Inference Based on Conditional Moment Inequalities

Donald W. K. Andrews*

_Cowles Foundation for Research in Economics_  
_Yale University_

Xiaoxia Shi

_Department of Economics_  
_University of Wisconsin, Madison_

November 2007  
Revised: June 2011

*Andrews gratefully acknowledges the research support of the National Science Foundation via grant numbers SES-0751517 and SES-1058376. The authors thank the co-editor, four referees, Andrés Aradillas-López, Kees Jan van Garderen, Hidehiko Ichimura, and Konrad Menzel for helpful comments.
Abstract

In this paper, we propose an instrumental variable approach to constructing confidence sets (CS’s) for the true parameter in models defined by conditional moment inequalities/equalities. We show that by properly choosing instrument functions, one can transform conditional moment inequalities/equalities into unconditional ones without losing identification power. Based on the unconditional moment inequalities/equalities, we construct CS’s by inverting Cramér-von Mises-type or Kolmogorov-Smirnov-type tests. Critical values are obtained using generalized moment selection (GMS) procedures.

We show that the proposed CS’s have correct uniform asymptotic coverage probabilities. New methods are required to establish these results because an infinite-dimensional nuisance parameter affects the asymptotic distributions. We show that the tests considered are consistent against all fixed alternatives and have power against $n^{-1/2}$-local alternatives to some, but not all, sequences of distributions in the null hypothesis. Monte Carlo simulations for three different models show that the methods perform well in finite samples.

Keywords: Asymptotic size, asymptotic power, conditional moment inequalities, confidence set, Cramér-von Mises, generalized moment selection, Kolmogorov-Smirnov, moment inequalities.

JEL Classification Numbers: C12, C15.
1 Introduction

This paper considers inference for parameters whose true values are restricted by conditional moment inequalities and/or equalities. The parameters need not be identified. Much of the literature on partially-identified parameters concerns unconditional moment inequalities, see the references given below. However, in many moment inequality models, the inequalities that arise are conditional moments given a vector of covariates $X_i$. In this case, the construction of a fixed number of unconditional moments requires an arbitrary selection of some functions of $X_i$. In addition, the selection of such functions leads to information loss that can be substantial. Specifically, the “identified set” based on a chosen set of unconditional moments can be noticeably larger than the identified set based on the conditional moments.\footnote{The “identified set” is the set of parameter values that are consistent with the population moment inequalities/equalities, either unconditional or conditional, given the true distribution of the data.}

This paper provides methods to construct CS’s for the true value of the parameter $\theta$ by converting conditional moment inequalities into an infinite number of unconditional moment inequalities. This is done using weighting functions $g(X_i)$. We show how to construct a class $G$ of such functions such that there is no loss in information. We construct Cramér-von Mises-type (CvM) and Kolmogorov-Smirnov-type (KS) test statistics using a function $S$ of the weighted sample moments, which depend on $g \in G$. For example, the function $S$ can be of the Sum, quasi-likelihood ratio (QLR), or Max form. The KS statistic is given by a supremum over $g \in G$. The CvM statistic is given by an integral with respect to a probability measure $Q$ on the space $G$ of $g$ functions. Computation of the CvM test statistics can be carried out by truncation of an infinite sum or simulation of an integral. Asymptotic results are established for both exact and truncated/simulated versions of the test statistic.

The choice of critical values is important for all moment inequality tests. Here we consider critical values based on generalized moment selection (GMS), as in Andrews and Soares (2010).\footnote{There is a potential first-order loss in information when moving from conditional to unconditional moments with moment inequalities because of partial identification. In contrast, if point-identification holds, as with most moment equality models, there is only a second-order loss in information when moving from conditional to unconditional moments—one increases the variance of an estimator and decreases the noncentrality parameter of a test.} The GMS critical values can be implemented using the asymptotic critical values based on generalized moment selection (GMS), as in Andrews and Soares (2010).\footnote{For comparative purposes, we also provide results for subsampling critical values and “plug-in asymptotic” (PA) critical values. However, for reasons of accuracy of size and magnitude of power, we recommend GMS critical values over both subsampling and PA critical values.}
Gaussian distribution or the bootstrap.

Our results apply to multiple moment inequalities and/or equalities and vector-valued parameters $\theta$ with minimal regularity conditions on the conditional moment functions and the distribution of $X_i$. For example, no smoothness conditions or even continuity conditions are made on the conditional moment functions as functions of $X_i$ and no conditions are imposed on the distribution of $X_i$ (beyond the boundedness of $2+\delta$ moments of the moment functions). In consequence, the range of moment inequality models for which the methods are applicable is very broad.

The main technical contribution of this paper is to introduce a new method of proving uniformity results that applies to cases in which an infinite-dimensional nuisance parameter appears in the problem. The method is to establish an approximation to the sample size $n$ distribution of the test statistic by a function of a Gaussian distribution where the function depends on the true slackness functions for the given sample size $n$ and the approximation is uniform over all possible true slackness functions. Then, one shows that the data-dependent critical value (the GMS critical value in the present case) is less than or equal to the $1 - \alpha$ quantile of the given function of the Gaussian process with probability that goes to one uniformly over all potential true distributions (with equality for some true distributions). See Section 5.1 for reasons why uniform asymptotic results are crucial for conditional moment inequality models.

Compared to Andrews and Soares (2010), the present paper treats an infinite number of unconditional moments, rather than a finite number. In consequence, the form of the test statistics considered here is somewhat different and the method of establishing uniform asymptotic results is quite different.

The results of the paper are summarized as follows. The paper (i) develops critical values that take account of the issue of moment inequality slackness that arises in finite samples and uniform asymptotics, (ii) proves that the confidence sizes of the CS’s are correct asymptotically in a uniform sense, (iii) proves that the proposed CS’s yield no information loss (i.e., that the coverage probability for any point outside the identified set converges to zero as $n \to \infty$), (iv) establishes asymptotic local power results for a certain class of $n^{-1/2}$-local alternatives, (v) extends the results to allow for the preliminary

---

4Uniformity is obtained without any regularity conditions in terms of smoothness, uniform continuity, or even continuity of the conditional moment functions as functions of $X_i$. This is important because the slackness functions are normalized by an increasing function of $n$ which typically would cause violation of uniform continuity or uniform bounds on the derivatives of smooth functions even if the underlying conditional moment inequality functions were smooth in $X_i$. 

2
estimation of parameters that are identified given knowledge of the parameter of interest \( \theta \), as occurs in some game theory examples, and (vi) extends the results to allow for time series observations.

The paper provides Monte Carlo simulation results for a quantile selection model, an interval-outcome linear regression model, and a binary entry-game model with multiple equilibria. In the third model, an important feature of our approach is that nuisance parameters that are identified given the null value of the parameter of interest are concentrated out, which reduces the dimensionality of the problem. No other approach in the literature does this.

Across all three models, the simulation results show that the CvM-based CS’s outperform the KS-based CS’s in terms of false coverage probabilities (FCP’s). The Sum, QLR, and Max versions of the test statistics perform equally well in the first two models, while the Max version performs best in the third model, in terms of FCP’s. In all three models, the GMS critical values outperform the plug-in asymptotic and subsampling critical values in terms of FCP’s. The asymptotic and bootstrap versions of the GMS critical values perform similarly in the first two models. (The bootstrap critical values are not computed in the third model because they are expensive computationally in this model.) Variations on the basecase show a relatively low degree of sensitivity of the coverage probabilities and FCP’s in most cases. In sum, in the three models considered, the CvM/Max statistic coupled with the GMS/Asymptotic critical value performed quite well in an absolute sense and best among the CS’s considered.

We expect the tests considered here to exhibit a curse of dimensionality (with respect to the dimension, \( d_X \), of the conditioning variable \( X_i \)) in terms of their power for local alternatives for which the test does not have \( n^{-1/2} \)-local power. In addition, computation becomes more burdensome when the number of functions \( g \) considered increases. For example, using indicator functions of cubes, which is one way of specifying the functions \( g \), is not practical for large \( d_X \). In such cases, one needs to be less ambitious when specifying the functions \( g \). We provide some practical recommendations for doing so in Section 9.1.

In addition to reporting a CS or test, it often is useful to report an estimated set. A CS accompanied by an estimated set reveals how much of the volume of the CS is due to randomness and how much is due to a large identified set. It is well-known that typical set estimators suffer from an inward-bias problem, e.g., see Haile and Tamer (2003) and Chernozhukov, Lee, and Rosen (2008). The reason is that an estimated boundary often
behaves like the minimum or maximum of multiple random variables.

A simple solution to the inward-bias problem is to exploit the method of constructing median-unbiased estimators from confidence bounds with confidence level 1/2, e.g., see Lehmann (1959, Sec. 3.5). The CS’s in this paper applied with confidence level 1/2 are half-median-unbiased estimated sets. That is, the probability of including a point or any sequence of points in the identified set is greater than or equal to 1/2 with probability that converges to one. This property follows immediately from the uniform coverage probability results for the CS’s. The level 1/2 CS, however, is not necessarily median-unbiased in two directions. Nevertheless, this set is guaranteed not to be inward-median biased. Chernozhukov, Lee, and Rosen (2008) also provide bias-reduction methods for set estimators.


The literature on conditional moment inequalities is smaller and more recent. The present paper and the following papers have been written over more or less the same time period: Chernozhukov, Lee, and Rosen (2008), Fan (2008), Kim (2008), and Menzel (2008). An earlier paper by Khan and Tamer (2009) considers moment inequalities in a point-identified model. An earlier paper by Galichon and Henry (2009a) considers a related testing problem with an infinite number unconditional moment inequalities of a particular type. The test statistic considered by Kim (2008) is the closest to that considered here. He considers subsampling critical values. The approach of Chernozhukov, Lee, and Rosen (2008) is different from that considered here. They consider tests based on nonparametric estimators such as kernels and sieves. Menzel’s (2008) approach is different again. He investigates tests based on a finite number of moment inequalities.

\[^{5}\text{That is, the probability of including points outside the identified set is not necessarily less than or equal to 1/2 with probability that goes to one. This is because lower and upper confidence bounds on the boundary of an identified set do not necessarily coincide.}\]
in which the number of inequalities increases with the sample size. None of the other papers in the literature that treat conditional moment inequalities provide contributions (ii)-(vi) listed above.

Papers that convert conditional moments into an infinite number of unconditional moments in point-identified models include Bierens (1982), Bierens and Ploberger (1997), Chen and Fan (1999), Dominguez and Lobato (2004), and Khan and Tamer (2009), among others.

The test statistics considered here are akin to Bierens (1982)-type statistics used for consistent model specification tests. In contrast, the test statistics considered by Chernozhukov, Lee, and Rosen (2008) are akin to Härdle and Mammen (1993)-type model specification statistics, which are based on nonparametric regression estimators. These approaches have different strengths and weaknesses.

