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Abstract

The identification of the discount factor in dynamic discrete models is important for 
counterfactual analysis, but hard. Existing approaches either take the discount factor to be 
known or rely on high level exclusion restrictions that are difficult to interpret and hard to satisfy 
in applications, in particular in industrial organization. We provide identification results under an 
exclusion restriction on primitive utility that is more directly useful to applied researchers. We 
also show that our and existing exclusion restrictions limit the choice and state transition 
probability data in different ways; that is, they give the model nontrivial and distinct empirical 
content.
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1. INTRODUCTION

The identification of the discount factor in dynamic discrete choice models is

crucial for their application to the evaluation of agents’ responses to dynamic

interventions. Rust (1994, Lemma 3.3) and Magnac and Thesmar (2002, Proposi-

tion 2) showed that the discount factor is not identified from data on choices and

state variables without further restrictions. Magnac and Thesmar’s Proposition

4 established identification based on such a restriction, the existence of a state

variable that a↵ects, in some specific way, expected discounted future utility but

not the “current value,” which is a di↵erence in expected discounted utilities

between two particular choice sequences. Nevertheless, later work on identifica-

tion (e.g. Bajari et al., 2015; Norets and Tang, 2014) usually takes the discount

factor to be known, perhaps because Magnac and Thesmar’s exclusion restric-

tion is di�cult to interpret and hard to satisfy in applications, in particular in

those applications in e.g. industrial organization that use stationary models with

infinite horizon.

We discuss this limitation of Magnac and Thesmar’s result and provide iden-

tification results under an exclusion restriction on primitive utility that is more

directly useful to applied researchers. We also show that there is some scope

for testing Magnac and Thesmar’s exclusion restriction and ours, as these have

nontrivial and di↵erent empirical contents. Specifically, for both restrictions, we

give an example of data that are consistent with one restriction but not with

the other. Finally, we show that identification of the discount factor does not

follow as a special case of Fang and Wang’s (2015) generic identification results

for dynamic discrete choice models with hyperbolic discounting.

2. MODEL

Consider a stationary version of Magnac and Thesmar’s model. Time is dis-

crete with an infinite horizon. In each period, agents first observe state variables

x and ", where x takes values in X̃ = {x
1

, . . . , x

J

} and " = {"
1

, . . . , "

K

} is con-

tinuously distributed on RK ; for J,K � 2. Then, they choose d from the set of

alternatives D̃ = {1, 2, . . . ,K} and collect utility u

d

(x, ") = u

⇤
d

(x) + "

d

. Finally,
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they move to the next period with new state variables x

0 and "

0 drawn from a

Markov transition distribution controlled by d. Following Magnac and Thesmar,

we assume that a version of Rust’s (1987) conditional independence assumption

holds. Specifically, x0 is drawn independently of " from the transition distribu-

tion Q

i

(·|x) for any choice i 2 D̃; and "

1

, . . . , "

K

are independently drawn from

mean zero type-1 extreme value distributions.1 Agents maximize the rationally

expected utility flow discounted with factor � 2 [0, 1).

Each choice d equals the option i that maximizes the choice-specific expected

discounted utility (or, simply, “value”) v

i

(x, "). The additive separability of

u

i

(x, ") and conditional independence imply that v

i

(x, ") = v

⇤
i

(x) + "

i

, with

v

⇤
i

the unique solution to

(1)

v

⇤
i

(x) = u

⇤
i

(x) + �E

max
i

02 ˜

D

{v⇤
i

0(x0) + "

0
i

0} d = i, x

�

= u

⇤
i

(x) + �

Z
E

max
i

02 ˜

D

{v⇤
i

0(x0) + "

0
i

0}
�
dQ

i

(x0|x)

for all i 2 D̃. Here, for given x̃ 2 X̃,

(2) E

max
i

02 ˜

D

{v⇤
i

0(x̃) + "

0
i

0}
�
= ln

0

@
X

i

02 ˜

D

exp (v⇤
i

0(x̃))

1

A

is the McFadden surplus for the choice among i

0 2 D̃ with utilities v⇤
i

0(x̃) + "

0
i

0 .

Suppose we have data on choices d and state variables x that allow us to

determine Q

i

(·|x̃) and the choice probabilities p

i

(x̃) = Pr(d = i|x = x̃) for all

i 2 D̃ and x̃ 2 X̃. The model is identified if and only if we can uniquely determine

its primitives from these data. As we discuss in Section 5, there exist unique (up

to a standard utility normalization) values of the primitives that rationalize the

data for any given discount factor � 2 [0, 1). Thus, we can and will focus our

identification analysis on �.

The choice probabilities are fully determined by

(3) ln (p
i

(x̃))� ln (p
K

(x̃)) = v

⇤
i

(x̃)� v

⇤
K

(x̃), i 2 D̃/{K}, x̃ 2 X̃.

