts will bring later on. This important dynamic trade-off and its impact on information revelation are at the core of our model.

Menus of contracts. To fit with patterns of contracting found in our data set, we allow the principal to make an initial offer entailing a whole menu of options: A long-term fixed-price contract, a first-period cost-plus contract followed by a second-period fixed-price and a long-term cost-plus contract.

Denote by $C^0_1 = (b_1, b^0_2)$ the subsidies under a long-term fixed-price contract, and by $C^0_2 = (\theta, b^0_3)$ the subsidy if a fixed-price contract is only taken at date 2 and a cost-plus contract is used at date 1 (taking into account that effort is then zero). By convention $C^0_3 = (\theta, \theta)$ denotes a long-term cost-plus contract which reimburses costs in each period. We denote by $C^0 = (b_1, b^0_2, b^0_3)$ such menu of subsidies offered at the initial contracting stage. Let also $R^0 = (b^0_2, b^0_3)$ denote the continuation of C^0 for date 2.

Timing. Let us describe the timing of the contracting game that is considered below.

- **Date 0:** The firm learns its efficiency parameter θ.
- **Date 0.25:** The principal commits to a menu $(C^0_1, C^0_2, C^0_3) \equiv C^0 = (b_1, b^0_2, b^0_3)$.
- **Date 0.50:** The firm makes its choice among those three possible options. The principal updates his beliefs on the firm’s innate cost following that choice.
- **Date 1.00:** First-period costs are realized and payments are made according to the contract enforced at that date.
- **Date 1.25:** If he wishes so, the principal makes a renegotiated offer corresponding to a new subsidy. Depending on whether the firm has already accepted the long-
term fixed-price contract C_1^0 or made another choice (i.e., either C_2^0 or C_3^0) the renegotiated subsidy is denoted by either \tilde{b}_2 or \tilde{b}_3.

- Date 1.50: The firm chooses whether to accept this new offer or not and chooses his second-period effort accordingly. If the offer is refused, the initial contract C_0^0 be it a fixed-price or cost-plus for the second-period is enforced.

- Date 2: Second-period costs are realized and payments are made.

Let respectively index by $j = G, I, B$, the three following different histories. First, the agent may choose the long-term fixed-price contract C_1^0 which is “good news” on his type. Second, the agent may choose the fixed-price contract for the second-period only C_2^0 which is “intermediate news”. Finally, the agent may choose the long-term cost-plus contract C_3^0 with no subsidies in either period which is “bad news”.

Let denote $\tilde{R} = (\tilde{C}_2, \tilde{C}_3) \equiv (\tilde{b}_2, \tilde{b}_3)$ any profile of subsidies offered at the renegotiation stage following the initial offer C^0 at date 0.25.\(^{21}\)

Equilibrium notion. An almost perfect Bayesian equilibrium (in short equilibrium) of the contractual game consists of the following strategies and beliefs:

- Principal’s strategy. The principal offers the menu C^0 at date 1, but might offer a renegotiated offer \tilde{R} at date 2. This second-period offer is made once the principal has updated his beliefs over the firm’s type parameter following the latter’s first-period decision.

- Firm’s strategy. The firm anticipates (perfectly in equilibrium) what the second period subsidies may be following renegotiation at any history $j = G, I, B$. Denote those anticipated subsidies as $R = (b_2, b_3)$. The firm follows a cut-off strategy which gives the following pattern of information revelation.

1. Types in the interval $\Theta_G = \left[\theta, b_1 + k + \frac{(1-\beta)}{\beta} (b_2 - b_3) \right]$ adopt already contract C_1^0 anticipating that b_2^0 and b_3^0 will be renegotiated respectively to b_2 and b_3. The cut-off type $\theta^*_G = b_1 + k + \frac{(1-\beta)}{\beta} (b_2 - b_3)$ is just indifferent between taking the long-term fixed-price contract with subsidies (b_1, b_2) and a first-period cost-plus contract followed by a second-period fixed-price with subsidy b_3.

\(^{21}\)We omit the dependence of \tilde{R} on C^0 for notational simplicity.
2. Types in the interval $\Theta_I = [b_1 + k + \frac{(1-\beta)}{2}(b_2 - b_3), b_3 + k]$ choose contract C_2^0 with the same anticipations than above. The cut-off type $\theta^*_2 = b_3 + k$ is just indifferent between taking a first-period cost-plus contract followed by a fixed-price b_3 and taking a long-term cost-plus contract.

3. Types in the interval $\Theta_B = [b_3 + k, \bar{\theta}]$ chooses contract C_3^0 anticipating the renegotiated fixed-price offer won’t be attractive for them.

That pattern summarizes incentive compatibility in this dynamic environment. For instance, if the cut-off type θ^*_1 is just indifferent between adopting subsidies in both periods or only at date 2, more efficient types $\theta \leq \theta^*_1$ certainly also prefer subsidies in both periods. Those types reveal that they belong to the interval Θ_G.

Remark 3 “Almost” equilibrium and limited updating. It is important to stress that the principal takes into account only the updated beliefs that he has at date 0.50 when making a renegotiated offer. This is a slight departure of full rationality to the extent that the principal should have updated his beliefs with the more precise information obtained by observing first-period costs if the firm has chosen a cost-plus contract and has indeed been reimbursed for its first-period cost. This justifies the use of the qualifier “almost” for our notion of equilibrium.22

22Let assume that the principal is instead fully rational and updates his beliefs following all possible realizations of first-period cost. Inefficient firms under a first-period cost-plus contract would certainly not reveal their type in the first-period and, anticipating future renegotiation of the contract, might claim having the worst possible first-period cost $c_1 = \bar{\theta}$. This strategy increases the firm’s information rent for the first period and it also hides valuable information away from a fully rational principal in view of the second-period contracting. Suppose instead that an inefficient firm was to adopt a more naive first-period behavior and reveal its type not anticipating the principal’s latter use of that information. Such fully rational principal would just learn the firm’s type $c_1 = \theta$ by observing and reimbursing the realized first-period cost. Then, for the second period, that principal would recommend to that operator to work at cost $c_2^* = \theta - e*$ and would compensate the firm for incurring that first-best effort. This is clearly a naive strategy for the firm because hiding information early on may induce the principal to increase subsidies at the renegotiation stage and the operator can grasp some second-period rent by doing so. If real-world practices were in line with such strategy, one would observe mass points of observations for cost-plus contracts. This certainly contradicts our data set where no such masses in realized costs under cost-plus contracts are found. Our modeling strategy of having an “almost” rational principal who updates his beliefs only with the rough information contained in the decision to take or not the fixed-price contract in the first period avoids those complications. It allows our model to keep all the flavor of the dynamic rent/efficiency trade-off familiar from the theoretical literature on renegotiation without rendering the analysis untractable in our context with a continuum of types. It also satisfies our desire of making the theoretical model as close as possible to the existing data set and this certainly requires some concessions on the theory side, albeit we would argue those concessions are minimal.
Renegotiation. The theoretical literature on renegotiation has shown that focusing on renegotiation-proof mechanisms which come unchanged through the renegotiation process is without loss of generality.\(^{23}\) The intuition is as follows. Any long-term contract which is renegotiated in the second period of the relationship could be replaced by a long-term contract with a continuation for the second period which is equal to this renegotiated offer. This second period offer is not itself superseded by any new contract for the second period because, if it was so, this would contradict the optimality of the renegotiated offer in the first place. Our focus on renegotiation-proof profiles follows the same logic and is without loss of generality as we now show.

Consider indeed a profile of renegotiation offers \(\tilde{R} = (\tilde{b}_2, \tilde{b}_3)\). To be accepted at the renegotiation stage, such subsidies must satisfy the following constraints:

\[
\tilde{b}_2 \geq b_2^0 \tag{2}
\]

\[
\tilde{b}_3 \geq b_3^0. \tag{3}
\]

Condition (2) stipulates that types in \(\Theta_G\) can always refuse any renegotiated offer following history \(j = G\) if it does not increase the second-period subsidy above \(b_2^0\) and thus their payoff. Condition (3) is similar for types in \(\Theta_I\).

Fix now any initial contract \(C^0\) and renegotiated offer \(\tilde{R}\). Given the agent’s conjectures about the renegotiated subsidies \(R = (b_2, b_3)\) (which are correct at equilibrium) and the corresponding splitting of the type space over the three different intervals described above, the principal’s expected welfare at date 2 can be written as:

\[
W_2(C^0, \tilde{R}, R) = \int_{\theta}^{b_1+k+(1-\beta)(b_2-b_3)} \left(S - (1 + \lambda)\tilde{b}_2 + \alpha(\tilde{b}_2 + k - \theta) \right) f(\theta)d\theta
\]

\[
+ \int_{b_1+k+(1-\beta)(b_2-b_3)}^{\tilde{b}_3+k} \left(S - (1 + \lambda)\tilde{b}_3 + \alpha(\tilde{b}_3 + k - \theta) \right) f(\theta)d\theta
\]

\[
+ \int_{\tilde{b}_3+k}^{\theta} (S - (1 + \lambda)\theta) f(\theta)d\theta. \tag{4}
\]

\(^{23}\)Hart and Tirole (1988), Dewatripont (1989), and Laffont and Tirole (1993, Chapter 10). In a model with a discrete number of types for the privately informed agent, Bester and Strausz (2001, 2007) showed more generally that there is no loss of generality in looking for the optimal contract in the set of mechanisms having as much options as the set of possible types.
At date 1.25, the principal looks for a menu that maximizes this expression subject to conditions (2) and (3). The renegotiated offers $R = (b_2, b_3)$ must solve the following problem:

$$(\mathcal{R}^0) : \quad R = \arg \max_{\tilde{R}} W_2(C^0, \tilde{R}, R) \text{ subject to } (2) \text{ and } (3).$$

In the sequel, we will focus on profiles of subsidies that come unchanged through the renegotiation process. This restriction is warranted because the following Renegotiation-Proofness Principle holds in our context.