The CS’s constructed in the paper provide model specification tests of the conditional moment inequality model. One rejects the model if a nominal $1 - \alpha$ CS is empty. The results of the paper for CS’s imply that this test has asymptotic size less than or equal to $\alpha$ (with the inequality possibly being strict), e.g., see Andrews and Guggenberger (2009) for details of the argument.

A companion paper, Andrews and Shi (2010a), generalizes the CS’s and extends the asymptotic results to allow for an infinite number of conditional or unconditional moment inequalities, which makes the results applicable to tests of stochastic dominance and conditional stochastic dominance (see Lee and Whang (2009)). Andrews and Shi (2010b) extends the results for allow for nonparametric parameters of interest, such as the value of a function at a point.

The remainder of the paper is organized as follows. Section 2 introduces the moment inequality/equality model. Section 3 specifies the class of test statistics that is considered. Section 4 defines GMS CS’s. Section 5 establishes the uniform asymptotic coverage properties of GMS and PA CS’s. Section 6 establishes the consistency of GMS and PA tests against all fixed alternatives. This implies that GMS and PA CS’s do not include any point outside the identified set with probability that goes to one. Section 7 shows that GMS and PA tests have power against some $n^{-1/2}$-local alternatives. Section 8 considers models in which preliminary consistent estimators of identified parameters are plugged into the moment inequalities/equalities. It also considers time series observations. Section 9 gives a step-by-step description of how to calculate the asymptotic and bootstrap versions of the tests and provides the Monte Carlo simulation results.
Supplemental Appendix A provides proofs of the uniform asymptotic coverage probability results for GMS and PA CS’s. Supplemental Appendix B provides (i) results for KS tests and CS’s, (ii) the extension of the results of the paper to truncated/simulated CvM tests and CS’s, (iii) an illustration of the verification of the assumptions used for the local alternative results, (iv) an illustration of uniformity problems that arise with the Kolmogorov-Smirnov test unless the critical value is chosen carefully, (v) an illustration of problems with pointwise asymptotics, and (vi) asymptotic coverage probability results for subsampling CS’s under drifting sequences of distributions. Supplemental Appendix C gives proofs of the results stated in the paper, but not given in Supplemental Appendix A. Supplemental Appendix D provides proofs of the results stated in Supplemental Appendix B. Supplemental Appendix E provides a proof of some empirical process results that are used in Supplemental Appendices A, C, and D. Supplemental Appendix F provides the simulation results for the interval-outcome regression model and some additional material concerning the Monte Carlo simulation results of Section 9.

2 Conditional Moment Inequalities/Equalities

2.1 Model

The conditional moment inequality/equality model is defined as follows. We suppose there exists a true parameter \( \theta_0 \in \Theta \subset \mathbb{R}^d \) that satisfies the moment conditions:

\[
E_{F_0}(m_j(W_i, \theta_0) | X_i) \geq 0 \text{ a.s. } [F_{X,0}] \quad \text{for } j = 1, \ldots, p \text{ and }
E_{F_0}(m_j(W_i, \theta_0) | X_i) = 0 \text{ a.s. } [F_{X,0}] \quad \text{for } j = p + 1, \ldots, p + v,
\]

(2.1)

where \( m_j(\cdot, \theta), \ j = 1, \ldots, p + v \) are (known) real-valued moment functions, \( \{W_i = (Y'_i, X'_i) : i \leq n\} \) are observed i.i.d. random vectors with distribution \( F_0 \), \( F_{X,0} \) is the marginal distribution of \( X_i, X_i \in \mathbb{R}^{d_x}, Y_i \in \mathbb{R}^{d_y}, \) and \( W_i \in \mathbb{R}^{d_w} (= \mathbb{R}^{d_y + d_x}). \)

We are interested in constructing CS’s for the true parameter \( \theta_0 \). However, we do not assume that \( \theta_0 \) is point identified. Knowledge of \( E_{F_0}(m_j(W_i, \theta) | X_i) \) for all \( \theta \in \Theta \) does not necessarily identify \( \theta_0 \). Even knowledge of \( F_0 \) does not necessarily point identify \( \theta_0 \).

\[\text{[1]}\]

\[\text{[2]}\]

\[\text{[3]}\]

\[\text{[4]}\]

\[\text{[5]}\]
The model, however, restricts the true parameter value to a set called the identified set (which could be a singleton). The identified set is

$$\Theta_{F_0} = \{ \theta \in \Theta : \text{[2.1]} \text{ holds with } \theta \text{ in place of } \theta_0 \}. \quad (2.2)$$

Let \((\theta, F)\) denote generic values of the parameter and distribution. Let \(F\) denote the parameter space for \((\theta_0, F_0)\). By definition, \(F\) is a collection of \((\theta; F)\) such that

(i) \(\theta \in \Theta\),

(ii) \(\{W_i : i \geq 1\}\) are i.i.d. under \(F\),

(iii) \(E_F(m_j(W_i, \theta) | X_i) \geq 0 \text{ a.s. } [F_X]\) for \(j = 1, ..., p\),

(iv) \(E_F(m_j(W_i, \theta) | X_i) = 0 \text{ a.s. } [F_X]\) for \(j = p + 1, ..., p + v\),

(v) \(0 < Var_F(m_j(W_i, \theta)) < \infty\) for \(j = 1, ..., p + v\), and

(vi) \(E_F(m_j(W_i, \theta)/\sigma_{F,j}(\theta))^{2+\delta} \leq B\) for \(j = 1, ..., p + v\), \((2.3)\)

for some \(B < \infty\) and \(\delta > 0\), where \(F_X\) is the marginal distribution of \(X_i\) under \(F\) and \(\sigma^2_{F,j}(\theta) = Var_F(m_j(W_i, \theta))\).\(^7\) Let \(k = p + v\). The \(k\)-vector of moment functions is denoted

$$m(W_i, \theta) = (m_1(W_i, \theta), \ldots, m_k(W_i, \theta))^\prime. \quad (2.4)$$

### 2.2 Confidence Sets

We are interested in CS’s that cover the true value \(\theta_0\) with probability greater than or equal to \(1 - \alpha\) for \(\alpha \in (0, 1)\). As is standard, we construct such CS’s by inverting tests of the null hypothesis that \(\theta\) is the true value for each \(\theta \in \Theta\). Let \(T_n(\theta)\) be a test statistic and \(c_{n,1-\alpha}(\theta)\) be a corresponding critical value for a test with nominal significance level \(\alpha\). Then, a nominal level \(1 - \alpha\) CS for the true value \(\theta_0\) is

$$CS_n = \{ \theta \in \Theta : T_n(\theta) \leq c_{n,1-\alpha}(\theta) \}. \quad (2.5)$$

\(^7\)Additional restrictions can be placed on \(F\) and the results of the paper still hold. For example, one could specify that the support of \(X_i\) is the same for all \(F\) for which \((\theta, F) \in \mathcal{F}\).
3 Test Statistics

3.1 General Form of the Test Statistic

Here we define the test statistic $T_n(\theta)$ that is used to construct a CS. We transform the conditional moment inequalities/equalities into equivalent unconditional moment inequalities/equalities by choosing appropriate weighting functions, i.e., instruments. Then, we construct a test statistic based on the unconditional moment conditions.

The unconditional moment conditions are of the form:

$$E_{F_0} m_j (W_i, \theta_0) g_j (X_i) \geq 0 \quad \text{for} \quad j = 1, \ldots, p$$
$$E_{F_0} m_j (W_i, \theta_0) g_j (X_i) = 0 \quad \text{for} \quad j = p + 1, \ldots, k, \text{ for all } g = (g_1, \ldots, g_k)' \in \mathcal{G}, \tag{3.1}$$

where $g = (g_1, \ldots, g_k)'$ are instruments that depend on the conditioning variables $X_i$ and $\mathcal{G}$ is a collection of instruments. Typically $\mathcal{G}$ contains an infinite number of elements.

The identified set $\Theta_{F_0}(\mathcal{G})$ of the model defined by (3.1) is

$$\Theta_{F_0}(\mathcal{G}) = \{ \theta \in \Theta : \text{(3.1) holds with } \theta \text{ in place of } \theta_0 \}. \tag{3.2}$$

The collection $\mathcal{G}$ is chosen so that $\Theta_{F_0}(\mathcal{G}) = \Theta_{F_0}$, defined in (2.2). Section 3.3 provides conditions for this equality and gives examples of instrument sets $\mathcal{G}$ that satisfy the conditions.

We construct test statistics based on (3.1). The sample moment functions are

$$m_n(\theta, g) = n^{-1} \sum_{i=1}^{n} m(W_i, \theta, g) \text{ for } g \in \mathcal{G}, \text{ where}$$

$$m(W_i, \theta, g) = \begin{pmatrix} \frac{m_1(W_i, \theta) g_1(X_i)}{m(W_i, \theta)} \\ \frac{m_2(W_i, \theta) g_2(X_i)}{m(W_i, \theta)} \\ \vdots \\ \frac{m_k(W_i, \theta) g_k(X_i)}{m(W_i, \theta)} \end{pmatrix} \text{ for } g \in \mathcal{G}. \tag{3.3}$$

The sample variance-covariance matrix of $n^{1/2} \bar{m}_n(\theta, g)$ is

$$\hat{\Sigma}_n(\theta, g) = n^{-1} \sum_{i=1}^{n} (m(W_i, \theta, g) - \bar{m}_n(\theta, g))(m(W_i, \theta, g) - \bar{m}_n(\theta, g))^\prime. \tag{3.4}$$
The matrix \( \widehat{\Sigma}_n(\theta, g) \) may be singular or near singular with non-negligible probability for some \( g \in \mathcal{G} \). This is undesirable because the inverse of \( \widehat{\Sigma}_n(\theta, g) \) needs to be consistent for its population counterpart uniformly over \( g \in \mathcal{G} \) for the test statistics considered below. In consequence, we employ a modification of \( \widehat{\Sigma}_n(\theta, g) \), denoted \( \Sigma_n(\theta, g) \), such that \( \det(\Sigma_n(\theta, g)) \) is bounded away from zero. Different choices of \( \Sigma_n(\theta, g) \) are possible. Here we use

\[
\Sigma_n(\theta, g) = \widehat{\Sigma}_n(\theta, g) + \varepsilon \cdot \text{Diag}(\widehat{\Sigma}_n(\theta, 1_k)) \quad \text{for } g \in \mathcal{G}
\tag{3.5}
\]

for some fixed \( \varepsilon > 0 \). See Section 9 for suitable choices of \( \varepsilon \) and other tuning parameters given below. By design, \( \Sigma_n(\theta, g) \) is a linear combination of two scale equivariant functions and thus is scale equivariant. (That is, multiplying the moment functions \( m(W_i, \theta) \) by a diagonal matrix, \( D \), changes \( \Sigma_n(\theta, g) \) into \( D \Sigma_n(\theta, g) D \).) This yields a test statistic that is invariant to rescaling of the moment functions \( m(W_i, \theta) \), which is an important property.