1Magnac and Thesmar (2002) show that the distribution of " cannot be identified and take

it to be known. Our type-1 extreme value assumption leads to the canonical multinomial logit

case. Our results extend directly to any other known continuous distribution on RK .
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Thus, with the transition probabilities Q
i

(·|x̃), the value contrasts v⇤
i

(x̃)�v

⇤
K

(x̃)

for i 2 D̃/{K} and x̃ 2 X̃ capture all the model’s implications for the data.

Hotz and Miller (1993) pointed out that (3) can be inverted to identify the value

contrasts from the choice probabilities. To use this, we first rewrite (1) as

(4) v

⇤
i

(x) = u

⇤
i

(x) + �

Z
(m(x0) + v

⇤
K

(x0)) dQ
i

(x0|x),

where, for given x̃ 2 X̃, m(x̃) = E
⇥
max

i

02 ˜

D

{v⇤
i

0(x̃)� v

⇤
K

(x̃) + "

0
i

0}
⇤
is the “excess

surplus” (over v⇤
K

(x̃)), the McFadden surplus for the choice among i

0 2 D̃ with

utilities v⇤
i

0(x̃)� v

⇤
K

(x̃) + "

0
i

0 . By (3), m(x̃) = � ln (p
K

(x̃)).

3. MAGNAC AND THESMAR’S IDENTIFICATION RESULT

Let v
i

, p
i

, u
i

, and m be J ⇥ 1 vectors with j-th elements v

⇤
i

(x
j

), p
i

(x
j

),

u

⇤
i

(x
j

), and m(x
j

), respectively. Let Q
i

be the J ⇥J matrix with (j, j0)-th entry

Q

i

(x
j

0 |x
j

) and I be a J ⇥ J identity matrix. Note that the J ⇥ 1 vector m+v
K

stacks the McFadden surpluses in (2).

In this notation, the data are {p
i

,Q
i

; i 2 D̃} and directly identify m =

� lnp
K

. We can rewrite (4) as v⇤
i

(x) = u

⇤
i

(x) + �Q
i

(x) [m+ v
K

], where Q
i

(x
j

)

is the j-th row of Q
i

. Subtracting the same expression for v

⇤
K

(x), rearranging,

and substituting (3), we get

(5) ln(p
i

(x))� ln(p
K

(x)) = � [Q
i

(x)�Q
K

(x)]m+ U

i

(x),

where U
i

(x) = u

⇤
i

(x)�u

⇤
K

(x)+� [Q
i

(x)�Q
K

(x)]v
K

is Magnac and Thesmar’s

“current value” of choice i in state x. Their Proposition 4 assumes the existence

of an option i 2 D̃/{K} and x̃

1

, x̃

2

2 X̃ such that x̃
1

6= x̃

2

and U

i

(x̃
1

) = U

i

(x̃
2

).

Under this exclusion restriction, di↵erencing (5) evaluated at x̃
1

and x̃

2

yields

(6)
ln (p

i

(x̃
1

)/p
K

(x̃
1

))� ln (p
i

(x̃
2

)/p
K

(x̃
2

))

= � [Q
i

(x̃
1

)�Q
K

(x̃
1

)�Q
i

(x̃
2

) +Q
K

(x̃
2

)]m.

Provided that Magnac and Thesmar’s rank condition

(7) [Q
i

(x̃
1

)�Q
K

(x̃
1

)�Q
i

(x̃
2

) +Q
K

(x̃
2

)]m 6= 0
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holds, this linear (in �) equation uniquely determines � in terms of the data.

This identification argument can be interpreted in terms of an experiment that

shifts the contrast [Q
i

(x)�Q
K

(x)]m between expected excess surpluses under

choices i and K by changing the state x from x̃

2

to x̃

1

, while keeping the current

value U
i

(x̃
1

) = U

i

(x̃
2

) constant. The discount factor is the per unit e↵ect of that

observed shift on the observed log choice probability ratio ln (p
i

(x)/p
K

(x)).

A shift in the expectation contrast Q
i

(x) �Q
K

(x) does not su�ce for iden-

tification. For example, suppose that the exclusion restriction holds for some

x̃

1

, x̃

2

2 X̃, but that the excess surplus m(x
1

) = · · · = m(x
J

) is constant, so

that the expected excess surplus contrast [Q
i

(x)�Q
K

(x)]m = 0. Then, a shift

in the expectation contrast does not shift the expected excess surplus contrast

and thus does not change the decision problem. Consequently, this shift is not

informative on � and Magnac and Thesmar’s rank condition (7) fails.

Rank condition (7) has a meaningful interpretation and is verifiable in data.

The exclusion restriction U

i

(x̃
1

) = U

i

(x̃
2

), however, is more problematic, because

it imposes opaque conditions on the primitives that are unlikely to be satisfied in

applications. The current values depend on both current utilities and discounted

expected future values. Specifically, they involve elements of v
K

, which by (4)

equals

(8) v
K

= [I� �Q
K

]�1 [u
K

+ �Q
K

m] .