Proposition 2 There is no loss of generality in restricting the analysis to initial contracts of the form $C = (b_1, R)$ that come unchanged through the renegotiation process, i.e., such that R solves

$$(\mathcal{R}) : \quad R = \arg \max_{\tilde{R}} W_2((b_1, R), \tilde{R}, R) \text{ subject to }$$

$$\tilde{b}_2 \geq b_2 \quad (5)$$

$$\tilde{b}_3 \geq b_3. \quad (6)$$

Remark 4 The whole theoretical literature on renegotiation focuses on cases where the agent’s type is drawn from distributions with discrete supports. Working in a model with a continuum of types as we do here is important for two reasons. First, it clarifies the pattern of information revelation, i.e., how types with intermediate efficiency parameters end up adopting fixed-price contracts in the second period and how the corresponding subsidies increase over time. Second, it is also necessary to take into account the significant heterogeneity in the firm’s realized costs that comes from our data set. As we show below, a model with a continuum of types provides a nice division of the space of types into three intervals whose respective probabilities (obtained from the equilibrium behavior of cut-off types that define those intervals) can be matched with the empirical distribution of behaviors observed on our data. Models with discrete types might allow a more detailed analysis of the pattern of information revelation and are thus attractive from a theoretical viewpoint. However, such models are not consistent with our data set. As we argued above, mass points in the distribution of realized costs are not found in our data.

Renegotiation-proof profiles. We are now ready to characterize renegotiation-proof allocations.
Proposition 3 A first-period menu of contracts $C = (b_1, b_2, b_3)$ is renegotiation-proof if and only if:

$$b_3 \geq \beta b_1 + (1 - \beta) b_2,$$

and

$$kf(b_3 + k) - \left(1 - \frac{\alpha}{1 + \lambda}\right) \left(F(b_3 + k) - F\left(b_1 + k + \frac{(1 - \beta)}{\beta}(b_2 - b_3)\right)\right) \leq 0.$$

Condition (7) ensures that the interval Θ_I is non-empty. It is just a feasibility condition on the possible subsidies profiles that are relevant. Condition (8) expresses the fact that raising the second-period subsidy for those firms which have revealed themselves as being of an intermediate type by taking contract C_2^0 is not an attractive strategy for the principal. The efficiency gains $(1 + \lambda)kf(b_3 + k)db$ obtained when increasing the subsidy b_3 by an amount db (so that the marginal type θ^*_2 who is just indifferent between taking the long-term cost-plus contract and a fixed-price contract for the second period only moves up) should be less than the net cost of raising the rent of all inframarginal who already chose C_2^0 and enjoy that subsidy increase. That costs is worth $(1 + \lambda - \alpha) (F(b_3 + k) - F(\theta^*_2)) db$.

Remark 5 Taken altogether, a constant subsidy profile $b_1 = b_2 = b_3 = b^F$ and the cut-off rule $\theta^*_1 = b^F + k$ never satisfy (8). The optimal long-term contract under full commitment and the corresponding pattern of information revelation are not renegotiation-proof. Intuitively, upon learning that the firm is rather inefficient following its earlier choice of producing under a cost-plus contract, the principal wants to slightly raise the second-period subsidy to increase efficiency. Clearly, a firm with a type close to (but below) $\theta^*_1 = b^F + k$ refuses the first-period subsidy because it gives little rent. It prefers to take a first-period cost-plus contract and waits for the increase in the second-period subsidy which comes out of the renegotiation towards a second-period fixed-price contract.

Optimal renegotiation-proof menus of contracts. Define the principal’s intertemporal welfare when offering $C = (b_1, b_2, b_3)$ as:

$$W(C) = \int_{\theta^*_2}^{b_1 + k + \frac{(1 - \beta)}{\beta} (b_2 - b_3)} \left(S - (1 + \lambda)(\beta b_1 + (1 - \beta)b_2) + \alpha(\beta b_1 + (1 - \beta)b_2 + k - \theta)\right) f(\theta) d\theta$$
\[
+ \int_{b_1+k+\frac{(1-\beta)}{\beta}(b_2-b_3)}^{b_3+k} (S - (1 + \lambda)(\beta \theta + (1 - \beta)b_3) + \alpha(1 - \beta)(b_3 + k - \theta)) f(\theta)d\theta
\]
\[
+ \int_{b_3+k}^{\bar{\theta}} (S - (1 + \lambda) \theta) f(\theta)d\theta.
\]

The optimal renegotiation-proof menu must solve the following optimization problem:

\[
(P^R) : \max_C \mathcal{W}(C) \text{ subject to (7) and (8)}.
\]

Remark 6 As a benchmark, suppose that the renegotiation-proofness constraints (7) and (8) are both slack. Optimizing \(\mathcal{W}(C)\) would give immediately \(b_1 = b_2 = b^F\) whereas \(b_3\) should solve the following first-order condition

\[
\begin{align*}
&\quad k \left(f(b_3 + k) - f \left(b^F + k + \frac{(1 - \beta)}{\beta}(b^F - b_3) \right) \right) \\
&= \left(1 - \frac{\alpha}{1 + \lambda} \right) \left(F(b_3 + k) - F \left(b^F + k + \frac{(1 - \beta)}{\beta}(b^F - b_3) \right) \right)
\end{align*}
\]

whose solution is obviously \(b_3 = b^F\) that, together with \(b_1 = b_2 = b^F\), satisfies (7) as an equality. From Remark 5, we know that such profile cannot be renegotiation-proof.

The solution \(C^R = (b^R_1, b^R_2, b^R_3)\) to problem \((P^R)\) is straightforward. Assuming quasi-concavity in \((b_1, b_2, b_3)\) of the corresponding Lagrangean, it is characterized as follows.

Proposition 4 The optimal renegotiation-proof menu of contracts \(C^R = (b^R_1, b^R_2, b^R_3)\) entails (for some \(\mu > 0\) the non-negative Lagrange multiplier of (8))

- A long-term fixed-price contract \(b^R_1 = b^R_2 = b^R\) which satisfies

\[
k = \left(1 - \frac{\alpha}{1 + \lambda} \right) \left(R \left(b^R + k + \frac{(1 - \beta)}{\beta}(b^R - \bar{b}^R) \right) + \frac{\mu}{\beta(1 + \lambda)} \right); \quad (9)
\]

- A short-term fixed-price contract for the second period only with \(b^R_3 = \bar{b}_R\) which satisfies

\[
k = \left(1 - \frac{\alpha}{1 + \lambda} \right) \left(F(\bar{b}_R + k) - F \left(b^R + k + \frac{(1 - \beta)}{\beta}(b^R - \bar{b}^R) \right) \right)
\]

\[
- \mu \frac{\left(1 - \frac{\alpha}{1 + \lambda} \right) \left(f(\bar{b}_R + k) + \frac{f(b^R + k + \frac{(1 - \beta)}{\beta}(b^R - \bar{b}^R))}{1 - \beta} \right) - k f(\bar{b}_R + k)}{(1 + \lambda) \left(f(\bar{b}_R + k) - f \left(b^R + k + \frac{(1 - \beta)}{\beta}(b^R - \bar{b}^R) \right) \right)}; \quad (10)
\]
Subsidies are increasing

\[\bar{b}^R > \bar{b}^R ; \] (11)

The renegotiation-proofness constraint (8) holds as an equality

\[kf(\bar{b}^R + k) = \left(1 - \frac{\alpha}{1 + \lambda} \right) \left(F(\bar{b}^R + k) - F(\bar{b}^R + k + \frac{(1 - \beta)}{\beta}(\bar{b}^R - \bar{b}^R)) \right). \] (12)

From (11), our model of limited commitment predicts thus increasing profiles of subsidies in the following sense: types who choose only a second-period fixed-price contract are more subsidized than those who choose fixed-price arrangements earlier on.

4 Empirical Model

We turn now to the empirical part of our analysis. Our objective is to assess the welfare gains that could be obtained if parties to the contract could fully commit instead of the current limited commitment situation. To do so, we need in a first step to estimate the different ingredients of the two regulatory frameworks - full commitment and limited commitment - which have been discussed in our theoretical model. We organize this empirical section as follows. First, Section 4.1 presents our data and the different variables that enter the estimation procedure. Second, we explain in Section 4.2 how we are able to recover missing items of the menus of subsidies which are offered to the operators. Then, we present in Section 4.3 the procedure which allows us to estimate the ingredients of our perfect and limited commitment scenarios. Results follow in Section 4.4.