The test statistic \( T_n(\theta) \) is either a Cramér-von Mises-type (CvM) or Kolmogorov-Smirnov-type (KS) statistic. The CvM statistic is

\[
T_n(\theta) = \int S(n^{1/2} \overline{m}_n(\theta, g), \overline{\Sigma}_n(\theta, g)) dQ(g),
\tag{3.6}
\]

where \( S \) is a non-negative function, \( Q \) is a weight function (i.e., probability measure) on \( \mathcal{G} \), and the integral is over \( \mathcal{G} \). The functions \( S \) and \( Q \) are discussed in Sections 3.2 and 3.4 below, respectively.

The Kolmogorov-Smirnov-type (KS) statistic is

\[
T_n(\theta) = \sup_{g \in \mathcal{G}} S(n^{1/2} \overline{m}_n(\theta, g), \overline{\Sigma}_n(\theta, g)).
\tag{3.7}
\]

For brevity, in the text of the paper, the discussion focusses on CvM statistics and all results stated concern CvM statistics. Supplemental Appendix B gives detailed results for KS statistics.

### 3.2 Function \( S \)

To permit comparisons, we establish results in this paper for a broad family of functions \( S \) that satisfy certain conditions stated below. We now introduce three functions that satisfy these conditions. The first is the modified method of moments (MMM) or
Sum function:

\[ S_1(m, \Sigma) = \sum_{j=1}^{p} \frac{m_j}{\sigma_j}^2 + \sum_{j=p+1}^{p+v} \frac{m_j}{\sigma_j}^2, \]  

(3.8)

where \( m_j \) is the \( j \)th element of the vector \( m \), \( \sigma_j^2 \) is the \( j \)th diagonal element of the matrix \( \Sigma \), and \([x]_-= -x\) if \( x < 0\) and \([x]_+= 0\) if \( x \geq 0\).

The second function \( S \) is the quasi-likelihood ratio (QLR) function:

\[ S_2(m, \Sigma) = \inf_{t=(t'_0,0^v)' : t_1 \in [0,\infty]^p} (m - t)' \Sigma^{-1} (m - t). \]  

(3.9)

The third function \( S \) is a “maximum” (Max) function. Used in conjunction with the KS form of the test statistic, this \( S \) function yields a pure KS-type test statistic:

\[ S_3(m, \Sigma) = \max\{[m_1/\sigma_1]^2, \ldots, [m_p/\sigma_p]^2; (m_{p+1}/\sigma_{p+1})^2, \ldots, (m_{p+v}/\sigma_{p+v})^2\}. \]  

(3.10)

The function \( S_2 \) is more costly to compute than \( S_1 \) and \( S_3 \).

Let \( m_I = (m_1, \ldots, m_p)' \) and \( m_{II} = (m_{p+1}, \ldots, m_k)' \). Let \( \Delta \) be the set of \( k \times k \) positive-definite diagonal matrices. Let \( \mathcal{W} \) be the set of \( k \times k \) positive-definite matrices. Let \( S = \{ (m, \Sigma) : m \in (-\infty, \infty]^p \times R^v, \Sigma \in \mathcal{W} \} \).

We consider functions \( S \) that satisfy the following conditions.

**Assumption S1.** \( \forall (m, \Sigma) \in S \),

(a) \( S(Dm, D\Sigma D) = S(m, \Sigma) \ \forall D \in \Delta, \)

(b) \( S(m_I, m_{II}, \Sigma) \) is non-increasing in each element of \( m_I, \)

(c) \( S(m, \Sigma) \geq 0, \)

(d) \( S \) is continuous, and

(e) \( S(m, \Sigma + \Sigma_1) \leq S(m, \Sigma) \) for all \( k \times k \) positive semi-definite matrices \( \Sigma_1 \).

It is worth pointing out that Assumption S1(d) requires \( S \) to be continuous in \( m \) at all points \( m \) in the extended vector space \( R^p_{[+\infty]} \times R^v \), not only for points in \( R^{p+v} \).

**Assumption S2.** \( S(m, \Sigma) \) is uniformly continuous in the sense that, for all \( m_0 \in R^k \) and all \( \Sigma_0 \in \mathcal{W} \), \( \sup_{\mu \in [0,\infty)^p \times \{0\}^v} |S(m + \mu, \Sigma) - S(m_0 + \mu, \Sigma_0)| \to 0 \) as \( (m, \Sigma) \to (m_0, \Sigma_0) \).

The following two assumptions are used only to establish the power properties of

\[^8\text{It is important that the supremum is only over } \mu \text{ vectors with non-negative elements } \mu_j \text{ for } j \leq p. \]

Without this restriction on the \( \mu \) vectors, Assumption S2 would not hold for typical \( S \) functions of interest.
Assumption S3. \( S(m, \Sigma) > 0 \) if and only if \( m_j < 0 \) for some \( j = 1, \ldots, p \) or \( m_j \neq 0 \) for some \( j = p + 1, \ldots, k \), where \( m = (m_1, \ldots, m_k)' \) and \( \Sigma \in \mathcal{W} \).

Assumption S4. For some \( \chi > 0 \), \( S(am, \Sigma) = a^\chi S(m, \Sigma) \) for all scalars \( a > 0 \), \( m \in \mathbb{R}^k \), and \( \Sigma \in \mathcal{W} \).

Assumptions S1-S4 allow for natural choices like \( S_1, S_2, \) and \( S_3 \).

Lemma 1. The functions \( S_1, S_2, \) and \( S_3 \) satisfy Assumptions S1-S4.

### 3.3 Instruments

When considering consistent specification tests based on conditional moment equalities, see Bierens (1982) and Bierens and Ploberger (1997), a wide variety of different types of functions \( g \) can be employed without loss of information, see Stinchcombe and White (1998). With conditional moment inequalities, however, it is much more difficult to distill the information in the moments because of the one-sided feature of the inequalities. Here we show how this can be done and provide proofs that it can be without loss of information. Kim (2008) and Khan and Tamer (2009) also provide methods for converting conditional moment inequalities into unconditional ones. However, they do not provide proofs that this can be done without loss of information.\(^9\)

The collection of instruments \( \mathcal{G} \) needs to satisfy the following condition in order for the unconditional moments \( \{ E_F m(W_i, \theta, g) : g \in \mathcal{G} \} \) to incorporate the same information as the conditional moments \( \{ E_F(m(W_i, \theta)|X_i = x) : x \in \mathbb{R}^{d_x} \} \).

For any \( \theta \in \Theta \) and any distribution \( F \) with \( E_F||m(W_i, \theta)|| < \infty \), let

\[
X_F(\theta) = \{ x \in \mathbb{R}^{d_x} : E_F(m_j(W_i, \theta)|X_i = x) < 0 \text{ for some } j \leq p \text{ or } E_F(m_j(W_i, \theta)|X_i = x) \neq 0 \text{ for some } j = p + 1, \ldots, k \}. \tag{3.11}
\]

Assumption CI. For any \( \theta \in \Theta \) and distribution \( F \) for which \( E_F||m(W_i, \theta)|| < \infty \) and

\(^9\)Kim (2009) references a result of Billingsley (1995, Thm. 11.3). Khan and Tamer (2009) reference Fatou’s Lemma and the dominated convergence theorem in Shiryaev (1984, p. 185). Neither of these results is sufficient to establish that there is no loss in information. For example, Billingsley’s result yields existence, but not uniqueness, of a certain measure. See Lemma C1 and the proofs of Lemmas 3 and C1 in Supplemental Appendix C for the issues that arise.
\[ P_F(X_i \in \mathcal{X}_F(\theta)) > 0, \text{ there exists some } g \in \mathcal{G} \text{ such that} \]
\[
E_F m_j(W_i, \theta) g_j(X_i) < 0 \text{ for some } j \leq p \text{ or} \]
\[
E_F m_j(W_i, \theta) g_j(X_i) \neq 0 \text{ for some } j = p + 1, \ldots, k. \]

Note that CI abbreviates “conditionally identified.” The following simple Lemma indicates the importance of Assumption CI.

**Lemma 2.** Assumption CI implies that \( \Theta_F(\mathcal{G}) = \Theta_F \) for all \( F \) with \( \sup_{\theta \in \Theta} E_F ||m(W_i, \theta)|| < \infty. \)

Collections \( \mathcal{G} \) that satisfy Assumption CI contain non-negative functions whose supports are cubes, boxes, or bounded sets with other shapes whose supports are arbitrarily small, see below\(^{10}\).

Next, we state a “manageability” condition that regulates the complexity of \( \mathcal{G} \). It ensures that \( \{ n^{1/2} (\overline{m}_n(\theta, g) - E_F \overline{m}_n(\theta, g)) : g \in \mathcal{G} \} \) satisfies a functional central limit theorem under drifting sequences of distributions \( \{ F_n : n \geq 1 \} \). The latter is utilized in the proof of the uniform coverage probability results for the CS’s. The manageability condition is from Pollard (1990) and is defined and explained in Supplemental Appendix E.

**Assumption M.** (a) \( 0 \leq g_j(x) \leq G(x) \forall x \in R^{d_x}, \forall j \leq k, \forall g \in \mathcal{G}, \) for some envelope function \( G(x), \)

(b) \( E_F G^{\delta_1}(X_i) \leq C \) for all \( F \) such that \( (\theta, F) \in \mathcal{F} \) for some \( \theta \in \Theta, \) for some \( C < \infty, \)

and for some \( \delta_1 > 4/\delta + 2, \) where \( W_i = (Y'_i, X'_i)' \sim F \) and \( \delta \) is as in the definition of \( \mathcal{F} \) in \(^{2.3}\), and

(c) the processes \( \{ g_j(X_{n,i}) : g \in \mathcal{G}, i \leq n, n \geq 1 \} \) are manageable with respect to the envelope function \( G(X_{n,i}) \) for \( j = 1, \ldots, k, \) where \( \{ X_{n,i} : i \leq n, n \geq 1 \} \) is a row-wise i.i.d.

triangular array with \( X_{n,i} \sim F_{X,n} \) and \( F_{X,n} \) is the distribution of \( X_{n,i} \) under \( F_n \) for some \( (\theta_n, F_n) \in \mathcal{F} \) for \( n \geq 1.\(^{11}\)

\(^{10}\)Below we construct tests that use the unconditional moments based on \( \mathcal{G} \) and that incorporate all of the information in the conditional moments. To do so, we need to make sure that the tests do not ignore some of the functions in \( \mathcal{G} \). Assumption Q, introduced below, plays this role.

\(^{11}\)The asymptotic results given below hold with Assumption M replaced by any alternative assumption that is sufficient to obtain the requisite empirical process results, see Assumption EP in Section \(^8\).
Now we give two examples of collections of functions $\mathcal{G}$ that satisfy Assumptions CI and M. Supplemental Appendix B gives three additional examples, one of which is based on B-splines.

**Example 1. (Countable Hypercubes).** Suppose $X_i$ is transformed via a one-to-one mapping so that each of its elements lies in $[0, 1]$. There is no loss in information in doing so. Section 9 and Supplemental Appendix B provide examples of how this can be done.