The current value is in fact a value contrast between two sequences of choices:

choose i now, K in the next period, and choose optimally ever after, relative to

choose K now, K in the next period, and choose optimally ever after. Because

this particular value contrast does not correspond to common economic choice se-

quences, the applied value of Magnac and Thesmar’s restriction is limited (Dubé

et al., 2014). It is hard to think of naturally occurring experiments that shift the

expected contrasts in excess surplus, i.e. satisfy the rank condition, without also

shifting the current value and thus violating the exclusion restriction. Still, hard

does not mean impossible. In Example 1 below, we show that due to the special

structure of that particular problem, both conditions may plausibly be met.
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Unclear economic intuition for the exclusion restrictions becomes an issue

when, as in typical applications, the exclusion restrictions are assumptions that

are not themselves tested in the analysis. Without a clear understanding of the

economic substance of the current value concept, it is both hard to assess how

plausible identifying assumptions based on that concept are, and to find varia-

tion that satisfies the restrictions. By defining the exclusion restrictions directly

on the primitives, which we do in the next section, we can generally improve the

intuition for them.2 That is helpful when evaluating the quality of the identifying

assumptions, and aids the search for sources of identifying variation.

4. A NEW IDENTIFICATION RESULT

Like Magnac and Thesmar, we start with (5) or, equivalently,

(9) lnp
i

� lnp
K

= � [Q
i

�Q
K

] [m+ v
K

] + u
i

� u
K

.

Instead of controlling the contribution of v
K

to the right hand side with an

exclusion restriction on the current value, we exploit that, in the stationary

case, it can be expressed in terms of the model primitives. Substituting (8) in

(9) and rearranging gives

(10)
lnp

i

� lnp
K

= � [Q
i

�Q
K

] [I� �Q
K

]�1 m+ u
i

� [I� �Q
i

] [I� �Q
K

]�1 u
K

.

Intuition from static discrete choice analysis and Magnac and Thesmar’s results

for dynamic models suggest that, for identification, we need to fix utility in

one reference alternative, say u
K

. Intuitively, choices only depend on, and thus

inform about, utility contrasts. Thus, following e.g. Fang and Wang (2015) and

Bajari et al. (2015), we set u
K

= 0.3 This normalization cannot be refuted

2Alternatively, the restrictions could be defined on functions of primitives that correspond

to economically meaningful concepts.
3Our identification analysis of � applies without change to the case in which u

⇤
K(x) is

constant, but not necessarily zero. It can be straightforwardly extended to the case in which

u

⇤
K(x) is known but not necessarily constant, which would require a di↵erent rank condition.

Note that none of these normalizations collapses Magnac and Thesmar’s exclusion restriction

on current values to an easily interpretable restriction on primitives.
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by data without further restrictions.4 Despite this lack of empirical content, it is

not completely innocuous, as it may a↵ect the model’s counterfactual predictions

(see e.g. Norets and Tang, 2014, Lemma 2). It is however standard and allows

us to focus on the identification of the discount factor.5

Now, assume that there exist a choice i 2 D̃/{K} and a pair of states x̃
1

, x̃

2

2
X̃ such that x̃

1

6= x̃

2

and u

⇤
i

(x̃
1

) = u

⇤
i

(x̃
2

). This exclusion restriction has the

advantage over Magnac and Thesmar’s that it is a simple restriction on primitive

utility. Under the primitive utility restriction, (10) implies

(11)
ln (p

i

(x̃
1

)/p
K

(x̃
1

))� ln (p
i

(x̃
2

)/p
K

(x̃
2

))

= � [Q
i

(x̃
1

)�Q
K

(x̃
1

)�Q
i

(x̃
2

) +Q
K

(x̃
2

)] [I� �Q
K

]�1 m.

Unlike the right hand side of (6), the right hand side of (11) is not linear in �.

Nevertheless, given data on transition and choice probabilities, it is a smooth,

known function of �. It is therefore very easy to verify, for example graphically,

whether there is a unique value of � that equates it to the known left hand side

of (11). Before we illustrate this with examples, we first discuss (11) in some

more detail.

Like (6), (11) is constructive in the sense that it defines a moment condition

that can be used for estimation purposes. We have e↵ectively moved the terms

that frustrated the interpretation of the exclusion restriction from the realm of

untestable assumptions to the moment condition, which is verifiable in data.6

Specifically, the right hand side of (11) equals � times the sum of two terms,

[Q
i

(x̃
1

)�Q
K

(x̃
1

)�Q
i

(x̃
2

) +Q
K

(x̃
2

)]m

4In Section 5, we note that the normalized model can rationalize any choice and state

transition probability data.
5Chou (2015) recently provided identification results for dynamic discrete choice models

without this normalization. Chou’s Propositions 3, 7, and 8 provide conditions for identification

of the discount factors in a nonstationary model; his results for the stationary model studied

here take the discount factor to be known. Another di↵erence is that we emphasize the economic

interpretation of the identifying conditions and that we provide results on their empirical

content.
6Section 5 shows that the two exclusion restrictions have nontrivial and distinct empirical

contents. That is, the data carry some information on them. However, we also show that data

are often consistent with both. Hence, no uniformly consistent test on either restriction exists.