4.1 Data

We discuss first the construction of the different variables which enter the estimation procedure. Second, we explain how we organize our dataset for the estimation. In particular, we define precisely what a contractual period is, and which networks are selected under each contractual scenario.

Construction of the variables. Table 2 presents statistics on the different variables available in our data set. To understand how contracts are designed by public authorities and how operators choose those contracts, we gather observations on subsidies. Information on subsidies is required to recover the distribution of the efficiency parameter.
Subsidies entail all payments to the operator, either at the beginning of the production process which are needed to reimburse expected costs (in the case of fixed-price regimes), as well as payments to the operator at the end of the contracting period to guarantee full reimbursement of total operating costs (in the case of cost-plus regimes).

Recall that our theoretical model makes the accounting simplification that commercial revenues are kept by the public authority and that costs are reimbursed to the operator. In our data, however, observed subsidies are the differences between expected or final costs and commercial revenues. To make our data coincide with the model, we add commercial revenues to the observed subsidy. Finally, we distinguish between nominal and real terms. Subsidies are deflated using consumer price indexes (all items) for France. Only real subsidies are used during the estimation process.

The characteristics of operators include the size of the network, the number of lines operated, the size of the rolling stock, the share of the labor bill in total costs, the share of drivers in the total labor force, and the identity of the industrial group which owns the operator. We thus assume that some firms are more likely to perform efficiently than others due to intrinsic advantages of larger stakes, size, managerial practices and concentration of skills.

The size of the network is its total length measured in kilometers. The number of lines operated in each network as well as the total size of the rolling stock measured in the number of vehicles are also constructed. The share of the wage bill in total costs is computed by dividing the wage bill by total costs. The total labor force includes bus drivers as well as engineers who are keys to improve the operator’s productivity. The share of engineers is simply obtained by dividing the number of engineers in each network by the total labor force. Finally, the four important corporations who might own the local operator are Keolis, Transdev, Agir, and Connex. We construct a dummy variable for each of these corporations.

Institutional variables describing the public authority comprise the number of cities involved in organizing the service, population size for the total urban area where the service is provided, and the political color of the local regulator. As explained before, the urban network may include several municipalities. We observe the number of cities in each urban area as well as the total population of these areas. We also construct a dummy variable that takes value one if the local government is right-wing, and zero when
it is left-wing. Data on the political color of the local government are published by the French national newspaper *Le Figaro*. Over the period of investigation, local governments may belong to one of the main political groups, ranked according to their position on the political line from extreme right to extreme left (Extreme Right, Right, Center Right, Left, and Extreme Left).

Definition of a contractual period and network selection. Our raw data set includes 49 networks observed over the 1987-2001 period. This corresponds to 136 contracts. As a contractual period lasts on average for 5 years, we typically observe series of 3 contracts per network over 1987-2001. Very few cases entail networks where 1, 2, or 4 contracts are observed.

The selection of the relevant sample required for the estimation depends on the nature of the contractual arrangement that is considered.\(^{24}\)

Full commitment. Contractual arrangements entail series of contracts which are, in principle, identical as shown in our theoretical study. When evaluating the distribution of \(\theta\), we consider all the contracts of our data set (results in Table 4). To estimate Proposition 1, we consider only the 80 fixed-price contracts of our sample (results in Table 5).

Limited commitment. In order to compute the distribution of \(\theta\) (results in Table 6), we use all the contracts of our dataset. Then, to estimate the parameters of interest in Proposition 4, we restrict this last sample to fixed-price contracts only. This yields a final sample of 80 contracts (results in Table 7).

\(^{24}\)Note that one contract in one network should in principle correspond to a unique observation in our theoretical model, i.e., the contract items should remain constant over the - say - 5 years of a contract period. The data reality may be slightly different. In practice, the data set shows that over a single contract period, many items may be affected by small fluctuations. This may for instance be the case of the operator’s supply measured by the number of seat-kilometers available, which, in turns, makes the costs and subsidy levels fluctuate too. These fluctuations follow from exogenous shocks that may affect the activity of the operator over the contract length and are assumed to be i.i.d. in our model: changes in traffic conditions, changes in network configuration, road constructions which may cut a service route over a certain period, strikes are all such examples. The economic responses to these predictable shocks are written in the contract. Hence, although some items may fluctuate over the contract period, they constitute the objectives of the same contract. Instead of calculating a simple average value of each item over the contractual period when fluctuations are present, we choose to treat each different fluctuation as a separate observation so that the number of degrees of freedom of our study is increased.
4.2 Menus of Subsidies: Recovering Missing Information

The two scenarios of full and limited commitment correspond to different observations with series of fixed-price contracts, cost-plus contracts, or cost-plus contracts followed by fixed-price contracts. In each scenario, the efficiency θ of each operator, and therefore the subsidies b^F, b^R, and \bar{b}^R of the proposed menu affect the operator’s choice of contract. For instance, a renegotiation-proof scenario corresponds to the following possibilities.

- A series FF of two fixed-price contracts over two contracting periods. From the theoretical model, the operator is then rather efficient ($\theta \leq \theta^*_1 = b^R + k + \frac{(1-\beta)}{\beta}(b^R - \bar{b}^R)$).
- A cost-plus contract followed by a fixed-price contract (CF herein). The operator is then only mildly efficient ($\theta^*_1 \leq \theta \leq \theta^*_2 = \bar{b}^R + k$).
- A series of two cost-plus contracts (CC herein). The operator is then rather inefficient ($\theta \geq \theta^*_2$).

A full-commitment scenario corresponds instead to the following possibilities.

- A series F of fixed-price contracts when the operator is rather efficient ($\theta \leq \theta_F = b^F + k$).
- A series C of cost-plus contracts when the operator is rather inefficient ($\theta \geq \theta_F$).

To exploit the different cut-offs θ^*_1, θ^*_2, and θ_F in order to recover θ’s distribution, we need to observe all the subsidies (b^F on one hand, b^R and \bar{b}^R on the other hand) specified in an optimal menu of contracts under either scenario. Unfortunately, our data do not allow us to observe all these subsidies included into a renegotiation-proof menu and only the actual subsidies paid to the operators are available. Hence, if the contractual arrangement is respectively

- FF, we observe b^{FF} directly in the data and we need to recover \bar{b}^{FF},
- CF, we observe \bar{b}^{CF} directly in the data and we need to recover b^{CF},
- CC, we need to recover \bar{b}^{CC},
• F, we observe $b^{F/FF}$ directly in the data and no additional information is required,

• C, we need to recover $b^{F/CC}$.

We propose to recover the missing values of \overline{b}^{FF}, \overline{b}^{CF}, \overline{b}^{CC}, and $b^{F/CC}$ empirically. In each city i, we expect all these subsidies to depend on a set Y of characteristics which pertain to the regulating authority, the operator, and the transportation service itself.

We write

\[b^R_i = B_i(Y_i, \tau) + \epsilon_i, \]
\[\overline{b}^R_i = B_i(Y_i, \upsilon) + \varsigma_i, \]
\[b^F_i = B_i(Y_i, \phi) + \rho_i, \]

where ϵ_i, ς_i, and ρ_i are three error terms. The engineering relationships between the set of variables Y_i and each level of subsidy b_i are identified through three distinct vectors of parameters τ, υ, and ϕ, which have to be estimated. We thus expect to identify three distinct marginal impacts of a given characteristic on the choice of b_F, b_R, and \overline{b}^R. According to our theoretical model, we need to check that $\overline{b}^R_i < b^F_i < b^R_i$. We verify ex post, i.e., on our estimates, that this constraint is met.

The estimation procedure works then as follows.

Full commitment. If we select in our dataset F arrangements only, the observed subsidies are the b^F_i. Using observations Y^F_i for these specific arrangements, we obtain maximum-likelihood estimates of ρ. Then, we derive subsidy values $\hat{b}^{F/CC}_i$ using our estimates ρ and a set of characteristics Y^{CC}_i if a CC arrangement is considered.

Limited commitment. (i) If we select in our dataset FF arrangements only, the observed subsidies are the \overline{b}^R_i. Using observations Y^{FF}_i related to these specific arrangements, we obtain maximum likelihood estimates of τ. We then derive the value \hat{b}^{CF}_i using our estimates τ and a set of characteristics Y^{CF}_i if a CF arrangement is instead considered. (ii) Likewise, if we select in our dataset CF arrangements only, the observed subsidies are the \overline{b}^R_i. Using observations Y^{CF}_i for these specific arrangements, we obtain maximum likelihood estimates of ς. We then derive the value \hat{b}^{FF}_i (resp. \hat{b}^{CC}_i) using our estimates ς and a set of characteristics Y^{FF}_i (resp. Y^{CC}_i) if a FF (resp. CC) arrangement is considered.
4.3 Full versus Limited Commitment

With the estimates $\hat{\beta}^{FF}$, $\hat{\beta}^{CF}$, $\hat{\beta}^{CC}$, and $\hat{\beta}^{F/CC}$ in hand, we now estimate other parameters of the model under the alternative scenarios (either full or limited commitment). In both scenarios, we apply a two-step estimation procedure. In a first step, we focus on the operator’s side. Given the menu of contracts designed by the regulator, the operator chooses the contract that maximizes its payoff. Since we observe the contract choice, subsidy levels, as well as several characteristics of the operator, we are able to identify several features such as the distribution of efficiency θ or the social value of effort k. Once these ingredients are identified, we turn to the principal’s side in order to recover missing information and especially his preferences parameter α for the operator’s rent.