Consider the class of indicator functions of cubes with side lengths $(2r)^{-1}$ for all large positive integers $r$ that partition $[0, 1]^d_x$ for each $r$. This class is countable:

$$
\mathcal{G}_{c\text{-cube}} = \{ g(x) : g(x) = 1(x \in C) \cdot 1_k \text{ for } C \in \mathcal{C}_{c\text{-cube}} \},
$$

where

$$
\mathcal{C}_{c\text{-cube}} = \left\{ C_{a,r} = \times_{u=1}^{d_x} ((a_u - 1)/(2r), a_u/(2r)) \in [0,1]^{d_x} : a = (a_1, \ldots, a_{d_x})' \right\},
$$

for some positive integer $r_0$. The terminology “c-cube” abbreviates countable cubes. Note that $C_{a,r}$ is a hypercube in $[0,1]^{d_x}$ with smallest vertex indexed by $a$ and side lengths equal to $(2r)^{-1}$.

The class of countable cubes $\mathcal{G}_{c\text{-cube}}$ leads to a test statistic $T_n(\theta)$ for which the integral over $\mathcal{G}$ reduces to a sum.

**Example 2 (Boxes).** Let

$$
\mathcal{G}_{\text{box}} = \{ g : g(x) = 1(x \in C) \cdot 1_k \text{ for } C \in \mathcal{C}_{\text{box}} \},
$$

where

$$
\mathcal{C}_{\text{box}} = \left\{ C_{x,r} = \times_{u=1}^{d_x} (x_u - r_u, x_u + r_u) \in R^{d_x} : x_u \in R, r_u \in (0, \bar{r}) \forall u \leq d_x \right\},
$$

$x = (x_1, \ldots, x_{d_x})'$, $r = (r_1, \ldots, r_{d_x})'$, $\bar{r} \in (0, \infty]$, and $1_k$ is a $k$-vector of ones. The set $\mathcal{C}_{\text{box}}$ contains boxes (i.e., hyper-rectangles or orthotopes) in $R^{d_x}$ with centers at $x \in R^{d_x}$ and side lengths less than $2\bar{r}$.

When the support of $X_i$, denoted $\text{Supp}(X_i)$, is a known subset of $R^{d_x}$, one can replace $x_u \in R \forall u \leq d_x$ in (3.13) by $x \in \text{conv}(\text{Supp}(X_i))$, where $\text{conv}(A)$ denotes the convex hull of $A$. Sometimes, it is convenient to transform the elements of $X_i$ into $[0, 1]$ via strictly increasing transformations as in Example 1 above. If the $X_i$'s are transformed in this way, then $R$ in (3.13) is replaced by $[0, 1]$.

Both of the sets $\mathcal{G}$ discussed above can be used with continuous and/or discrete

---

12 When $a_u = 1$, the left endpoint of the interval $(0, 1/(2r)]$ is included in the interval.
The following result establishes Assumptions CI and M for $G_{c\text{-cube}}$ and $G_{\text{box}}$.

**Lemma 3.** For any moment function $m(W_i, \theta)$, Assumptions CI and M hold with $G = G_{c\text{-cube}}$ and with $G = G_{\text{box}}$.

The proof of Lemma 3 is given in Supplemental Appendix C.

**Moment Equalities.** The sets $G$ introduced above use the same functions for the moment inequalities and equalities, i.e., $g$ is of the form $g^* \cdot 1_k$, where $g^*$ is a real-valued function. It is possible to use different functions for the moment equalities than for the inequalities. One can take $g = (g^{(1)*}, g^{(2)*})' \in G^{(1)} \times G^{(2)}$, where $g^{(1)*}$ is an $R^p$-valued function in some set $G^{(1)}$ and $g^{(2)*}$ is an $R^v$-valued function in some set $G^{(2)}$. Any “generically comprehensively revealing” class of functions $G^{(2)}$, see Stinchcombe and White (1998), leads to a set $G$ that satisfies Assumption CI provided one uses a suitable class of functions $G^{(1)}$ (such as any of those defined above with $1_k$ replaced by $1_p$). For brevity, we do not provide further details.

### 3.4 Weight Function $Q$

The weight function $Q$ can be any probability measure on $G$ whose support is $G$. This support condition is needed to ensure that no functions $g \in G$, which might have set-identifying power, are “ignored” by the test statistic $T_n(\theta)$. Without such a condition, a CS based on $T_n(\theta)$ would not necessarily shrink to the identified set as $n \to \infty$. Section 6 below introduces the support condition formally and shows that the probability measures $Q$ considered here satisfy it.

We now specify two examples of weight functions $Q$. Three others are specified in Supplemental Appendix B.

**Weight Function $Q$ for $G_{c\text{-cube}}$.** There is a one-to-one mapping $\Pi_{c\text{-cube}} : G_{c\text{-cube}} \to AR = \{(a, r) : a \in \{1, \ldots, 2r\}^{d_x} \text{ and } r = r_0, r_0 + 1, \ldots\}$. Let $Q_{AR}$ be a probability measure on $AR$. One can take $Q = \Pi_{c\text{-cube}}^{-1}Q_{AR}$. A natural choice of measure $Q_{AR}$ is uniform on $a \in \{1, \ldots, 2r\}^{d_x}$ conditional on $r$ combined with a distribution for $r$ that has some probability mass function $\{w(r) : r = r_0, r_0 + 1, \ldots\}$. This yields the test statistic to be

$$T_n(\theta) = \sum_{r=r_0}^{\infty} \sum_{a \in \{1, \ldots, 2r\}^{d_x}} w(r) (2r)^{-d_x} S(n^{1/2} \bar{m}_n(\theta, ga,r), \Sigma_n(\theta, ga,r)), \quad (3.14)$$
where \( g_{a,r}(x) = 1(x \in C_{a,r}) \cdot 1_k \) for \( C_{a,r} \in C_{cube} \).

**Weight Function \( Q \) for \( \mathcal{G}_{box} \).** There is a one-to-one mapping \( \Pi_{box} : \mathcal{G}_{box} \to XR = \{(x, r) \in R^{d_x} \times (0, \bar{r})^{d_x}\} \). Let \( Q_{XR} \) be a probability measure on \( XR \). Then, \( \Pi_{box}^{-1}Q_{XR} \) is a probability measure on \( \mathcal{G}_{box} \). One can take \( Q = \Pi_{box}^{-1}Q_{XR} \). Any probability measure on \( R^{d_x} \times (0, \bar{r})^{d_x} \) whose support contains \( \mathcal{G}_{box} \) is a valid candidate for \( Q_{XR} \). If \( Supp(X_1) \) is known, \( R^{d_x} \) can be replaced by the convex hull of \( Supp(X_1) \). One choice is to transform each regressor to lie in \([0, 1]\) and to take \( Q_{XR} \) to be the uniform distribution on \([0, 1]^{d_x} \times (0, \bar{r})^{d_x} \), i.e., \( Uniform([0, 1]^{d_x} \times (0, \bar{r})^{d_x}) \). In this case, the test statistic becomes

\[
T_n(\theta) = \int_{[0,1]^{d_x}} \int_{(0,\bar{r})^{d_x}} S(n^{1/2}m_n(\theta, g_{x,r}), \Sigma_n(\theta, g_{x,r})) \bar{r}^{-d_x} dr \, dx,
\]

where \( g_{x,r}(y) = 1(y \in C_{x,r}) \cdot 1_k \) and \( C_{x,r} \) denotes the box centered at \( x \in [0, 1]^{d_x} \) with side lengths \( 2r \in (0, 2\bar{r})^{d_x} \).

### 3.5 Computation of Sums, Integrals, and Suprema

The test statistics \( T_n(\theta) \) given in (3.14) and (3.15) involve an infinite sum and an integral with respect to \( Q \). Analogous infinite sums and integrals appear in the definitions of the critical values given below. These infinite sums and integrals can be approximated by truncation, simulation, or quasi-Monte Carlo methods. If \( \mathcal{G} \) is countable, let \( \{g_1, \ldots, g_s_n\} \) denote the first \( s_n \) functions \( g \) that appear in the infinite sum that defines \( T_n(\theta) \). Alternatively, let \( \{g_1, \ldots, g_s_n\} \) be \( s_n \) i.i.d. functions drawn from \( \mathcal{G} \) according to the distribution \( Q \). Or, let \( \{g_1, \ldots, g_s_n\} \) be the first \( s_n \) terms in a quasi-Monte Carlo approximation of the integral wrt \( Q \). Then, an approximate test statistic obtained by truncation, simulation, or quasi-Monte Carlo methods is

\[
T_{n,s_n}(\theta) = \sum_{\ell=1}^{s_n} w_{Q,n}(\ell) S(n^{1/2}m_n(\theta, g_\ell), \Sigma_n(\theta, g_\ell)),
\]

where \( w_{Q,n}(\ell) = Q(\{g_\ell\}) \) when an infinite sum is truncated, \( w_{Q,n}(\ell) = s_n^{-1} \) when \( \{g_1, \ldots, g_s_n\} \) are i.i.d. draws from \( \mathcal{G} \) according to \( Q \), and \( w_{Q,n}(\ell) \) is a suitable weight when a quasi-Monte Carlo method is used. For example, in (3.14), the outer sum can be truncated at \( r_{1,n} \), in which case, \( s_n = \sum_{r=r_0}^{r_{1,n}} (2r)^{d_x} \) and \( w_{Q,n}(\ell) = w(r)(2r)^{-d_x} \) for \( \ell \) such that \( g_\ell \) corresponds to \( g_{a,r} \) for some \( a \). In (3.15), the integral over \((x, r)\) can be replaced by an average over \( \ell = 1, \ldots, s_n \), the uniform density \( \bar{r}^{-d_x} \) deleted, and \( g_{x,r} \) replaced by
\(g_{x_{\ell}, r_{\ell}}\), where \(\{(x_{\ell}, r_{\ell}) : \ell = 1, \ldots, s_n\}\) are i.i.d. with a \(\text{Uniform}(0, 1)^d \times (0, \bar{r})^d\) distribution.

In Supplemental Appendix B, we show that truncation at \(s_n\), simulation based on \(s_n\) simulation repetitions, or quasi-Monte Carlo approximation based on \(s_n\) terms, where \(s_n \to \infty\) as \(n \to \infty\), is sufficient to maintain the asymptotic validity of the tests and CS’s as well as the asymptotic power results under fixed alternatives and most of the results under \(n^{-1/2}\)-local alternatives.

The KS form of the test statistic requires the computation of a supremum over \(g \in \mathcal{G}\). For computational ease, this can be replaced by a supremum over \(g \in \mathcal{G}_n\), where \(\mathcal{G}_n \uparrow \mathcal{G}\) as \(n \to \infty\), in the test statistic and in the definition of the critical value (defined below). The asymptotic results for KS tests given in Supplemental Appendix B show that the use of \(\mathcal{G}_n\) in place of \(\mathcal{G}\) does not affect the asymptotic properties of the test.

### 4 GMS Confidence Sets

#### 4.1 GMS Critical Values

In this section, we define GMS critical values and CS’s.