IDENTIFYING THE DISCOUNT FACTOR 7

and

[Q
i

(x̃
1

)�Q
K

(x̃
1

)�Q
i

(x̃
2

) +Q
K

(x̃
2

)]v
K

=

[Q
i

(x̃
1

)�Q
K

(x̃
1

)�Q
i

(x̃
2

) +Q
K

(x̃
2

)]
⇥
�Q

K

+ �

2Q2

K

+ · · ·
⇤
m.

The first term is the known shift in the expected excess surplus contrast from

changing the state from x̃

2

to x̃

1

that is used in Magnac and Thesmar’s iden-

tification argument. The second term is the corresponding shift in choice K’s

expected value contrasts, which is not directly known because it depends on �.

The two terms add up to a shift in the expected surplus contrast that depends

on � and therefore does not directly identify � from its e↵ect on the log choice

probability ratio. In particular, one obvious candidate to replace Magnac and

Thesmar’s rank condition (7) here, a nonzero shift in expected surplus contrasts

for all � 2 (0, 1), does not su�ce for identification, except in special cases.

One such special case arises if Q
K

is such that our version of Magnac and

Thesmar’s rank condition is equivalent to theirs.

Example 1 If

Q
K

=

2

6664

0 · · · 0 1
...

...
...

0 · · · 0 1

3

7775
,

the distribution of x

0 is concentrated on the same point, x
J

, if K is chosen,

independently of x. For example, in Rust’s (1987) bus engine renewal problem,

the choice to renew always returns the observed state variable, mileage since last

renewal, to zero, independently from its mileage just before renewal. In this case,

v

⇤
K

(x̃) = � (m(x
J

) + v

⇤
K

(x
J

)) for all x̃ 2 X̃, so that the second (value of choice

K) term in the right hand side of (11) is zero. Consequently, a nonzero shift in

expected surplus contrasts is equivalent to Magnac and Thesmar’s rank condition

(7) and su�ces for identification. In fact, because in this case �[Q
i

�Q
K

]v
K

= 0,

our primitive utility restriction is equivalent to Magnac and Thesmar’s current

value restriction and their identification result applies. As an aside, note that (7)

simplifies to

[Q
i

(x̃
1

)�Q
i

(x̃
2

))]m 6= 0.
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in this example. That is, it simply requires that the expected excess surplus

di↵ers between states x̃
1

and x̃

2

under choice i 6= K.

Even if our version of Magnac and Thesmar’s rank condition is not equivalent

to theirs, it may su�ce for identification.

Example 2 If the left hand side of (11) equals 0, i.e. if the choice probability

ratio does not change between states x̃

2

and x̃

1

, then (11) requires that either

� 2 (0, 1) such that this shift in surplus contrasts is zero or � = 0. Consequently,

in this special case, it is su�cient and necessary for identification that the shift in

expected surplus contrasts is nonzero for all � 2 (0, 1). Intuitively, this alternative

to Magnac and Thesmar’s rank condition ensures that there is su�cient variation

in expected future payo↵s, so that a lack of response in choices can only be

explained by myopic behavior, � = 0.

In general, however, neither condition su�ces for identification.

Example 3 Figure 1 plots the left hand side of (6) and (11) (solid black line)

and the right hand sides of (6) (dashed red line) and (11) (solid blue curve) for

a specific example with K = 2 choices and J = 3 states. The example’s data

satisfy Magnac and Thesmar’s rank condition and our alternative to it (note

that the right hand side of (11) is positive on (0, 1)).

The choice probabilities imply a relatively low excess surplus m(x
3

) in state

x

3

. Because the experiment underlying Magnac and Thesmar’s rank condition

moves probability mass away from state x

3

, the right hand side of (6), and the

first (excess surplus) term in the right hand side of (11), slope upward and equal

the left hand side for only one value of �. Under the current value restriction,

this is the only discount factor consistent with the data.

Under the primitive utility restriction, we also need to take account of the

second (value of choice K) term in the right hand side of (11). In contrast to

the excess surplus m(x
3

), the value v

K

(x
3

) is relatively high, because Q
K

(x
3

)

puts a relatively low (zero) probability on ending up in the low excess surplus

state x
3

. Consequently, the move of probability mass away from state x
3

renders
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the second term in the right hand side of (11) negative, and increasingly so with

increasing �. It follows that the right hand side of (11) first equals its left hand

side at a slightly higher discount factor than the one identified under Magnac

and Thesmar’s condition. Moreover, the negative contribution of the second term

eventually grows so large that the right hand side of (11) again equals the left

hand side at a discount factor closer to one. Thus, two distinct discount factors

are consistent with the data under the primitive utility restriction.

Magnac and Thesmar’s rank condition is not necessary for identification either.

Example 4 Figure 2 presents an example in which the shift in expected excess

surplus is zero, so that the right hand side of (6) and the first (excess surplus)

term in the right hand side of (11) are zero, but the second (value of choice

K) term in the right hand side of (11) is positive and increasing with �. There

exists exactly one � 2 [0, 1) that solves (11), despite the violation of Magnac and

Thesmar’s rank condition.