Full commitment. We start with the hypothetical and simpler case of full commitment. This corresponds to the subsidy b^F defined in (1). The parameters k, α, and λ are unknown to the econometrician and need to be estimated, while b^F is observed when a fixed-price contract is taken, or can be recovered by the procedure described above if a cost-plus is chosen. Also, the monotone hazard rate in (1) is also a priori unknown to econometricians and needs to be identified. To do so, we take a parametric approach and assume that the distribution $F(\cdot, \nu_{fc}, \sigma_{fc})$ is normal with mean ν_{fc}, variance σ_{fc} and density $f(\cdot, \nu_{fc}, \sigma_{fc})$.

For the purpose of the estimation, we may rewrite (1) as

$$k_i = \left(1 - \frac{\alpha_i}{1 + \lambda}\right) R \left(b^F_i + k_i, \nu_{fc}, \sigma_{fc}\right), \quad i = 1, \ldots, N, \quad (16)$$

where i denotes network i, and N is the total number of networks in the sample.

The social value of effort k, as well as the weight α, is allowed to vary across networks. These parameters might depend on a set of explanatory variables X_i which account for the characteristics of the operator, and a set of explanatory variables Z_i which characterize the local authority. We write:

$$k_i = k(X_i, \omega), \quad (17)$$

$$\alpha_i = \alpha(Z_i, \gamma), \quad (18)$$

where ω and γ are two vectors of parameters to be estimated.

We cannot identify separately the weight α on the operator’s profit and the cost of public funds λ since only the ratio $\frac{\alpha}{1+\lambda}$ matters in defining the optimal subsidy from (1).

25For ease of exposition, we omit the labels FF, CF, CC, or F/CC in what follows.
We will thus let λ take several values which are consistent with the cost of an administration operating in a developed country.26 Note that we only present here estimation results when $\lambda = 0.3$; Alternative estimates of α can easily be calculated when $\lambda \neq 0.3$.

By matching the theoretical probability predicted by our model with an empirical probability of accepting a fixed-price contract, we can recover the parameters of the normal distribution $F(\cdot, \nu_{fc}, \sigma_{fc})$. The probability of accepting a fixed-price contract is indeed the probability of θ_i being less than $b_i^F + k_i$, namely,

$$
\Pr (\theta_i \leq b_i^F + k_i) = F (b_i^F + k_i, \nu_{fc}, \sigma_{fc}).
$$

(19)

We estimate then the two equations (16) and (19) sequentially. To first recover the values of ν_{fc}, σ_{fc}, and \hat{k}_i, we write the log-likelihood $L_i (\nu_{fc}, \sigma_{fc})$ of observing a specific contract in network i at period t as:

$$
L_i (\nu_{fc}, \sigma_{fc}) = \Gamma_i \log (F (b_i^F + k_i, \nu_{fc}, \sigma_{fc})) + (1 - \Gamma_i) \log (1 - F (\hat{b}_i^F + k_i, \nu_{fc}, \sigma_{fc})).
$$

(20)

Γ_i is a dummy that takes value one if the observed contract is a fixed-price, and zero otherwise. \hat{b}_i^F is the unobserved subsidy which needs to be recovered once cost-plus contracts are observed as explained above. Assuming that observations are independent across networks, the log-likelihood function for our sample is just the sum of all individual likelihood functions:

$$
L (\nu_{fc}, \sigma_{fc}) = \sum_{i=1}^{N} L_i (\nu_{fc}, \sigma_{fc}).
$$

(21)

With the maximum-likelihood estimates $\hat{\nu}_{fc}$, $\hat{\sigma}_{fc}$, and \hat{k}_i in hands, we can compute the distribution $F(\cdot, \hat{\nu}_{fc}, \hat{\sigma}_{fc})$, as well as the monotone hazard rate $R (\cdot, \hat{\nu}_{fc}, \hat{\sigma}_{fc})$. Once this is done, we evaluate $\hat{\alpha}_i$ from (16). Rewriting equation (16) as:

$$
G (b_i^F, \hat{k}_i, \alpha_i, \lambda, \hat{\nu}_{fc}, \hat{\sigma}_{fc}, \varepsilon_i) = 0,
$$

(22)

where ε_i is a two-sided error term, we can obtain maximum-likelihood estimates $\hat{\alpha}_i$.

Limited commitment. From Proposition 4, the optimal renegotiation-proof menu entails subsidies (b_R^F, \hat{b}_R^F) which satisfy the renegotiation-proofness constraint (12).27 Our

26For instance, Ballard, Shoven and Whalley (1985) provided estimates (namely, 1.17 to 1.56) of the welfare loss due to a one-percent increase in all distortionary tax rates (see also Hausman and Poterba (1987) on this). In the case of Canadian commodity taxes, Campbell (1975) found that this distortion is equal to 1.24. More generally, it seems that the distortion falls in the range of 1.15 to 1.40 in countries with an efficient tax collection system. Gagnepain and Ivaldi (2002) obtained a similar result in their study of the French transportation sector.

27We omit the superscript R in what follows.
goal is to estimate this equation together with the normal distribution \(F (\cdot, \nu_{lc}, \sigma_{lc}) \) of \(\theta \).

The parameters that are unknown to us and need to be recovered are \(k, \alpha, \lambda, \beta \), as well as \(\nu_{lc} \) and \(\sigma_{lc} \), the mean and the standard error for the normal distribution. As under full commitment, those parameters might vary across networks. Hence, we rewrite (12) as

\[
-k_i \Phi \left(\frac{\theta_i^R - \rho_i}{\nu_{lc}, \sigma_{lc}} \right) + \left(1 - \frac{\alpha_i}{1 + \lambda} \right) \left(F \left(\bar{b}_i^R + \rho_i, \nu_{lc}, \sigma_{lc} \right) - F \left(\bar{b}_i^R + \rho_i + \frac{(1 - \beta)}{\beta}, \nu_{lc}, \sigma_{lc} \right) \right) = 0, \quad i = 1, \ldots, N. \tag{23}
\]

Note that we may observe or recover each of the two variables \(\bar{b}_i^R \) and \(\bar{b}_i^R \), depending on which contractual arrangement is observed. In particular, we consider the pair \(\left(\bar{b}_i^R, \hat{b}_i^R \right) \) if the observed arrangement is \(FF \), and \(\left(\hat{b}_i^R, \bar{b}_i^R \right) \) if it is \(CF \). Again, the social value of effort \(k \), as well as the weight \(\alpha \) given by the regulator to the operator’s utility, is allowed to vary across networks. We expect these parameters to depend on the same sets of explanatory variables \(X_i \) and \(Z_i \) and write

\[
k_i = k (X_i, \varphi), \tag{24}
\]

\[
\alpha_i = \alpha (Z_i, \chi), \tag{25}
\]

where \(\varphi \) and \(\chi \) are two vectors of parameters to be estimated. As under full commitment, we will assume several possible values for \(\lambda \).

To be estimated, (23) is rewritten as

\[
J \left(\bar{b}_i^R, \hat{b}_i^R, k_i, \alpha_i, \lambda, \nu_{rp}, \sigma_{lc}, \xi_i \right) = 0, \tag{26}
\]

where \(\xi_i \) is an error term.

The estimates \(\hat{\alpha}_i \) are obtained from (23). Moreover, the estimates \(\hat{\nu}_{rp}, \hat{\sigma}_{rp}, \beta \), and \(\hat{k}_i \) are derived from the estimation of \(\theta \)'s distribution, which is computed following the same method than under full commitment.

To recover the mean and standard deviation for the normal distribution \(F (\cdot, \nu_{lc}, \sigma_{lc}) \), we replicate the methodology used under full commitment. However, three types of contractual arrangements are now observed instead of two previously which complicates the expression of the log-likelihood for our sample. By matching the theoretical probabilities of each regimes \(FF, CF \) and \(CC \) with their empirical probabilities, we can recover the distribution of \(\theta \).
Let us compute this log-likelihood still assuming that the θ_is are independent draws from a normal distribution that is common across networks. The operator accepts a fixed-price contract in both periods when $\theta_i \leq \theta_{i1}^* = b_i R_i + k_i + (1 - \beta) b_i R_i - \hat{b}_i$ so that the probability of accepting such fixed-price contract is:

$$\Pr (\theta_i \leq \theta_{i1}^*) = F \left(b_i R_i + k_i + \frac{(1 - \beta)}{\beta} (b_i R_i - \hat{b}_i), \nu_{lc}, \sigma_{lc} \right). \quad (27)$$

The operator goes from a cost-plus to a fixed-price contract when $\theta_{i1}^* \leq \theta_i \leq \theta_{i2}^* = b_i R_i + k_i$. The probability of such pattern is thus the probability of θ being greater than θ_{i1}^* and less than θ_{i2}^*:

$$\Pr (\theta_{i1}^* \leq \theta_i \leq \theta_{i2}^*) = F \left(b_i R_i + k_i, \nu_{rp}, \sigma_{lc} \right) - F \left(b_i R_i + \frac{(1 - \beta)}{\beta} (b_i R_i - \hat{b}_i), \nu_{lc}, \sigma_{lc} \right). \quad (28)$$