It is shown in Section 5 below that when \(\theta\) is in the identified set the “uniform asymptotic distribution” of \(T_n(\theta)\) is the distribution of \(T(h_n)\), where \(h_n = (h_{1,n}, h_{2})\), \(h_{1,n}(\cdot)\) is a function from \(\mathcal{G}\) to \([0, \infty]^p \times \{0\}^v\) that depends on the slackness of the moment inequalities and on \(n\), and \(h_{2}(\cdot, \cdot)\) is a \(k \times k\)-matrix-valued covariance kernel on \(\mathcal{G} \times \mathcal{G}\). For \(h = (h_{1}, h_{2})\), define

\[
T(h) = \int S(\nu_{h_{2}}(g) + h_{1}(g), h_{2}(g, g) + \varepsilon I_k) dQ(g),
\]

where

\[
\{\nu_{h_{2}}(g) : g \in \mathcal{G}\}
\]

is a mean zero \(R^k\)-valued Gaussian process with covariance kernel \(h_{2}(\cdot, \cdot)\) on \(\mathcal{G} \times \mathcal{G}\), \(h_{1}(\cdot)\) is a function from \(\mathcal{G}\) to \([0, \infty]^p \times \{0\}^v\), and \(\varepsilon\) is as in the definition of \(\Sigma_n(\theta, g)\) in (3.5). \(^{13}\)

The definition of \(T(h)\) in (4.1) applies to CvM test statistics. For the KS test statistic, one replaces \(\int \ldots dQ(g)\) by \(\sup_{g \in \mathcal{G}} \ldots\).

\(^{13}\)The sample paths of \(\nu_{h_{2}}(\cdot)\) are concentrated on the set \(U_{\rho}(\mathcal{G})\) of bounded uniformly \(\rho\)-continuous \(R^k\)-valued functions on \(\mathcal{G}\), where \(\rho\) is defined in Supplemental Appendix A.
We are interested in tests of nominal level $\alpha$ and CS’s of nominal level $1 - \alpha$. Let

$$c_0(h, 1 - \alpha)$$

(4.3)

denote the $1 - \alpha$ quantile of $T(h)$. For notational simplicity, we often write $c_0(h, 1 - \alpha)$ as $c_0(h_1, h_2, 1 - \alpha)$ when $h = (h_1, h_2)$. If $h_n = (h_{1,n}, h_2)$ was known, we would use $c_0(h_n, 1 - \alpha)$ as the critical value for the test statistic $T_n(\theta)$. However, $h_n$ is unknown and $h_{1,n}$ cannot be consistently estimated. In consequence, we replace $h_2$ in $c_0(h_{1,n}, h_2, 1 - \alpha)$ by a uniformly consistent estimator $\hat{h}_{2,n}(\theta) (= \hat{h}_{2,n}(\theta, \cdot, \cdot))$ of the covariance kernel $h_2$ and we replace $h_{1,n}$ by a data-dependent GMS function $\varphi_n(\theta) (= \varphi_n(\theta, \cdot))$ on $\mathcal{G}$ that is constructed to be less than or equal to $h_{1,n}(g)$ for all $g \in \mathcal{G}$ with probability that goes to one as $n \to \infty$. Because $S(m, \Sigma)$ is non-increasing in $m_I$ by Assumption S1(b), where $m = (m_1, m_{11})'$, the latter property yields a test whose asymptotic level is less than or equal to the nominal level $\alpha$. (It is arbitrarily close to $\alpha$ for certain $(\theta, F) \in \mathcal{F}$.) The quantities $\hat{h}_{2,n}(\theta)$ and $\varphi_n(\theta)$ are defined below.

The nominal $1 - \alpha$ GMS critical value is defined to be

$$c(\varphi_n(\theta), \hat{h}_{2,n}(\theta), 1 - \alpha) = c_0(\varphi_n(\theta), \hat{h}_{2,n}(\theta), 1 - \alpha + \eta) + \eta,$$

(4.4)

where $\eta > 0$ is an arbitrarily small positive constant, e.g., .001. A nominal $1 - \alpha$ GMS CS is given by (2.5) with the critical value $c_{n,1-\alpha}(\theta)$ equal to $c(\varphi_n(\theta), \hat{h}_{2,n}(\theta), 1 - \alpha)$.

The constant $\eta$ is an infinitesimal uniformity factor that is employed to circumvent problems that arise due to the presence of the infinite-dimensional nuisance parameter $h_{1,n}$ that affects the distribution of the test statistic in both small and large samples. The constant $\eta$ obviates the need for complicated and difficult-to-verify uniform continuity and strictly-increasing conditions on the large sample distribution functions of the test statistic.

The sample covariance kernel $\hat{h}_{2,n}(\theta) (= \hat{h}_{2,n}(\theta, \cdot, \cdot))$ is defined by:

$$\hat{h}_{2,n}(\theta, g, g^*) = \hat{D}_n^{-1/2}(\theta) \hat{\Sigma}_n(\theta, g, g^*) \hat{D}_n^{-1/2}(\theta),$$

where

$$\hat{\Sigma}_n(\theta, g, g^*) = n^{-1} \sum_{i=1}^n (m(W_i, \theta, g) - \bar{m}_n(\theta, g))(m(W_i, \theta, g^*) - \bar{m}_n(\theta, g^*))'$$

and

$$\hat{D}_n(\theta) = Diag(\hat{\Sigma}_n(\theta, 1_k, 1_k)).$$

(4.5)

Note that $\hat{\Sigma}_n(\theta, g)$, defined in (3.4), equals $\hat{\Sigma}_n(\theta, g)$ and $\hat{D}_n(\theta)$ is the sample variance-
covariance matrix of \( n^{-1/2} \sum_{i=1}^{n} m(W_i, \theta) \).

The quantity \( \varphi_n(\theta) \) is defined in Section 4.4 below.

### 4.2 GMS Critical Values for Approximate Test Statistics

When the test statistic is approximated via a truncated sum, simulated integral, or quasi-Monte Carlo quantity, as discussed in Section 3.5, the statistic \( T(h) \) in Section 4.1 is replaced by

\[
T_{sn}(h) = \sum_{\ell=1}^{s_n} w_{Q,n}(\ell) S(\nu_{h_2}(g_\ell) + h_1(g_\ell), h_2(g_\ell, g_\ell) + \varepsilon I_k),
\]

where \( \{g_\ell : \ell = 1, \ldots, s_n\} \) are the same functions \( \{g_1, \ldots, g_{s_n}\} \) that appear in the approximate statistic \( T_{n,sn}(\theta) \). We call the critical value obtained using \( T_{sn}(h) \) an approximate GMS (A-GMS) critical value.

Let \( c_{0,sn}(h, 1 - \alpha) \) denote the \( 1 - \alpha \) quantile of \( T_{sn}(h) \) for fixed \( \{g_1, \ldots, g_{s_n}\} \). The A-GMS critical value is defined to be

\[
c_{sn}(\varphi_n(\theta), \hat{h}_{2,n}(\theta), 1 - \alpha) = c_{0,sn}(\varphi_n(\theta), \hat{h}_{2,n}(\theta), 1 - \alpha + \eta) + \eta.
\]

This critical value is a quantile that can be computed by simulation as follows. Let \( \{T_{sn,\tau}(h) : \tau = 1, \ldots, \tau_{\text{reps}}\} \) be \( \tau_{\text{reps}} \) i.i.d. random variables each with the same distribution as \( T_{sn}(h) \) and each with the same functions \( \{g_1, \ldots, g_{s_n}\} \), where \( h = (h_1, h_2) \) is evaluated at \( (\varphi_n(\theta), \hat{h}_{2,n}(\theta)) \). Then, the A-GMS critical value, \( c_{sn}(\varphi_n(\theta), \hat{h}_{2,n}(\theta), 1 - \alpha) \), is the \( 1 - \alpha + \eta \) sample quantile of \( \{T_{sn,\tau}(\varphi_n(\theta), \hat{h}_{2,n}(\theta)) : \tau = 1, \ldots, \tau_{\text{reps}}\} \) plus \( \eta \) for very small \( \eta > 0 \) and large \( \tau_{\text{reps}} \).

When constructing a CS, one carries out multiple tests with a different \( \theta \) value specified in the null hypothesis for each test. When doing so, we recommend using the same \( \{g_1, \ldots, g_{s_n}\} \) functions for each \( \theta \) value considered (although this is not necessary for the asymptotic results to hold).
4.3 Bootstrap GMS Critical Values

Bootstrap versions of the GMS critical value in (4.4) and the A-GMS critical value in (4.7) can be employed. The bootstrap GMS critical value is

\[ c^*(\varphi_n(\theta), \tilde{h}_{2,n}^*(\theta), 1 - \alpha) = c_0^*(\varphi_n(\theta), \tilde{h}_{2,n}^*(\theta), 1 - \alpha + \eta) + \eta, \quad (4.8) \]

where \( c_0^*(h, 1 - \alpha) \) is the \( 1 - \alpha \) quantile of \( T^*(h) \) and \( T^*(h) \) is defined as in (4.1) but with \( \nu_{h,i}(g) : g \in \mathcal{G} \) and \( \tilde{h}_{2,n}(\theta) \) replaced by the bootstrap empirical process \( \nu_n^*(g) : g \in \mathcal{G} \) and the bootstrap covariance kernel \( \tilde{h}_{2,n}^*(\theta) \), respectively. By definition, (i) \( \nu_n^*(g) = \tilde{D}_n(\theta)^{-1/2}n^{-1/2}\sum_{i=1}^n(m(W_i^*, \theta, g) - \overline{m}_n(\theta, g)) \) where \( \{W_i^* : i \leq n\} \) is an i.i.d. bootstrap sample drawn from the empirical distribution of \( \{W_i : i \leq n\} \), (ii) \( \tilde{\Sigma}_n^*(\theta, g, g^*) \) are defined as in (4.5) with \( W_i^* \) in place of \( W_i \), and (iii) \( \tilde{h}_{2,n}^*(\theta, g, g^*) = \tilde{D}_n(\theta)^{-1/2}\tilde{\Sigma}_n^*(\theta, g, g^*)\tilde{D}_n(\theta)^{-1/2} \). Note that \( \tilde{h}_{2,n}^*(\theta, g, g^*) \) only enters \( c(\varphi_n(\theta), \tilde{h}_{2,n}^*(\theta), 1 - \alpha) \) via functions \( (g, g^*) \) such that \( g = g^* \).

When the test statistic, \( \overline{T}_{n,s_n}(\theta) \), is a truncated sum, simulated integral, or quasi-Monte Carlo quantity, a bootstrap A-GMS critical value can be employed. It is defined analogously to the bootstrap GMS critical value but with \( T^*(h) \) replaced by \( T_{s_n}^*(h) \), where \( T_{s_n}^*(h) \) has the same definition as \( T^*(h) \) except that a truncated sum, simulated integral, or quasi-Monte Carlo quantity, appears in place of the integral with respect to \( Q \), as in Section 4.2. The same functions \( \{g_1, ..., g_{s_n}\} \) are used in all bootstrap critical value calculations as in the test statistic \( \overline{T}_{n,s_n}(\theta) \).