Also note that there is no value of � that satisfies (6). Thus, even though

the data can be rationalized by some specification of the model, they are not

consistent with the current value restriction. In other words, this restriction has

empirical content. We return to this point in Section 5.

More generally, strict monotonicity of the right hand side of (11), as in Example

4, su�ces for identification. It is easy to derive conditions that imply such strict

monotonicity, and thus identification, and that do not involve �. Without loss of

generality— we can freely interchange x̃
1

and x̃

2

— we focus on conditions under

which it is strictly increasing or, equivalently, its derivative with respect to � is

positive:

[Q
i

(x̃
1

)�Q
K

(x̃
1

)�Q
i

(x̃
2

) +Q
K

(x̃
2

)] [I� �Q
K

]�2 m > 0.

For this, it su�ces that

(12) [Q
i

(x̃
1

)�Q
K

(x̃
1

)�Q
i

(x̃
2

) +Q
K

(x̃
2

)]Ql

K

m � 0 for all l 2 {0, 1, 2, . . .},
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with the inequality strict for at least one l. Like Magnac and Thesmar’s rank

condition (7), these conditions do not depend on � and require that specific

expected excess surplus contrasts di↵er between states x̃

1

and x̃

2

. It is easy to

verify that they hold in Example 4.

We end this section with two further examples in which monotonicity is easy to

establish. In the first, Magnac and Thesmar’s rank condition is key, even though

their exclusion restriction may not hold.

Example 5 If Q
K

= I, Magnac and Thesmar’s current value restriction is

not necessarily satisfied under our primitive utility restriction. Consequently, we

need to identify � from (11). The left hand side of (11) reduces to

�

1� �

[Q
i

(x̃
1

)�Q
K

(x̃
1

)�Q
i

(x̃
2

) +Q
K

(x̃
2

)]m,

which is strictly monotonic in � if and only if Magnac and Thesmar’s rank

condition (7) holds.

The final example relies on a type of payo↵ monotonicity that is common in

models of firm and industry dynamics.

Example 6 Suppose that the states in X̃ are ordered so that the excess surplus

is increasing in the state: m
1

< m

2

< · · · < m

J

. Moreover, let Q
K

be stochas-

tically increasing; that is, the distribution of x0 given x first-order stochastically

increases with x if K is chosen. Such structures, with monotone payo↵s and

monotone state transitions, naturally arise in problems of nonstrategic firm en-

try and exit, in which profits increase in an observed demand state variable and

higher current demand implies stochastically higher future demand.

There again is no reason for Magnac and Thesmar’s current value restriction

to hold under our primitive utility restriction. One approach to identification is

to ignore this problem’s special structure and simply check (11) graphically. The

structure however allows us to formulate easy-to-handle su�cient conditions.

First, suppose that the transitions under choice K are not a↵ected by a change

of state from x̃

2

to x̃

1

: Q
K

(x̃
1

) = Q
K

(x̃
2

). Note that the expected excess surplus
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after l state transitions under choice K, Ql

K

m, are increasing in the initial state.

Thus, su�cient condition (12) is satisfied for all j if Q
i

(x̃
1

) first-order stochas-

tically dominates Q
i

(x̃
2

); that is, if a move of state from x̃

2

to x̃

1

under choice

i first-order stochastically increases the next period’s state.

Next, if Q
K

(x̃
1

) = Q
K

(x̃
2

) does not hold, condition (12) is satisfied for all l if

the e↵ect of a change of state from x̃

2

to x̃

1

on next period’s state under choice

i first-order dominates that same e↵ect under choice K.

5. EMPIRICAL CONTENT

The previous two sections focused on identification. They give exclusion re-

strictions under which data generated by the model uniquely determine a set of

model primitives. In applications, we need to entertain the possibility that the

model is misspecified and did not generate the data to begin with.

First note that a version of Magnac and Thesmar’s (2002) Proposition 2 holds:

For any given data {p
i

,Q
i

; i 2 D̃}, u
K

= 0, and � 2 [0, 1), there exists a

unique set of primitive utilities {u
i

, i 2 D̃/{K}} that rationalizes the data.

Specifically, m = � lnp
K

. Then, v
K

follows from u
K

= 0 and (8). Next, by

(3), v
i

= v
K

+ lnp
i

� lnp
K

for i 2 D̃/{K} ensures that the value functions are

compatible with the choice probability data. In turn, by (4), these value functions

are uniquely generated by the primitive utilities u
i

= v
i

� �Q
i

[m+ v
K

] for

i 2 D̃/{K} (note that v
K

was already set to be consistent with u
K

= 0).

This result justifies our focus on the identification of the discount factor �

in the previous two sections: Once the discount factor has been identified, we

can find unique primitive utilities that rationalize the data. It also implies that

the data cannot tell us whether the model without exclusion restrictions is false

or not; that is, the unrestricted model has no empirical content. Therefore, we

now turn to the empirical consequences of a violation of the assumed exclusion

restriction. Such a violation can manifest itself in two distinct ways.