Finally, the operator takes cost-plus contracts in both periods when $\theta_{i2}^* = b_i R_i + k_i \leq \theta_i$. The probability of accepting such arrangement is thus:

$$\Pr (\theta_{i2}^* \leq \theta_i) = 1 - F \left(b_i R_i + k_i, \nu_{lc}, \sigma_{lc} \right). \quad (29)$$

The log-likelihood of observing one specific contractual arrangement in network i over period t can thus be written as:

$$L_i (\nu_{lc}, \sigma_{lc}) = \Delta_i \log \left(F \left(b_i R_i + k_i, \nu_{rc}, \sigma_{lc} \right) \right) + \Pi_i \log \left(F \left(b_i R_i + k_i, \nu_{rc}, \sigma_{lc} \right) - F \left(b_i R_i + \frac{(1 - \beta)}{\beta} (b_i R_i - \hat{b}_i), \nu_{lc}, \sigma_{lc} \right) \right) + \Sigma_i \log \left(1 - F \left(b_i R_i + k_i, \nu_{rp}, \sigma_{lp} \right) \right),$$

where $\{\Delta_i, \Pi_i, \Sigma_i\}$ are three dummies taking value one if the observed contractual arrangement is of type $\{FF, CF, CC\}$ respectively, and zero otherwise.

Again observations being independent, the log-likelihood for our sample is just the sum of all individual log-likelihood functions:

$$L (\mu_{lc}, \sigma_{lc}) = \sum_{i=1}^{N} L_i (\nu_{rp}, \sigma_{lc}).$$

Once estimates $\hat{\nu}_{lc}, \hat{\sigma}_{lc}, \hat{\beta}$ and \hat{k}_i are obtained, $\hat{\alpha}_i$ is derived from (26).

We test ex-post that our estimates $\hat{\nu}_{lc}, \hat{\sigma}_{lc}, \hat{\beta}, \hat{k}_i$, and $\hat{\alpha}_i$ satisfy the constraint implied by the optimality conditions (9) and (10).
4.4 Estimation Results

Results are presented in three steps: First, we discuss the estimates of the three subsidy levels b^F, b^R, and \tilde{b}^R, following our procedure described in Section 4.2. Second, we comment the estimation of θ’s distribution, $F(\cdot)$, and we shed light on which factors affect significantly the social value of effort k. Finally, we focus on the regulatory arrangements induced by Propositions 1 and 4.

Recovering menus of subsidies. We assume a linear relationship between a subsidy level and a set of characteristics Y_i in our equations (13), (14), and (15). The characteristics we focus on are related to the regulator, the operator, or the network. These are the size of the rolling stock, the size of the transport network, the share of the labor bill in total costs, a dummy variable which takes value one if the local government is right-wing, and 0 otherwise, a dummy variable that takes value 1 if the operator belongs to the corporation Keolis and 0 otherwise, a dummy variable that takes value 1 if the operator belongs to the corporation Agir and 0 otherwise, and a dummy variable that takes value 1 if the operator belongs to the corporation Connex and 0 otherwise. We also introduce operators’ fixed effects.

The results are presented in Table 3. Unsurprisingly, each subsidy level increases with the volume of the rolling stock, or the network size. However, the network size is a more important factor to explain the volume of the first-period subsidy b^R, compared to \tilde{b}^R, while the size of second-period subsidy \tilde{b}^R seems to be more sensitive to fluctuations in the rolling stock. Note also that subsidies decrease if the share of labor in total operating expenses is higher. Likewise, right-wing municipalities have a tendency to pay lower subsidies to operators, everything else being equal. Note nevertheless that the right/left margin is more pronounced when it comes to explaining \tilde{b}^R compared to \tilde{b}^R. Moreover, our results suggest that the identity of corporation that owns the operator matters as well. Operators owned by Agir tend to receive lower subsidies compared to operators of other groups. Likewise, operators owned by Keolis receive higher \tilde{b}^R and lower \tilde{b}^R.

In Table 4, we present the average and the standard deviation of the estimated \hat{b}^F, \tilde{b}^R, and \tilde{b}^R, when considering the full and limited commitment complete databases. Note that, as expected, $\tilde{b}^R < \hat{b}^F < \tilde{b}^R$.

Full commitment. To estimate $F(\cdot)$, we need to determine which variables X affect
the social value of effort k. Explanatory variables are related to the characteristics of the operator, i.e., its skills and managerial ability, as well as its effort technology. These variables are a constant, a trend, the total size of the service network in kilometers, the number of lines operated, the size of the rolling stock in number of vehicles, the share of the labor bill in total costs, the percentage of engineers in the total labor force, a dummy variable that takes value 1 if the operator belongs to the corporation Keolis and 0 otherwise, a dummy variable that takes value 1 if the operator belongs to the corporation Agir and 0 otherwise, and a dummy variable that takes value 1 if the operator belongs to the corporation Connex and 0 otherwise.

Results are presented in Table 5. In the course of the estimation, we realized that the patterns which explain the social value of effort highly differ from one network to another, i.e., we could not obtain unique significant effects for all operators. Hence, we allow estimation results to vary from one group to another. We present three different estimations.

In (I), k depends on four dummy variables which account for the identity of the group the operator belongs to (Connex is the reference group). Only Trandev has a significant and positive effect on k, suggesting that an operator belonging to Transdev seems to guarantee a higher social return on effort compared to operators from other groups.\footnote{The social value of effort is inversely related to the technological cost of effort, which implies that Transdev also enjoys a less costly effort technology. It would be interesting to relate these findings to the internal structure of managerial incentives within the operator but we did not have access to any related information.}

In (II), the explanatory variables are a constant for each group and the size of the network interacted with each one of the group dummy variables. The results show that the size of the network significantly and positively affects the social value of effort in networks where Agir and Transdev operate. This is probably an illustration of the fact that economies of scale in effort technology are greater for larger networks.

In (III), the explanatory variables are a constant for each group and the share of engineers interacted with each one of the group dummy variables. The share of engineers provides a measure for the endowment of skills embodied in the firm. Engineers are generally responsible for research and development, quality control, maintenance, and efficiency. Their action is particularly important to improve the average speed of the network. We expect thus the share of engineers in the total labor force to positively affect...
the social value of effort. Instead, the results suggest ambiguous effects. If the operator belongs to Transdev, the share of engineers has the expected effect. If the operator belongs to Agir, the effect goes in the opposite direction.

Other variables such as the number of lines operated, the size of the rolling stock, or the share of the labor bill in total costs have not provided significant results. The four estimation procedures yield very similar estimates of ν_{fc} and σ_{fc}, the mean and standard deviation of θ’s normal distribution respectively. Our results are strongly significant, and suggest that the average innate cost θ is close to 18 millions Euros.

Once we have estimated ν_{fc}, σ_{fc}, and k_i, we evaluate $\hat{\alpha}_i$, the weight of the operator’s profit in the public authority’s objective function. The explanatory variables which enter Z_i are a constant, the number of cities within the local authority in charge of the service, the size of the population of the relevant urban area, and the local political color.\footnote{When the local authority includes several cities, we consider the political color of the main municipality.} With the first two variables, we want to test whether the size of the city or a greater division of the network into distinct urban areas affects the bargaining power of the operator. We expect the latter to be more important in small networks or networks made of many urban areas. With respect to the political color of the local government, casual evidence suggests that a right-wing local government is more eager to provide favors to private operators. The estimate $\hat{\alpha}_i$ should thus be higher with a right-wing local government.\footnote{This point is corroborated in additional works such as Levin and Tadelis (2009).}

Results are presented in Table 6. The estimation of the average α are made under the assumption that the local cost of public funds takes value $\lambda = 0.3$. Several comments are worth being made. First, the number of cities that constitute the local authority and the size of the population were not significant and have been discarded. Second, whether the government is right-wing or not has a positive and very significant impact on α, confirming thereby our prior intuition. Note that α in this case takes value 0 for left-wing governments while it is strictly positive for the right-wing ones. Third, our initial restriction $\alpha \leq 1 + \lambda$ holds, even though it is not imposed in the estimation.

Limited commitment. The estimation procedure is similar to the full commitment case.

First, we need to estimate the distribution of θ, $F(\cdot)$. Explanatory variables for k
are the same as before. Three different estimations are also considered here, depending on which group of explanatory variables is used: (I) Four dummy variables denoting the identity of each group, (II) a constant plus the effect of the network size for each group, and (III) a constant plus the share of engineers for each group.31

The results are presented in Table 7. With respect to the estimation of k, several comments are in order. First, as far as only dummy variables are concerned, Transdev is the group with the highest social value of effort. In (II), the different groups seem to react differently to an increase in the size of the network. In (III), they also react differently to an increase in the share of engineers.32

We also obtain a direct estimate of the intertemporal weight β. Values are between 0.25 and 0.41, indicating that the second period is perceived as more important than the first period in the contractual arrangement. Again, the three estimations yield very similar estimates of ν_{lc} and σ_{lc}, the mean and standard deviation of θ's. Our results are strongly significant and suggest that the average θ varies between 14 and 15 millions Euros. Thus, operators are perceived as more efficient under the limited commitment scenario, compared to the full commitment case.