4.4 Definition of \( \varphi_n(\theta) \)

Next, we define \( \varphi_n(\theta) \). As discussed above, \( \varphi_n(\theta) \) is constructed such that \( \varphi_n(\theta, g) \leq h_{1,n}(g) \) \( \forall g \in \mathcal{G} \) with probability that goes to one as \( n \to \infty \) uniformly over \( (\theta, F) \in \mathcal{F} \). Let

\[ \xi_n(\theta, g) = \kappa_n^{-1}n^{1/2}\overline{D}_n(\theta, g)m_n(\theta, g), \quad \text{where} \quad \overline{D}_n(\theta, g) = \text{Diag}(\overline{\Sigma}_n(\theta, g)), \quad (4.9) \]

\( \overline{\Sigma}_n(\theta, g) \) is defined in (3.5), and \( \{\kappa_n : n \geq 1\} \) is a sequence of constants that diverges to infinity as \( n \to \infty \). The \( j \)th element of \( \xi_n(\theta, g) \), denoted \( \xi_{n,j}(\theta, g) \), measures the slackness of the moment inequality \( E_F m_j(W_i, \theta, g) \geq 0 \) for \( j = 1, ..., p \).
Define \( \varphi_n(\theta, g) = (\varphi_{n,1}(\theta, g), \ldots, \varphi_{n,p}(\theta, g), 0, \ldots, 0)' \in R^k \) by

\[
\varphi_{n,j}(\theta, g) = B_n 1(\xi_{n,j}(\theta, g) > 1) \text{ for } j \leq p.
\] (4.10)

**Assumption GMS1.** (a) \( \varphi_n(\theta, g) \) satisfies (4.10) and \( \{B_n : n \geq 1\} \) is a non-decreasing sequence of positive constants, and

(b) \( \kappa_n \to \infty \) and \( B_n/\kappa_n \to 0 \) as \( n \to \infty \).

The constants \( \{B_n : n \geq 1\} \) in Assumption GMS1 need not diverge to infinity for the GMS CS to have asymptotic size greater than or equal to \( 1 - \alpha \). However, for the GMS CS not to be asymptotically conservative, \( B_n \) must diverge to \( \infty \), see Assumption GMS2(b) below. See Section 9 for specific choices of \( \kappa_n \) and \( B_n \) that satisfy Assumption GMS1.

### 4.5 “Plug-in Asymptotic” Confidence Sets

Next, for comparative purposes, we define plug-in asymptotic (PA) critical values. Subsampling critical values are defined and analyzed in Supplemental Appendix B. We strongly recommend GMS critical values over PA and subsampling critical values because (i) GMS tests are shown to be more powerful than PA tests asymptotically, see Comment 2 to Theorem 4 below, (ii) it should be possible to show that GMS tests have higher power than subsampling tests asymptotically and smaller errors in null rejection probabilities asymptotically by using arguments similar to those in Andrews and Soares (2010) and Bugni (2010), respectively, and (iii) the finite-sample simulations in Section 9 show better performance by GMS critical values than PA and subsampling critical values.

PA critical values are obtained from the asymptotic null distribution that arises when all conditional moment inequalities hold as equalities a.s. The PA critical value is

\[
c(0_G, \hat{h}_{2,n}(\theta), 1 - \alpha) = c_0(0_G, \hat{h}_{2,n}(\theta), 1 - \alpha + \eta) + \eta,
\] (4.11)

where \( \eta \) is an arbitrarily small positive constant, \( 0_G \) denotes the \( R^k \)-valued function on \( G \) that is identically \( (0, ..., 0)' \in R^k \), and \( \hat{h}_{2,n}(\theta) \) is defined in (4.5). The nominal \( 1 - \alpha \) PA CS is given by (2.5) with the critical value \( c_{n,1-\alpha}(\theta) \) equal to \( c(0_G, \hat{h}_{2,n}(\theta), 1 - \alpha) \).

Bootstrap PA, A-PA, and bootstrap A-PA critical values are defined analogously to their GMS counterparts in Sections 4.2 and 4.3.
5 Uniform Asymptotic Coverage Probabilities

In this section, we show that GMS and PA CS’s have correct uniform asymptotic coverage probabilities. The results of this section and those in Sections 6-8 below are for CvM statistics based on integrals with respect to $Q$. Extensions of these results to A-CvM statistics and critical values are provided in Supplemental Appendix B. Supplemental Appendix B also gives results for KS tests.

5.1 Motivation for Uniform Asymptotics

The choice of critical values is important for moment inequality tests because the null distribution of a test statistic depends greatly on the slackness, or lack thereof, of the different moment inequalities. The slackness represents a nuisance parameter that appears under the null hypothesis, e.g., see Andrews and Soares (2010, Sections 1 and 4.1). With conditional moment inequalities, slackness comes in the form of a function, which is an infinite-dimensional parameter, whereas with unconditional moment inequalities it is a finite-dimensional parameter.

Potential slackness in the moment inequalities causes a discontinuity in the pointwise asymptotic distribution of typical test statistics. With conditional moment inequalities, one obtains an extreme form of discontinuity of the pointwise asymptotic distribution because two moment inequalities can be arbitrarily close to one another but pointwise asymptotics say that one inequality is irrelevant—because it is infinitessimally slack, but the other is not—because it is binding. In finite samples there is no discontinuity in the distribution of the test statistic. Hence, pointwise asymptotics do not provide good approximations to the finite-sample properties of test statistics in moment inequality models, especially conditional models.

Uniform asymptotics are required. Methods for establishing uniform asymptotics given in Andrews and Guggenberger (2010) and Andrews, Cheng, and Guggenberger (2009) only apply to finite-dimensional nuisance parameters, and hence, are not applicable to conditional moment inequality models. Linton, Song, and Whang (2009) establish uniform asymptotic results in a model where the nuisance parameter is infinite dimensional. However, their results rely on a complicated condition that is hard

\[14\] The same is true of the method in Mikusheva (2007), which is used for autoregressive models. Her method also requires that the data generated by different values of the unknown parameter can be constructed from a single function of the data that does not depend on parameters, which limits its applicability to other models.
to verify. For issues concerning uniformity of asymptotics in other econometric models, see Kabaila (1995), Leeb and Pötscher (2005), Mikusheva (2007), and Andrews and Guggenberger (2010).

5.2 Notation

In order to establish uniform asymptotic coverage probability results, we now introduce notation for the population analogues of the sample quantities that appear in (4.5). Define

\[ h_{2,F}(\theta, g, g^*) = D_F^{-1/2}(\theta)\Sigma_F(\theta, g, g^*)D_F^{-1/2}(\theta) \]
\[ = Cov_F \left( D_F^{-1/2}(\theta)m(W_i, \theta, g), D_F^{-1/2}(\theta)m(W_i, \theta, g^*) \right), \]
\[ \Sigma_F(\theta, g, g^*) = Cov_F(m(W_i, \theta, g), m(W_i, \theta, g^*)), \quad \text{and} \]
\[ D_F(\theta) = Diag(\Sigma_F(\theta, 1_k, 1_k)) \quad (= Diag(Var_F(m(W_i, \theta)))) \quad (5.1) \]

To determine the asymptotic distribution of \( T_n(\theta) \), we write \( T_n(\theta) \) as a function of the following quantities:

\[ h_{1,n,F}(\theta, g) = n^{1/2}D_F^{-1/2}(\theta)E_Fm(W_i, \theta, g), \]
\[ h_{n,F}(\theta, g, g^*) = (h_{1,n,F}(\theta, g), h_{2,F}(\theta, g, g^*)), \]
\[ \hat{h}_{2,n,F}(\theta, g, g^*) = D_F^{-1/2}(\theta)\hat{\Sigma}_n(\theta, g, g^*)D_F^{-1/2}(\theta), \]
\[ \hat{\theta}_{2,n,F}(\theta, g) = \hat{h}_{2,n,F}(\theta, g, g) + \epsilon\hat{h}_{2,n,F}(\theta, 1_k, 1_k) \quad (= D_F^{-1/2}(\theta)\Sigma_n(\theta, g)D_F^{-1/2}(\theta)), \quad \text{and} \]
\[ \nu_{n,F}(\theta, g) = n^{-1/2} \sum_{i=1}^{n} D_F^{-1/2}(\theta)[m(W_i, \theta, g) - E_Fm(W_i, \theta, g)]. \quad (5.2) \]

As defined, (i) \( h_{1,n,F}(\theta, g) \) is a \( k \)-vector of normalized means of the moment functions \( m(W_i, \theta, g) \) for \( g \in \mathcal{G} \), which measure the slackness of the population moment conditions under \( (\theta, F) \), (ii) \( h_{n,F}(\theta, g, g^*) \) contains the normalized means of \( D_F^{-1/2}(\theta)m(W_i, \theta, g) \) and the covariances of \( D_F^{-1/2}(\theta)m(W_i, \theta, g) \) and \( D_F^{-1/2}(\theta)m(W_i, \theta, g^*) \), (iii) \( \hat{h}_{2,n,F}(\theta, g, g^*) \) and \( \hat{h}_{2,n,F}(\theta, g) \) are hybrid quantities—part population, part sample—based on \( \hat{\Sigma}_n(\theta, g, g^*) \) and \( \Sigma_n(\theta, g) \), respectively, and (iv) \( \nu_{n,F}(\theta, g) \) is the sample average of \( D_F^{-1/2}(\theta)m(W_i, \theta, g) \) normalized to have mean zero and variance that does not depend on \( n \).

Note that \( \nu_{n,F}(\theta, \cdot) \) is an empirical process indexed by \( g \in \mathcal{G} \) with covariance kernel given by \( h_{2,F}(\theta, g, g^*) \).
The normalized sample moments $n^{1/2} m_n(\theta, g)$ can be written as

$$n^{1/2} m_n(\theta, g) = D^{1/2}_F(\nu_{n,F}(\theta, g) + h_{1,n,F}(\theta, g)). \quad (5.3)$$

The test statistic $T_n(\theta)$, defined in (3.6), can be written as

$$T_n(\theta) = \int S(\nu_{n,F}(\theta, g) + h_{1,n,F}(\theta, g), h_{2,n,F}(\theta, g))dQ(g). \quad (5.4)$$

Note the close resemblance between $T_n(\theta)$ and $T(h)$ (defined in (4.1)).