First, in some cases, it may be possible to find primitives that both satisfy

the false exclusion restriction and are compatible with the data. If so, these

primitives will in general not equal the true primitives. In Example 3, falsely
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assuming Magnac and Thesmar’s current value restriction when the primitive

utility restriction is true identifies a discount factor strictly below the true one.

Because we can find primitive utilities that rationalize the data for any discount

factor, the data can be of no help to determine the right restriction in this

case. Instead, we need to argue in favor of one exclusion restriction or the other

on other grounds. In Section 4, we presented a novel identification analysis for

exactly this reason: The primitive utility restriction is comparatively easy to

motivate and justify in applications.

Second, the data may be incompatible with the assumed exclusion restriction.

For example, the data in Example 4 cannot be rationalized under the current

value restriction, even though they are compatible with some specification of the

model. Thus, the current value restriction gives the model empirical content: It

nontrivially limits the data that can be observed. In that example, the data are

consistent with an exclusion restriction on primitive utility. Conversely, there

exist data that are inconsistent with the primitive utility restriction, but that

can be rationalized by primitives that satisfy the current value restriction.

Example 7 Figure 3 displays the left and right hand sides of (6) and (11) for a

variant of Example 3’s data in which the shift in the log choice probability ratio

when moving the state from x̃

2

to x̃

1

, and therefore the left hand side of (6) and

(11), is twice as large. At the same time, the right hand sides are similar to those

in Example 3 (as is easily verified by comparing Figure 3 to Figure 1). There is

still a � 2 [0, 1) that solves (6), but (11) can no longer be met. Intuitively, the

increasingly negative contribution of the second (value of choice K) term in the

right hand side of (11) limits the possible log choice probability ratio response

to the change in states to a level below the observed response.

Examples 3 and 7 establish that the two exclusion restrictions have nontrivial

and distinct empirical contents, so that, to some extent, data can distinguish

them. In practice, we can easily establish whether given data are consistent with

one exclusion restriction or the other by verifying whether the corresponding

moment condition, (6) or (11), or its empirical analog has a solution � 2 [0, 1).
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The remainder of this section provides some further intuition for the empirical

content that follows from the restrictions.

As we have already noted, without restrictions, the primitives are free to gen-

erate value contrasts v
i

� v
K

that are compatible with any given choice data

(that is, satisfy (3)). By extension, any observed shift in the log choice probabil-

ity ratio from x̃

2

to x̃

1

can be rationalized by setting u

⇤
i

(x̃
1

), u⇤
i

(x̃
2

), and � such

that

v

⇤
i

(x̃
1

)� v

⇤
K

(x̃
1

)� v

⇤
i

(x̃
2

) + v

⇤
K

(x̃
2

) =(13)

u

⇤
i

(x̃
1

)� u

⇤
i

(x̃
2

) + �[Q
i

(x̃
1

)�Q
K

(x̃
1

)�Q
i

(x̃
2

) +Q
K

(x̃
2

)] [m+ v
K

]

matches this observed shift.

Under the primitive utility restriction, the range of the right hand side of

(13) is limited by forcing u

⇤
i

(x̃
1

) � u

⇤
i

(x̃
2

) = 0, while under the current value

restriction, the range is limited by requiring that u

⇤
i

(x̃
1

) � u

⇤
i

(x̃
2

) is exactly

o↵set by [Q
i

(x̃
1

)�Q
K

(x̃
1

)�Q
i

(x̃
2

) +Q
K

(x̃
2

)]v
K

. The set of choice data that

fall outside the range of the model under either restriction can be substantial.

For K = J = 2, the restriction u

⇤
1

(x̃
1

) = u

⇤
1

(x̃
2

) and the normalization

u

⇤
2

(x̃
1

) = u

⇤
2

(x̃
2

) together imply that v

⇤
1

(x̃
1

) � v

⇤
2

(x̃
1

) = v

⇤
1

(x̃
2

) � v

⇤
2

(x̃
2

). Thus,

by (3), the model cannot rationalize data with state dependent choice proba-

bilities. It can be compatible with state independent choice probabilities, but

then � is not identified: Since v

⇤
1

(x̃
1

)� v

⇤
2

(x̃
1

) = v

⇤
1

(x̃
2

)� v

⇤
2

(x̃
2

), it follows that

m(x̃
1

) = m(x̃
2

) and the experiment is uninformative, as seen in Example 2. A

third choice with state dependent utility for the added choice or, alternatively,

a third state with u

⇤
1

(x
3

) 6= u

⇤
1

(x̃
1

) = u

⇤
1

(x̃
2

) is necessary to generate state de-

pendence of the value contrasts.

For K = J = 2 and under the current value restriction, the model cannot

only rationalize state independent choice probabilities but also, under some con-

ditions on the transition probabilities, state dependent p

1

(x̃
1

) and p

2

(x̃
2

) that

are su�ciently large. To see this, rewrite the moment condition in (6) as

ln

✓
p

1

(x̃
1

)

p

1

(x̃
2

)

◆
+ (1� ��) ln

✓
1� p

1

(x̃
2

)

1� p

1

(x̃
1

)

◆
= 0,(14)
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where� 2 [�2, 2] is such that [Q
1

(x̃
1

)�Q
2

(x̃
1

)�Q
1

(x̃
2

) +Q
2

(x̃
2

)] = [� ��].