With the estimated $\hat{\nu}_{rp}, \hat{\sigma}_{rp}, \hat{\beta}$ and \hat{k} in hands, we turn to the evaluation of $\hat{\alpha}$. Average values of these parameters are presented in Table 8. Again, we perform these estimations assuming that the local cost of public funds takes value $\lambda = 0.3$. Whether the local government is right-wing or not has a positive and very significant impact on α, and comparing estimates of α across regimes, we observe that the estimated parameter is similar in magnitude to the one we obtained in the full commitment case.

The explanation for the difference in estimates between the full commitment and the renegotiation-proof scenarios is easily understood when coming back on the renegotiation-proofness constraint (8). Remember that renegotiation is more of a concern when efficiency gains are high, i.e., when k is greater. Considering a limited commitment scenario amounts thus to “choose” a higher value of this parameter. Our estimation results in Tables 5 and 7 go in the expected directions. k is greater under limited than under full commitment. Estimated $\hat{\omega}$ and $\hat{\varphi}$ allow us to compute average \hat{k} under both situations.

31The reader might remember that a major difference is that now three regulatory arrangements are considered instead of two as under full commitment.

32Note that the effects go sometimes in an opposite direction than the ones obtained in the full commitment case.
Full commitment entails average values of \hat{k} equal to 0.06 (I), 0.08 (II), and 0.06 (III), while limited commitment entails values equal to 0.13 (I), 0.22 (II), and 0.18 (III).

Lastly, as it can be seen from the right-hand side of the renegotiation-proofness constraint (8), renegotiation is more costly when increasing subsidies over time significantly shifts rents towards the operator which arises when types are “on average” rather efficient. Neglecting that constraint biases the types distribution towards considering operators with higher costs, which is confirmed by our estimations.

Finally, we verify ex-post that our estimates $\hat{\nu}_{lc}, \hat{\sigma}_{lc}, \hat{\beta}, \hat{k}_{i}, \hat{\alpha}_{i}$ verify the regulatory constraints made of equations (9) and (10). To do so, we replace μ in (9) by its expression from (10) in order to generate an equation (9'). Then, we compute a t-test to check whether the left-hand side of equation (9') is significantly different from its right-hand side. We cannot reject the hypothesis that both sides are equal.

5 The Welfare Gains of Commitment

We assess now the magnitude of the welfare gains which can be obtained once one moves from the renegotiation-proof setting to the less constrained full commitment scenario. We also investigate how these gains are distributed between private operators and taxpayers. This is an important issue for practitioners since they have often complained on the insufficient length of concession contracts in this sector.

Starting from our estimates of the various parameters of the model obtained from the estimation of the renegotiation-proof scenario, we can reconstruct estimates of the average social cost of subsidies and the average rent left to operators under both scenarios.33 We proceed as follows.34

Step 1. Using our set of renegotiation-proof estimates $\Upsilon^R = (\hat{\nu}^R, \hat{\sigma}^R, \hat{k}^R, \hat{\alpha}^R, \hat{\beta}^R)$ conditional on λ and its expression from the maximand in renegotiation-proof program \mathcal{P}^R, we compute expected welfare levels W^R_i for each network of our data set. As emphasized throughout this section, the renegotiation-proof scenario corresponds to the actual contractual practices encountered in the French urban transport industry. Hence, the es-

33Remember that our theoretical model has normalized the value of the service at some fixed level S so that consumers’ gross surplus does not change when considering different regimes. This variable will thus be omitted in our analysis.

34See the Appendix for details.
timates Υ^R provide the econometrician with some information on the true characteristics of the operator and the public authority.

Step 2. We simulate the hypothetical subsidy level \hat{b}_i^F that would be paid under full commitment. To do so, we solve (1) with respect to \hat{b}_i^F, using the real networks characteristics Υ^R.

Step 3. We reconstruct the hypothetical welfare measures \hat{W}_i^F for each network of our data set, as predicted by our full commitment solution, and using our estimates \hat{b}_i^F and Υ^R.

We compute the total welfare gains as well as the gains for taxpayers and operators from commitment by considering an average network of the data set, using estimates Υ^R conditional on $\lambda = 0.3$ and k_i specified as in (II) in Table 5.\(^{35}\)

The estimates reported in Table 9 shed light on several interesting results. Of course, commitment always improves welfare, compared to the situation where renegotiation puts further constraints on contracting. There is no surprise there, and the important question is not whether one gains by committing but how those gains are distributed. Second, it turns out that $\hat{T}_i^F > \hat{T}_i^R$, i.e., switching from limited to full commitment entails a higher intertemporal subsidy. In fact, the intertemporal payment to the operator increases, on average, by 6.1 million Euros. Hence, taxpayers lose from an increase in the length of concession contracts, given that social costs increase by 8 million Euros on average.

Turning now to operators, our estimates show that their intertemporal rent increases when moving to full commitment by 8.2 million Euros. This is a significant gain that explains why operators are so eager to extend the length of the concession contract in this sector.

6 Conclusion

We have developed a principal-agent model under limited commitment that features the main characteristics of contracts and institutional practices in the French urban transportation sector. On top of estimating key parameters of the economic and political landscape in this sector, this model has allowed us to evaluate the cost of renegotiation-

\(^{35}\)Note that the final welfare results do not vary in a significant manner if other values of k_i are chosen.
tion and how welfare gains would be redistributed by increasing contract duration and improving commitment.

In this conclusion, we would like to make a few remarks and suggest alleys for further investigation. First, we have deliberately restrained the general features of theoretical models used in the renegotiation literature to bring the lessons of those models to the data. Computing the optimal renegotiation-proof contract with a continuum of types (already a first-magnitude challenge) and then estimating it econometrically would be a very messy and painful project. Taking data and institutional constraints seriously forced us instead to focus on the case of simple menus which, although suboptimal, brings tractability. This “applied theory” procedure seems to us extremely promising in areas like dynamic contract theory where “pure theory” is either producing untractable models or would make progresses at the cost of imposing heroic assumptions on the underlying type distribution (assuming typically discrete types), assumptions that would be hardly corroborated by data. Our approach could certainly be fruitful also for other industries and contractual environments.

Second, and more specifically to our analysis of the transportation sector, note that even though our estimates show that welfare gains of commitment are significant, we are certainly underestimating these gains here. Indeed, we have no ideas on how renegotiation weakens the operator’s incentives to make any relationship-specific investment in this sector except through informal talks with practitioners in the field. Introducing those considerations would push even further towards an increase in contract length that could secure investments and avoid hold-up effects.

Third, a more complete analysis of the renegotiation process should incorporate the possibility that public authorities build reputations for being tough on renegotiation. Indeed, such reputation would be beneficial in relaxing renegotiation-proofness constraints. In other words, an omitted variable of our analysis is the amount of reputational capital available to the contracting parties. That capital may be much easier to build in political contexts where public authorities are likely to be reelected in the future and still in charge with regulating the service in later periods. Our theoretical model has put aside those reputation issues and has thus analyzed a “worst scenario” under renegotiation. More research both on the theory side and also in building data sets which could account for that reputational capital is certainly called for.
Fourth, our estimation has highlighted a few systematic differences between operators of different companies in their abilities to generate social value through managerial efforts. It would be worth linking those different abilities to the internal organizations, the management practices and incentive structures of those firms. But again, we have no information on this issue at this stage.

Lastly, our estimate of the cost distribution allows us to ascertain whether the restriction to simple menus is relevant or not even in the static context. Echoing the theoretical works of Rogerson (2003) and Chu and Sappington (2007), we could now ask whether the simple two-item menu fares well compared with more complete menus of contracts given the estimated distributions. This would help us to address whether major sources of benefits in contract design come from better institutional design improving thereby commitment or from better designing more “complex” cost reimbursement rules: an important issue for practitioners.

We hope to investigate some of those issues in future research.

References

Appendix

Proof of Proposition 1. Under full commitment, the principal’s problem can be rewritten as:

\[(\mathcal{P}^F) : \max_{(b_1, b_2)} W^F(b_1, b_2) \]
The monotone hazard rate property ensures quasi-concavity of this objective.\footnote{See for instance Bagnoli and Bergstrom (2005).} The corresponding first-order conditions characterize the optimal subsidy in (1).

Proof of Proposition 2. Take any initial contract offer \(C^0 = (b_1, R^0) \) and define \(R \) as the solution to \((R^0)\. Consider now the new contract \(C = (b_1, R) \). We want to prove that the history of self-selection of the different types of the agent and the principal’s second-period payoff are both unchanged with this new offer. Several facts follow.

1. Since the agent’s perfectly anticipates the issue of renegotiation and makes his first-period accordingly, self-selection among the three different options takes place exactly in the same way with \(C \) as when \(C^0 \) is initially offered.