Let $\mathcal{H}_1$ denote the set of all functions from $\mathcal{G}$ to $[0, \infty]^p \times \{0\}^v$. Let

$$\mathcal{H}_2 = \{h_{2,F}(\theta, \cdot, \cdot) : (\theta, F) \in \mathcal{F}\} \quad \text{and}$$

$$\mathcal{H} = \mathcal{H}_1 \times \mathcal{H}_2. \quad (5.5)$$

On the space of $k \times k$-matrix-valued covariance kernels on $\mathcal{G} \times \mathcal{G}$, which is a superset of $\mathcal{H}_2$, we use the metric $d$ defined by

$$d(h_2^{(1)}, h_2^{(2)}) = \sup_{g, g^* \in \mathcal{G}} ||h_2^{(1)}(g, g^*) - h_2^{(2)}(g, g^*)||. \quad (5.6)$$

For notational simplicity, for any function of the form $b_F(\theta, g)$ for $g \in \mathcal{G}$, let $b_F(\theta)$ denote the function $b_F(\theta, \cdot)$ on $\mathcal{G}$. Correspondingly, for any function of the form $b_F(\theta, g, g^*)$ for $g, g^* \in \mathcal{G}$, let $b_F(\theta)$ denote the function $b_F(\theta, \cdot, \cdot)$ on $\mathcal{G}^2$.

### 5.3 Uniform Asymptotic Distribution of the Test Statistic

The following Theorem provides a uniform asymptotic distributional result for the test statistic $T_n(\theta)$. It is used to establish uniform asymptotic coverage probability results for GMS and PA CS’s.

**Theorem 1.** Suppose Assumptions M, S1, and S2 hold. Then, for every compact subset $\mathcal{H}_{2,\text{cpt}}$ of $\mathcal{H}_2$, all constants $x_{h_n,F(\theta)} \in \mathbb{R}$ that may depend on $(\theta, F)$ and $n$ through $h_{n,F}(\theta)$,
and all $\delta > 0$, we have

(a) $\limsup_{n \to \infty} \sup_{h, F, (\theta, F) \in F: h_2(F(\theta)) \in \mathcal{H}_{2, cp}} \left[ P_F(T_n(\theta) > x_{h_n,F(\theta)}) - P(T(h_n,F(\theta)) + \delta > x_{h_n,F(\theta)}) \right] \leq 0,$

(b) $\liminf_{n \to \infty} \inf_{h, F, (\theta, F) \in F: h_2(F(\theta)) \in \mathcal{H}_{2, cp}} \left[ P_F(T_n(\theta) > x_{h_n,F(\theta)}) - P(T(h_n,F(\theta)) - \delta > x_{h_n,F(\theta)}) \right] \geq 0,$

where $T(h) = \int S(\nu_{h_2}(g) + h_1(g), h_2(g) + \varepsilon I_k) dQ(g)$ and $\nu_{h_2}(\cdot)$ is the Gaussian process defined in (4.2).

Comments. 1. Theorem 1 gives a uniform asymptotic approximation to the distribution function of $T_n(\theta)$. Uniformity holds without any restrictions on the normalized mean (i.e., moment inequality slackness) functions $\{h_{1,n,F_n}(\theta_n) : n \geq 1\}$. In particular, Theorem 1 does not require $\{h_{1,n,F_n}(\theta_n) : n \geq 1\}$ to converge as $n \to \infty$ or to belong to a compact set. The Theorem does not require that $T_n(\theta)$ has a unique asymptotic distribution under any sequence $\{(\theta_n, F_n) \in F : n \geq 1\}$. These are novel features of Theorem 1.

2. The supremum and infimum in Theorem 1 are over compact sets of covariance kernels $\mathcal{H}_{2, cp}$, rather than the parameter space $\mathcal{H}_2$. This is not particularly problematic because the potential asymptotic size problems that arise in moment inequality models are due to the pointwise discontinuity of the asymptotic distribution of the test statistic as a function of the means of the moment inequality functions, not as a function of the covariances between different moment inequalities.

3. Theorem 1 is proved using an almost sure representation argument and the bounded convergence theorem. The continuous mapping theorem does not apply because (i) $T_n(\theta)$ does not converge in distribution uniformly over $(\theta, F) \in F$ and (ii) $h_{1,n,F}(\theta, g)$ typically does not converge uniformly over $g \in G$ even in cases where it has a pointwise limit for all $g \in G$.

5.4 Uniform Asymptotic Coverage Probability Results

The Theorem below gives uniform asymptotic coverage probability results for GMS and PA CS’s.

The following assumption is not needed for GMS CS’s to have uniform asymptotic coverage probability greater than or equal to $1 - \alpha$. It is used, however, to show that
GMS CS’s are not asymptotically conservative. (Note that typically GMS and PA CS’s are asymptotically non-similar.) For \((\theta, F) \in \mathcal{F}\) and \(j = 1, \ldots, k\), define \(h_{1,\infty,F}(\theta)\) to have \(j\)th element equal to \(\infty\) if \(E_F m_j(W_i, \theta, g) > 0\) and \(j \leq p\) and 0 otherwise. Let \(h_{\infty,F}(\theta) = (h_{1,\infty,F}(\theta), h_{2,F}(\theta))\).

**Assumption GMS2.** (a) For some \((\theta_c, F_c) \in \mathcal{F}\), the distribution function of \(T(h_{1,\infty,F_c}(\theta_c))\) is continuous and strictly increasing at its \(1 - \alpha\) quantile plus \(\delta\), viz., \(c_0(h_{1,\infty,F_c}(\theta_c), 1 - \alpha) + \delta\), for all \(\delta > 0\) sufficiently small and \(\delta = 0\),

(b) \(B_n \rightarrow \infty\) as \(n \rightarrow \infty\), and

(c) \(n^{1/2}/\kappa_n \rightarrow \infty\) as \(n \rightarrow \infty\).

Assumption GMS2(a) is not restrictive. For example, it holds for typical choices of \(S\) and \(Q\) for any \((\theta_c, F_c)\) for which \(Q(\{g \in \mathcal{G} : h_{1,\infty,F_c}(\theta_c, g) = 0\}) > 0\). Assumption GMS2(c) is satisfied by typical choices of \(\kappa_n\), such as \(\kappa_n = (0.3 \ln n)^{1/2}\).

**Theorem 2.** Suppose Assumptions M, S1, and S2 hold and Assumption GMS1 also holds when considering GMS CS’s. Then, for every compact subset \(\mathcal{H}_{2,cpt}\) of \(\mathcal{H}_2\), GMS and PA confidence sets \(CS_n\) satisfy

(a) \(\liminf_{n \rightarrow \infty} \inf_{(\theta,F) \in \mathcal{F}} P_F(\theta \in CS_n) \geq 1 - \alpha\) and

(b) if Assumption GMS2 also holds and \(h_{2,F_c}(\theta_c) \in \mathcal{H}_{2,cpt}\) (for \((\theta_c, F_c) \in \mathcal{F}\) as in Assumption GMS2), then the GMS confidence set satisfies

\[
\lim_{\eta \rightarrow 0} \liminf_{n \rightarrow \infty} \inf_{(\theta,F) \in \mathcal{F}} P_F(\theta \in CS_n) = 1 - \alpha,
\]

where \(\eta\) is as in the definition of \(c(h, 1 - \alpha)\).

**Comments.** 1. Theorem 2(a) shows that GMS and PA CS’s have correct uniform asymptotic size over compact sets of covariance kernels. Theorem 2(b) shows that GMS CS’s are at most infinitesimally conservative asymptotically. The uniformity results hold whether the moment conditions involve “weak” or “strong” instrumental variables.

2. An analogue of Theorem 2(b) holds for PA CS’s if Assumption GMS2(a) holds and \(E_{F_c}(m_j(W_i, \theta_c)|X_i) = 0\) a.s. for \(j \leq p\) (i.e., if the conditional moment inequalities hold as equalities a.s.) under some \((\theta_c, F_c) \in \mathcal{F}\)\(^{15}\). However, the latter condition is restrictive—it fails in many applications.

\(^{15}\)The proof follows easily from results given in the proof of Theorem 2(b).
3. Theorem 2 applies to CvM tests based on integrals with respect to a probability measure $Q$. Extensions to A-CvM and KS tests are given in Supplemental Appendix B.

4. Theorem 2 is stated for the case where the parameter of interest, $\theta$, is finite-dimensional. However, Theorem 2 and all of the results below except the local power results also hold for infinite-dimensional parameters $\theta$. However, computation of a CS is noticeably more difficult in the infinite-dimensional case.

5. Comments 1 and 2 to Theorem 1 also apply to Theorem 2.

6. Power Against Fixed Alternatives

We now show that the power of GMS and PA tests converges to one as $n \to \infty$ for all fixed alternatives (for which the moment functions have $2+\delta$ moments finite). Thus, both tests are consistent tests. This implies that for any fixed distribution $F_0$ and any parameter value $\theta_*$ not in the identified set $\Theta_{F_0}$, the GMS and PA CS’s do not include $\theta_*$ with probability approaching one. In this sense, GMS and PA CS’s based on $T_n(\theta)$ fully exploit the conditional moment inequalities and equalities. CS’s based on a finite number of unconditional moment inequalities and equalities do not have this property.

The null hypothesis is

\[ H_0 : E_{F_0}(m_j(W_i, \theta_*))|X_i| \geq 0 \text{ a.s. } [F_{X,0}] \text{ for } j = 1, \ldots, p \text{ and } \]

\[ E_{F_0}(m_j(W_i, \theta_*))|X_i| = 0 \text{ a.s. } [F_{X,0}] \text{ for } j = p + 1, \ldots, k, \]  

(6.1)

where $\theta_*$ denotes the null parameter value and $F_0$ denotes the fixed true distribution of the data. The alternative is $H_1 : H_0$ does not hold. The following assumption specifies the properties of fixed alternatives (FA).

**Assumption FA.** The value $\theta_* \in \Theta$ and the true distribution $F_0$ satisfy: (a) $P_{F_0}(X_i \in X_{F_0}(\theta_*)) > 0$, where $X_{F_0}(\theta_*)$ is defined in (3.11), (b) $\{W_i : i \geq 1\}$ are i.i.d. under $F_0$, (c) $\text{Var}_{F_0}(m_j(W_i, \theta_*)) > 0$ for $j = 1, \ldots, k$, (d) $E_{F_0}||m(W_i, \theta_*)||^{2+\delta} < \infty$ for some $\delta > 0$, and (e) Assumption M holds with $F_0$ in place of $F$ and $F_n$ in Assumptions M(b) and M(c), respectively.

Assumption FA(a) states that violations of the conditional moment inequalities or equalities occur for the null parameter $\theta_*$ for $X_i$ values in some set with positive probability under $F_0$. Thus, under Assumption FA(a), the moment conditions specified in (6.1)
do not hold. Assumptions FA(b)-(d) are standard i.i.d. and moment assumptions. Assumption FA(e) holds for \( G_{\text{cube}} \) and \( G_{\text{box}} \) because \( C_{\text{cube}} \) and \( C_{\text{box}} \) are Vapnik-Cervonenkis classes of sets.

For \( g \in \mathcal{G} \), define

\[
m_j^*(g) = E_{F_0} m_j(W_i; \theta_*) g_j(X_i) / \sigma_{F_0,j}(\theta_*) \quad \text{and} \quad \beta(g) = \max \{-m_1^*(g), \ldots, -m_p^*(g), |m_{p+1}^*(g)|, \ldots, |m_k^*(g)|\}.
\] (6.2)

Under Assumptions FA(a) and CI, \( \beta(g_0) > 0 \) for some \( g_0 \in \mathcal{G} \).