Evidently, � > 1 is necessary to rationalize any state dependent choice data, but

does not su�ce. For any � 2 (1, 2], (14) imposes further cross-restrictions on the

choice probabilities that can be rationalized. If � = 2, state dependent p

1

(x̃
1

)

and p

1

(x̃
2

) are compatible with some discount factor � 2 [0, 1) if and only if

p

1

(x̃
1

) + p

1

(x̃
2

) > 1. With lower �, only values of p
1

(x̃
1

) and p

1

(x̃
2

) closer to

one are consistent with some � 2 [0, 1). Interestingly, with state dependent choice

data, any such � necessarily takes values in (��1

, 1) ✓ ( 1
2

, 1).

If either the number of choices K � 3 or the number of states J � 3, then

both exclusion restrictions are compatible with nontrivial sets of choice and state

transition probabilities. Their empirical contents are more subtle in this case and

hard to characterize in general. We limit our discussion to one example.

Example 8 Let Q
K

= I, as in Example 5. Suppose that the data imply a

positive shift from x̃

2

to x̃

1

in the expected excess surplus contrast; i.e. [Q
i

(x̃
1

)�
Q

K

(x̃
1

)�Q
i

(x̃
2

) +Q
K

(x̃
2

)]m > 0. Then, the moment condition in (11) can be

rewritten as

�

1� �

=
ln (p

i

(x̃
1

)/p
K

(x̃
1

))� ln (p
i

(x̃
2

)/p
K

(x̃
2

))

[Q
i

(x̃
1

)�Q
K

(x̃
1

)�Q
i

(x̃
2

) +Q
K

(x̃
2

)]m
.(15)

Because the left hand side of (15) takes all values in [0,1) when � takes values in

[0, 1), any choice probabilities such that ln (p
i

(x̃
1

)/p
K

(x̃
1

))�ln (p
i

(x̃
2

)/p
K

(x̃
2

)) �
0 can be rationalized with some � in this case. The intuition for this is straight-

forward. Because Q
K

= I, not only the shift in the expected excess surplus

contrast, but also the corresponding shift in the expected surplus contrast is

positive. Moreover, the exclusion restriction does not allow the current period

utility contrast to change between x̃

2

and x̃

1

. Consequently, the value contrasts

v

⇤
i

(x̃
1

) � v

⇤
K

(x̃
1

) � v

⇤
i

(x̃
2

) � v

⇤
K

(x̃
2

), so that the model is only compatible with

nonnegative shifts in the log choice probability ratio.

Under the current value restriction, Magnac and Thesmar’s moment condition

is

� =
ln (p

i

(x̃
1

)/p
K

(x̃
1

))� ln (p
i

(x̃
2

)/p
K

(x̃
2

))

[Q
i

(x̃
1

)�Q
K

(x̃
1

)�Q
i

(x̃
2

) +Q
K

(x̃
2

)]m
.(16)
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The range of the left hand side of (16) is [0, 1), which is a strict subset of the

range [0,1) of the left hand side of (15). At the same time, the right hand sides

are the same.7 Therefore, like (15), (16) cannot rationalize negative shifts in

the log choice probability ratio. In addition, it is not compatible with too large

positive shifts. Thus, the current value restriction has more empirical content

than the primitive utility restriction in this case but, as Example 7 shows, this

is not generally true.

6. RELATED LITERATURE

Fang and Wang (2015) recently investigated the identification of a dynamic

discrete choice model with hyperbolic discounting, with geometric discounting as

a special case. At first glance, their Proposition 2 seems to accomplish this note’s

improvements on Magnac and Thesmar and more. However, this is not true. Fang

and Wang’s Proposition 2 only establishes generic identification, where “generic”

is defined over the space of possible values of the data data {p
i

,Q
i

; i 2 D̃}. This
severely limits its applicability to the present note’s problem, in two ways.

First, geometric discounting is a singular case in the parameter space, in which

the so called “present bias” and “potential naivety” parameters equal one. Thus,

if at least one of these parameters is identified, then geometric discounting is a

singular case in the data space as well, and Fang and Wang’s Proposition 2 has

no bearing on its identification.