2. By definition, any offer \(\tilde{R} = (\tilde{b}_2, \tilde{b}_3) \) that is feasible at the renegotiation-stage given \(R \) is feasible given \(R^0 \). Indeed, that \(b_2 \) satisfies (2) and \(\tilde{b}_2 \) satisfies (5) (resp. (3) and (6)) imply
 \[\tilde{b}_2 \geq b_2^0. \]
 (30)
 Similarly, that \(b_3 \) satisfies (3) and \(\tilde{b}_3 \) satisfies (6) imply
 \[\tilde{b}_3 \geq b_3^0. \]
 (31)

3. By definition, \(R \) solves \((R^0)\) and thus for any \(\tilde{R} = (\tilde{b}_2, \tilde{b}_3) \) that is feasible given \(R^0 \), we have:
 \[W_2((b_1^0, R), R, R) \geq W_2((\tilde{b}_1^0, \tilde{R}), \tilde{R}, \tilde{R}). \]
 (32)
 This condition is true, in particular, for any \(\tilde{R} = (\tilde{b}_2, \tilde{b}_3) \) that is feasible at the renegotiation-stage following the offer of \(R \). This shows that \(R \) solves also \((R)\).

This ends the proof of Proposition 2. \[\blacksquare \]

Proof of Proposition 4. The first-order optimality conditions for \(b_1^R \) and \(b_2^R \) are the same so that, it is optimal to set \(b_1^R = b_2^R = \tilde{b}_1^R \). Taking into this fact and optimizing with respect to \((\tilde{b}_1^R, \tilde{b}_2^R)\) yields the first-order conditions (9) and (10). \[\blacksquare \]

Proof of Proposition 3. First, note that \(\alpha < 1 + \lambda \) implies that the maximum of the first integral in (4) is obtained when (5) is binding.
Second, consider (unexpected) renegotiation offers with \(b_3 \geq b_3 \). Types in \([b_3+k, \hat{b}_3+k]\) which were anticipating to work on a second-period cost-plus contract are now adopting the fixed-price contract with the new greater subsidy \(\hat{b}_3 \) at the renegotiation stage. Optimizing (\(R \)) which is quasi-concave in \(\hat{b}_3 \) and taking into account that \(b_3 \) must be the solution yields condition (8).

Proof of Proposition 4. Assuming quasi-concavity in \((b_1, b_2, b_3)\) of the Lagrangean corresponding to the optimization problem, the first-order optimality conditions for \(b_1^R \) and \(b_2^R \) are the same so that, it is optimal to set \(b_1^R = b_2^R = b^R \). Taking into this fact and optimizing with respect to \((b^R, \hat{b}^R)\) yields the first-order conditions (9) and (10).

Moreover, (8) implies that

\[
F(\hat{b}^R + k) - F \left(b^R + k + \frac{(1 - \beta)}{\beta} (b^R - \hat{b}^R) \right) > 0
\]

which itself implies \(\hat{b}^R < b^R \). ■

Welfare Estimates. Using our estimates from the case where renegotiation-proof contracts are considered, we get the following expression of welfare in network \(i \):

\[
W_i^R = S - (1 + \lambda) T_i^R + \hat{\alpha}_i^R U_i^R, \tag{33}
\]

where

\[
T_i^R = \int_{\theta}^{\hat{b}_i^R + \hat{k}_i^R + \frac{(1 - \beta)}{\beta} (b^R - \hat{b}^R)} b_i^R f(\theta) d\theta + \int_{\hat{b}_i^R + \hat{k}_i^R + \frac{(1 - \beta)}{\beta} (b^R - \hat{b}^R)} b_i^R (\beta \theta + (1 - \beta) \hat{b}_i^R) f(\theta) d\theta
\]

and

\[
U_i^R = \int_{\theta}^{\hat{b}_i^R + \hat{k}_i^R + \frac{(1 - \beta)}{\beta} (b^R - \hat{b}^R)} \left(b_i^R + \hat{k}_i^R - \theta \right) f(\theta) d\theta + \int_{\hat{b}_i^R + \hat{k}_i^R + \frac{(1 - \beta)}{\beta} (b^R - \hat{b}^R)} (1 - \beta) (\hat{b}_i^R + \hat{k}_i^R - \theta) f(\theta) d\theta.
\]

Likewise, from our full commitment program (\(P^F \)), we define welfare as the weighted sum of surplus \(S \), expected taxes \(T_i^F \) and operator’s expected rent \(U_i^F \) weighted by the corresponding weight \(\hat{\alpha}_i^R \):

\[
W_i^F = S - (1 + \lambda) T_i^F + \hat{\alpha}_i^R U_i^F, \tag{34}
\]
where
\[T_i^F = \hat{b}_i^F F \left(\hat{b}_i^F + \hat{k}_i^R \right) + \int_{\hat{b}_i^F + \hat{k}_i^R}^{\theta} \theta f(\theta) d\theta, \]
and
\[U_i^F = \int_{\hat{b}_i^F + \hat{k}_i^R}^{\hat{b}_i^F + \hat{k}_i^R} \left(\hat{b}_i^F + \hat{k}_i^R - \theta \right) f(\theta) d\theta. \]

Note that the gross surplus \(S \) vanishes at the moment of calculating the difference between both welfare measures \(W_i^R \) and \(W_i^F \). Hence, we evaluate the welfare differential between both renegotiation-proof and perfect commitment situations as

\[\Delta W_i = W_i^F - W_i^R. \]
(35)

Similar definitions follow for \(\Delta T_i^F \) and \(\Delta U_i \).
<table>
<thead>
<tr>
<th>Name</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Period of observation</td>
<td>1987-2001</td>
</tr>
<tr>
<td>Number of networks</td>
<td>49</td>
</tr>
<tr>
<td>Changes of operators</td>
<td>2</td>
</tr>
<tr>
<td>Changes of local governments</td>
<td>22</td>
</tr>
<tr>
<td>Number of contracts</td>
<td>136</td>
</tr>
<tr>
<td>Fixed-price contracts</td>
<td>75</td>
</tr>
<tr>
<td>New contracts</td>
<td>94</td>
</tr>
<tr>
<td>Switch contract type</td>
<td>20</td>
</tr>
<tr>
<td>Switch Cost-plus to Fixed-price</td>
<td>17</td>
</tr>
</tbody>
</table>

Table 1: Contracts
<table>
<thead>
<tr>
<th>Variables</th>
<th>Mean</th>
<th>Stand. Dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal Subsidy (Euros)</td>
<td>20,702,141</td>
<td>19,239,199</td>
</tr>
<tr>
<td>Including Revenue (Euros)</td>
<td>9,608,629</td>
<td>10,526,903</td>
</tr>
<tr>
<td>Subsidy per unit of supply (Euro)</td>
<td>0.016</td>
<td>0.005</td>
</tr>
<tr>
<td>Real Subsidy (Euros)</td>
<td>18,760,150</td>
<td>17,395,482</td>
</tr>
<tr>
<td>Size of the network (km)</td>
<td>288.3</td>
<td>200.1</td>
</tr>
<tr>
<td># of lines</td>
<td>23.6</td>
<td>13.2</td>
</tr>
<tr>
<td># of vehicles</td>
<td>168.1</td>
<td>119.5</td>
</tr>
<tr>
<td># of cities in the urban network</td>
<td>18.3</td>
<td>16.7</td>
</tr>
<tr>
<td>Size of population</td>
<td>236,799</td>
<td>177,641</td>
</tr>
<tr>
<td>Share of Labor in total costs</td>
<td>0.64</td>
<td>0.10</td>
</tr>
<tr>
<td>Share of engineers</td>
<td>0.29</td>
<td></td>
</tr>
<tr>
<td>Share right-wing government</td>
<td>0.52</td>
<td></td>
</tr>
<tr>
<td>Share Fixed Price contracts</td>
<td>0.55</td>
<td></td>
</tr>
<tr>
<td>Share Keolis</td>
<td>0.32</td>
<td></td>
</tr>
<tr>
<td>Share Agir</td>
<td>0.16</td>
<td></td>
</tr>
<tr>
<td>Share Connex</td>
<td>0.22</td>
<td></td>
</tr>
<tr>
<td>Share Transdev</td>
<td>0.24</td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Data
<table>
<thead>
<tr>
<th>Variables</th>
<th>I</th>
<th>II</th>
<th>I</th>
<th>II</th>
<th>I</th>
<th>II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>6.27***</td>
<td>6.27***</td>
<td>6.17***</td>
<td>6.39***</td>
<td>7.15***</td>
<td>7.49***</td>
</tr>
<tr>
<td></td>
<td>(0.31)</td>
<td>(0.32)</td>
<td>(0.38)</td>
<td>(0.29)</td>
<td>(0.30)</td>
<td>(0.33)</td>
</tr>
<tr>
<td>Rolling Stock</td>
<td>0.62***</td>
<td>0.62***</td>
<td>0.54***</td>
<td>0.52***</td>
<td>0.61***</td>
<td>0.61***</td>
</tr>
<tr>
<td></td>
<td>(0.05)</td>
<td>(0.05)</td>
<td>(0.07)</td>
<td>(0.06)</td>
<td>(0.05)</td>
<td>(0.05)</td>
</tr>
<tr>
<td>Network Size</td>
<td>0.17***</td>
<td>0.17***</td>
<td>0.24***</td>
<td>0.23***</td>
<td>0.07*</td>
<td>0.07*</td>
</tr>
<tr>
<td></td>
<td>(0.03)</td>
<td>(0.03)</td>
<td>(0.04)</td>
<td>(0.03)</td>
<td>(0.04)</td>
<td>(0.04)</td>
</tr>
<tr>
<td>Right-Wing</td>
<td>-0.04</td>
<td>-0.04</td>
<td>-0.06**</td>
<td>-0.07**</td>
<td>-0.16***</td>
<td>-0.16***</td>
</tr>
<tr>
<td></td>
<td>(0.02)</td>
<td>(0.02)</td>
<td>(0.03)</td>
<td>(0.03)</td>
<td>(0.05)</td>
<td>(0.05)</td>
</tr>
<tr>
<td>Labor Share</td>
<td>-1.27***</td>
<td>-1.27***</td>
<td>-1.11***</td>
<td>-1.13***</td>
<td>-1.35***</td>
<td>-1.35***</td>
</tr>
<tr>
<td></td>
<td>(0.15)</td>
<td>(0.15)</td>
<td>(0.19)</td>
<td>(0.19)</td>
<td>(0.17)</td>
<td>(0.17)</td>
</tr>
<tr>
<td>Connex</td>
<td>0.23</td>
<td>0.07</td>
<td>-0.15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1.40)</td>
<td>(1.15)</td>
<td>(3.02)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agir</td>
<td>-0.66***</td>
<td>-0.7***</td>
<td>-0.37***</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.08)</td>
<td>(0.08)</td>
<td>(0.07)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Keolis</td>
<td>0.06</td>
<td>0.8***</td>
<td>-0.33***</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.44)</td>
<td>(0.04)</td>
<td>(0.06)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Error Sd. Dev.</td>
<td>0.10***</td>
<td>0.10***</td>
<td>0.11***</td>
<td>0.11***</td>
<td>0.05***</td>
<td>0.05***</td>
</tr>
<tr>
<td></td>
<td>(0.003)</td>
<td>(0.003)</td>
<td>(0.004)</td>
<td>(0.004)</td>
<td>(0.003)</td>
<td>(0.003)</td>
</tr>
<tr>
<td>Firms Fixed effects</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td># of Observations</td>
<td>408</td>
<td>408</td>
<td>300</td>
<td>300</td>
<td>93</td>
<td>93</td>
</tr>
</tbody>
</table>

Table 3: Estimated Subsidies I

<table>
<thead>
<tr>
<th></th>
<th>\hat{b}_F</th>
<th>\hat{b}</th>
<th>\hat{b}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average (1000 Euros)</td>
<td>14274**</td>
<td>13487**</td>
<td>16490**</td>
</tr>
<tr>
<td></td>
<td>(6996)</td>
<td>(6436)</td>
<td>(7249)</td>
</tr>
<tr>
<td># of Observations</td>
<td>735</td>
<td>579</td>
<td>579</td>
</tr>
</tbody>
</table>

Table 4: Estimated Subsidies II
<table>
<thead>
<tr>
<th>Variables</th>
<th>I</th>
<th>II</th>
<th>III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agir</td>
<td>-0.02</td>
<td>-0.54***</td>
<td>0.83***</td>
</tr>
<tr>
<td></td>
<td>(0.04)</td>
<td>(0.16)</td>
<td>(0.20)</td>
</tr>
<tr>
<td>Keolis</td>
<td>0.02</td>
<td>-0.005</td>
<td>0.08</td>
</tr>
<tr>
<td></td>
<td>(0.03)</td>
<td>(0.06)</td>
<td>(0.07)</td>
</tr>
<tr>
<td>Transdev</td>
<td>0.26***</td>
<td>0.15*</td>
<td>-0.03</td>
</tr>
<tr>
<td></td>
<td>(0.05)</td>
<td>(0.08)</td>
<td>(0.17)</td>
</tr>
<tr>
<td>Agir×size</td>
<td></td>
<td></td>
<td>2.18***</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.61)</td>
</tr>
<tr>
<td>Keolis×size</td>
<td></td>
<td></td>
<td>0.09</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.17)</td>
</tr>
<tr>
<td>Transdev×size</td>
<td></td>
<td></td>
<td>0.54*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.31)</td>
</tr>
<tr>
<td>Agir×Engineers</td>
<td></td>
<td></td>
<td>-3.11***</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.75)</td>
</tr>
<tr>
<td>Keolis×Engineers</td>
<td></td>
<td></td>
<td>-0.24</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.24)</td>
</tr>
<tr>
<td>Transdev×Engineers</td>
<td></td>
<td></td>
<td>0.97*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.59)</td>
</tr>
</tbody>
</table>

Mean θ ($\times10000$) 0.18*** 0.18*** 0.18***

Stand. Dev. θ ($\times10000$) 0.24*** 0.27*** 0.24***

of Observations 735

Table 5: Full Commitment: Inefficiency distribution and social value of effort

<table>
<thead>
<tr>
<th>α×right wing</th>
<th>I</th>
<th>II</th>
<th>III</th>
</tr>
</thead>
<tbody>
<tr>
<td>λ 0.3</td>
<td>1.22***</td>
<td>1.19***</td>
<td>1.20***</td>
</tr>
<tr>
<td></td>
<td>(0.08)</td>
<td>(0.08)</td>
<td>(0.07)</td>
</tr>
</tbody>
</table>

of Observations 408

Table 6: Full Commitment: Parameter of interest in Proposition 1
<table>
<thead>
<tr>
<th>Variables</th>
<th>I</th>
<th>II</th>
<th>III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agir</td>
<td>-0.05</td>
<td>-1.05**</td>
<td>1.00***</td>
</tr>
<tr>
<td></td>
<td>(0.05)</td>
<td>(0.41)</td>
<td>(0.25)</td>
</tr>
<tr>
<td>Keolis</td>
<td>0.06</td>
<td>-0.03</td>
<td>0.29**</td>
</tr>
<tr>
<td></td>
<td>(0.04)</td>
<td>(0.10)</td>
<td>(0.11)</td>
</tr>
<tr>
<td>Transdev</td>
<td>0.45***</td>
<td>0.37*</td>
<td>-0.94***</td>
</tr>
<tr>
<td></td>
<td>(0.10)</td>
<td>(0.19)</td>
<td>(0.37)</td>
</tr>
<tr>
<td>Agir×size</td>
<td>4.08***</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1.58)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Keolis×size</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.46</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.39)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transdev×size</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.17</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.78)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agir×Engineers</td>
<td>-3.80***</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.92)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Keolis×Engineers</td>
<td>-0.89**</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.39)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transdev×Engineers</td>
<td>5.01***</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1.57)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>First Period Weight β</td>
<td>0.39***</td>
<td>0.25***</td>
<td>0.41***</td>
</tr>
<tr>
<td></td>
<td>(0.06)</td>
<td>(0.08)</td>
<td>(0.06)</td>
</tr>
<tr>
<td>Mean θ ($\times10000$)</td>
<td>0.15***</td>
<td>0.14***</td>
<td>0.15***</td>
</tr>
<tr>
<td></td>
<td>(0.03)</td>
<td>(0.04)</td>
<td>(0.03)</td>
</tr>
<tr>
<td>Stand. Dev. θ ($\times10000$)</td>
<td>0.29***</td>
<td>0.43***</td>
<td>0.25***</td>
</tr>
<tr>
<td></td>
<td>(0.05)</td>
<td>(0.14)</td>
<td>(0.04)</td>
</tr>
<tr>
<td># of Observations</td>
<td>579</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 7: Renegotiation-proof: Inefficiency distribution and social value of effort

<table>
<thead>
<tr>
<th>$\alpha\times$right wing</th>
</tr>
</thead>
<tbody>
<tr>
<td>λ</td>
</tr>
<tr>
<td>0.3</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

of Observations 392

Table 8: Renegotiation-proof: Parameters of interest in Proposition 2
<table>
<thead>
<tr>
<th>Welfare Items</th>
<th>Total (in Million Euros)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subsidy</td>
<td></td>
</tr>
<tr>
<td>- Full commitment</td>
<td>33.6</td>
</tr>
<tr>
<td>- Renegotiation-proof</td>
<td>27.5</td>
</tr>
<tr>
<td>Differential</td>
<td>+6.1</td>
</tr>
<tr>
<td>Social cost</td>
<td></td>
</tr>
<tr>
<td>- Renegotiation-proof</td>
<td>35.7</td>
</tr>
<tr>
<td>- Full commitment</td>
<td>43.7</td>
</tr>
<tr>
<td>Differential</td>
<td>+8.0</td>
</tr>
<tr>
<td>Rent operator</td>
<td></td>
</tr>
<tr>
<td>- Renegotiation-proof</td>
<td>71.3</td>
</tr>
<tr>
<td>- Full commitment</td>
<td>79.5</td>
</tr>
<tr>
<td>Differential</td>
<td>+8.2</td>
</tr>
<tr>
<td>Total welfare</td>
<td></td>
</tr>
<tr>
<td>- Renegotiation-proof</td>
<td>50.9</td>
</tr>
<tr>
<td>- Full commitment</td>
<td>53.0</td>
</tr>
<tr>
<td>Differential</td>
<td>+2.1</td>
</tr>
<tr>
<td># of observations</td>
<td>114</td>
</tr>
</tbody>
</table>

Table 9: Welfare differentials for the average network