Second, their rank condition, which only requires that Q
i

(x̃
1

) �Q
i

(x̃
2

) 6= 0,

excludes a singular case in the data space, and therefore cannot be necessary for

their generic identification result. Moreover, it does not su�ce to get full iden-

tification in the geometric discounting case under either Magnac and Thesmar’s

or our exclusion restriction. In particular, it does not preclude that Q
i

�Q
K

is

a zero vector, in which case the right hand sides of both (6) and (11) are zero,

and therefore not informative about �. Intuitively, because only value contrasts

can be identified, the excluded variable should (at least) have di↵erent impacts

on transitions under choice i and choice K. Specifically, under an exclusion re-

7The range of the right hand side can be shown to be R under the stated assumptions.
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striction on primitive utility only, as in Fang and Wang, Section 4’s alternative

conditions are needed. This does not imply that Fang and Wang’s generic iden-

tification result is false; after all, our alternative result proves identification for

a singular case from Fang and Wang’s perspective. However, it shows that Fang

and Wang’s generic identification result sheds no light on the conditions needed

for identification of the geometric discount factor.
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Figure 1.— Example in Which an Exclusion Restriction on Current Values

Su�ces for Identification but One on Primitive Utility Does Not

0 0.3364 0.9476
0

0.0400

�

Note: For J = 3 states, K = 2 choices, i = 1, x̃1 = x1, and x̃2 = x2, this graph plots the left

hand side of (6) and (11) (solid black horizontal line) and the right hand sides of (6) (dashed red

line), and (11) (solid blue curve) as functions of �. The data are Qi(x̃1) =

h
0.25 0.25 0.50

i
,

Qi(x̃2) =

h
0.00 0.25 0.75

i
,

QK =

2

664

0.90 0.00 0.10

0.00 0.90 0.10

0.00 1.00 0.00

3

775 , pi =

2

664

0.50

0.49

0.10

3

775 , and pK =

2

664

0.50

0.51

0.90

3

775 .

Consequently, the left hand side of (6) and (11) equals ln (pi(x̃1)/pK(x̃1))� ln (pi(x̃2)/pK(x̃2)) =

0.0400. Moreover, m0
=

h
0.6931 0.6733 0.1054

i
and Qi(x̃1) � QK(x̃1) � Qi(x̃2) +

QK(x̃2) =

h
�0.65 0.90 �0.25

i
, so that the slope of the red dashed line equals

[Qi(x̃1) � QK(x̃1) � Qi(x̃2) + QK(x̃2)]m = 0.1291. A unique value of �, 0.3098, solves (6), but

two values of � solve (11): 0.3364 and 0.9476.
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Figure 2.— Example in Which Magnac and Thesmar’s Rank Condition Fails,

but an Exclusion Restriction on Primitive Utility Su�ces for Identification

0 0.9006
0

0.0800

�

Note: For J = 3 states, K = 2 choices, i = 1, x̃1 = x1, and x̃2 = x2, this graph plots the left

hand side of (6) and (11) (solid black horizontal line) and the right hand sides of (6) (dashed red

line) and (11) (solid blue curve) as functions of �. The data are Qi(x̃1) =

h
0.00 0.25 0.75

i
,

Qi(x̃2) =

h
0.25 0.25 0.50

i
,

QK =

2

664

0.00 1.00 0.00

0.00 1.00 0.00

0.00 0.00 1.00

3

775 , pi =

2

664

0.50

0.48

0.50

3

775 , and pK =

2

664

0.50

0.52

0.50

3

775 .

Consequently, the left hand side of (6) and (11) equals ln (pi(x̃1)/pK(x̃1))� ln (pi(x̃2)/pK(x̃2)) =

0.0800. Moreover, m0
=

h
0.6931 0.6539 0.6931

i
and Qi(x̃1) � QK(x̃1) � Qi(x̃2) +

QK(x̃2) =

h
�0.25 0.00 0.25

i
, so that the slope of the red dashed line equals

[Qi(x̃1) � QK(x̃1) � Qi(x̃2) + QK(x̃2)]m = 0.0000. A unique value of �, 0.9006, solves (11),

but (6) has no solution.
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Figure 3.— Example of Data that are Consistent with an Exclusion Restric-

tion on Current Values but Not with One on Primitive Utility

0 0.7169

0

0.0800

�

Note: For J = 3 states, K = 2 choices, i = 1, x̃1 = x1, and x̃2 = x2, this graph plots the left

hand side of (6) and (11) (solid black horizontal line) and the right hand sides of (6) (dashed red

line) and (11) (solid blue curve) as functions of �. The data are Qi(x̃1) =

h
0.25 0.25 0.50

i
,

Qi(x̃2) =

h
0.00 0.25 0.75

i
,

QK =

2

664

0.90 0.00 0.10

0.00 0.90 0.10

0.00 1.00 0.00

3

775 , pi =

2

664

0.50

0.48

0.10

3

775 , and pK =

2

664

0.50

0.52

0.90

3

775 .

Consequently, the left hand side of (6) and (11) equals ln (pi(x̃1)/pK(x̃1))� ln (pi(x̃2)/pK(x̃2)) =

0.0800. Moreover, m0
=

h
0.6931 0.6539 0.1054

i
and Qi(x̃1) � QK(x̃1) � Qi(x̃2) +

QK(x̃2) =

h
�0.65 0.90 �0.25

i
, so that the slope of the red dashed line equals

[Qi(x̃1) � QK(x̃1) � Qi(x̃2) + QK(x̃2)]m = 0.1116. A unique value of �, 0.7169, solves (6), but

(11) has no solution.
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