For a test based on \( T_n(\theta) \) to have power against all fixed alternatives, the weighting function \( Q \) cannot “ignore” any elements \( g \in \mathcal{G} \), because such elements may have identifying power for the identified set. This requirement is captured in the following assumption, which is shown in Lemma 4 to hold for the two probability measures \( Q \) considered in Section 3.4.

Let \( F_{X,0} \) denote the distribution of \( X_i \) under \( F_0 \). Define the pseudo-metric \( \rho_X \) on \( \mathcal{G} \) by

\[
\rho_X(g, g^*) = (E_{F_{X,0}} \| g(X_i) - g^*(X_i) \|^2)^{1/2} \quad \text{for} \ g, g^* \in \mathcal{G}.
\] (6.3)

Let \( B_{\rho_X}(g, \delta) \) denote an open \( \rho_X \)-ball in \( \mathcal{G} \) centered at \( g \) with radius \( \delta \).

**Assumption Q.** The support of \( Q \) under the pseudo-metric \( \rho_X \) is \( \mathcal{G} \). That is, for all \( \delta > 0 \), \( Q(B_{\rho_X}(g, \delta)) > 0 \) for all \( g \in \mathcal{G} \).

The next result establishes Assumption Q for the probability measures \( Q \) on \( G_{\text{cube}} \) and \( G_{\text{box}} \) discussed in Section 3.4 above. Supplemental Appendix B provides analogous results for three other choices of \( Q \) and \( \mathcal{G} \).

**Lemma 4.** Assumption Q holds for the weight functions:

(a) \( Q_a = \Pi_{\text{cube}}^{-1} Q_{AR} \) on \( G_{\text{cube}} \), where \( Q_{AR} \) is uniform on \( a \in \{1, \ldots, 2r\}^{d_x} \) conditional on \( r \) and \( r \) has some probability mass function \( \{w(r) : r = r_0, r_0 + 1, \ldots\} \) with \( w(r) > 0 \) for all \( r \) and

(b) \( Q_b = \Pi_{\text{box}}^{-1} Unif([0, 1]^{d_x} \times (0, \bar{r})^{d_x}) \) on \( G_{\text{box}} \) with the centers of the boxes in \( [0, 1]^{d_x} \).

**Comment.** The uniform distribution that appears in both specifications of \( Q \) in the Lemma could be replaced by another distribution and the results of the Lemma still hold provided the other distribution has the same support.

The following Theorem shows that GMS and PA tests are consistent against all fixed
alternatives.

**Theorem 3.** Under Assumptions FA, CI, Q, S1, S3, and S4,

(a) \( \lim_{n \to \infty} P_{F_0}(T_n(\theta_*) > c(\varphi_n(\theta_*), \hat{h}_{2,n}(\theta_*), 1 - \alpha)) = 1 \) and

(b) \( \lim_{n \to \infty} P_{F_0}(T_n(\theta_*) > c(0, \hat{h}_{2,n}(\theta_*), 1 - \alpha)) = 1 \).

**Comment.** Theorem 3 implies the following for GMS and PA CS’s: Suppose \((\theta_0, F_0) \in \mathcal{F}\) for some \(\theta_0 \in \Theta, \theta_* (\in \Theta)\) is not in the identified set \(\Theta_{F_0}\) (defined in (2.2)), and Assumptions FA(c), FA(d), CI, M, S1, S3, and S4 hold, then for GMS and PA CS’s we have\(^{16}\)

\[
\lim_{n \to \infty} P_{F_0}(\theta_* \in CS_n) = 0. \tag{6.4}
\]

7 Power Against Some \(n^{-1/2}\)-Local Alternatives

In this section, we show that GMS and PA tests have power against certain, but not all, \(n^{-1/2}\)-local alternatives. This holds even though these tests fully exploit the information in the conditional moment restrictions, which is of an infinite-dimensional nature. These testing results have immediate implications for the volume of CS’s, see Pratt (1961).

We show that a GMS test has asymptotic power that is greater than or equal to that of a PA test (based on the same test statistic) under all alternatives with strict inequality in certain scenarios. Although we do not do so here, arguments analogous to those in Andrews and Soares (2010) could be used to show that a GMS test’s power is greater than or equal to that of a subsampling test with strictly greater power in certain scenarios.

For given \(\theta_{n,*} \in \Theta\) for \(n \geq 1\), we consider tests of

\[
H_0 : E_{F_n} m_j(W_i, \theta_{n,*}) \geq 0 \text{ for } j = 1, \ldots, p;
\]

\[
E_{F_n} m_j(W_i, \theta_{n,*}) = 0 \text{ for } j = p + 1, \ldots, k, \tag{7.1}
\]

and \((\theta_{n,*}, F_n) \in \mathcal{F}\), where \(F_n\) denotes the true distribution of the data. The null values \(\theta_{n,*}\) are allowed to drift with \(n\) or be fixed for all \(n\). Drifting \(\theta_{n,*}\) values are of interest because they allow one to consider the case of a fixed identified set, say \(\Theta_0\), and to derive

\(^{16}\)This holds because \(\theta_* \notin \Theta_{F_0}\) implies Assumption FA(a) holds, \((\theta_0, F_0) \in \mathcal{F}\) implies Assumption FA(b) holds, and Assumption M with \(F = F_n = F_0\) implies Assumption FA(c) holds.
the asymptotic probability that parameter values $\theta_{n,*}$ that are not in the identified set, but drift toward it at rate $n^{-1/2}$, are excluded from a GMS or PA CS. In this scenario, the sequence of true distributions are ones that yield $\Theta_0$ to be the identified set, i.e., $F_n \in \mathcal{F}_0 = \{F : \Theta_F = \Theta_0\}$.

The true parameters and distributions are denoted $(\theta_n, F_n)$. We consider the Kolmogorov-Smirnov metric on the space of distributions $F$.

The $n^{-1/2}$-local alternatives are defined as follows.

**Assumption LA1.** The true parameters and distributions $\{(\theta_n, F_n) \in \mathcal{F} : n \geq 1\}$ and the null parameters $\{\theta_{n,*} : n \geq 1\}$ satisfy:

(a) $\theta_{n,*} = \theta_n + \lambda n^{-1/2}(1 + o(1))$ for some $\lambda \in R^{d_\theta}$, $\theta_{n,*} \in \Theta$, $\theta_{n,*} \to \theta_0$, and $F_n \to F_0$ for some $(\theta_0, F_0) \in \mathcal{F}$,

(b) $n^{1/2}E_{F_n} m_j(W_i, \theta_n, g)/\sigma_{F_n,j}(\theta_n) \to h_{1,j}(g)$ for some $h_{1,j}(g) \in [0, \infty]$ for $j = 1, \ldots, p$ and all $g \in \mathcal{G}$,

(c) $d(h_{2,F_n}(\theta_n), h_{2,F_0}(\theta_0)) \to 0$ and $d(h_{2,F_n}(\theta_{n,*}), h_{2,F_0}(\theta_0)) \to 0$ as $n \to \infty$ (where $d$ is defined in (5.6)),

(d) $\text{Var}_{F_n}(m_j(W_i, \theta_{n,*})) > 0$ for $j = 1, \ldots, k$, for $n \geq 1$, and

(e) $\sup_{n \geq 1} E_{F_n} |m_j(W_i, \theta_{n,*})/\sigma_{F_n,j}(\theta_{n,*})|^{2+\delta} < \infty$ for $j = 1, \ldots, k$ for some $\delta > 0$.

**Assumption LA2.** The $k \times d$ matrix $\Pi_F(\theta, g) = (\partial/\partial \theta')[D_F^{-1/2}(\theta)E_F m(W_i, \theta, g)]$ exists and is continuous in $(\theta, F)$ for all $(\theta, F)$ in a neighborhood of $(\theta_0, F_0)$ for all $g \in \mathcal{G}$.

For notational simplicity, we let $h_2$ abbreviate $h_{2,F_0}(\theta_0)$ throughout this section. Assumption LA1(a) states that the true values $\{\theta_n : n \geq 1\}$ are $n^{-1/2}$-local to the null values $\{\theta_{n,*} : n \geq 1\}$. Assumption LA1(b) specifies the asymptotic behavior of the (normalized) moment inequality functions when evaluated at the true values $\{\theta_n : n \geq 1\}$. Under the true values, these (normalized) moment inequality functions are non-negative. Assumption LA1(c) specifies the asymptotic behavior of the covariance kernels $\{h_{2,F_n}(\theta_{n,*}, \cdot, \cdot) : n \geq 1\}$ and $\{h_{2,F_n}(\theta_{n,*}, \cdot, \cdot) : n \geq 1\}$. Assumptions LA1(d) and LA1(e) are standard. Assumption LA2 is a smoothness condition on the normalized expected moment functions. Given the smoothing properties of the expectation operator, this condition is not restrictive.

Under Assumptions LA1 and LA2, we show that the moment inequality functions
evaluated at the null values \( \{\theta_{n,*} : n \geq 1\} \) satisfy:

\[
\lim_{n \to \infty} n^{1/2} D_{F_n}^{-1/2}(\theta_{n,*}) E_{F_n} m(W_i, \theta_{n,*}, g) = h_1(g) + \Pi_0(g) \lambda \in R^k, \text{ where}
\]

\[
h_1(g) = (h_{1,1}(g), \ldots, h_{1,p}(g), 0, \ldots, 0)' \in R^k \text{ and } \Pi_0(g) = \Pi_{F_0}(\theta_0, g).
\] (7.2)

If \( h_{1,j}(g) = \infty \), then by definition \( h_{1,j}(g) + y = \infty \) for any \( y \in R \). We have \( h_1(g) + \Pi_0(g) \lambda \in R_{[1,\infty]}^p \times R^v \). Let \( \Pi_{0,j}(g) \) denote the \( j \)th row of \( \Pi_0(g) \) written as a column \( d_\theta \)-vector for \( j = 1, \ldots, k \).

The null hypothesis, defined in (7.1), does not hold (at least for \( n \) large) when the following assumption holds.

**Assumption LA3.** For some \( g \in G \), \( h_{1,j}(g) + \Pi_{0,j}(g)' \lambda < 0 \) for some \( j = 1, \ldots, p \) or \( \Pi_{0,j}(g)' \lambda \neq 0 \) for some \( j = p + 1, \ldots, k \).

Under the following assumption, if \( \lambda = \beta \lambda_0 \) for some \( \beta > 0 \) and some \( \lambda_0 \in R^{d_\theta} \), then the power of GMS and PA tests against the perturbation \( \lambda \) is arbitrarily close to one for \( \beta \) arbitrarily large:

**Assumption LA3’.** \( Q(\{g \in G : h_{1,j}(g) < \infty \text{ and } \Pi_{0,j}(g)' \lambda_0 < 0 \text{ for some } j = 1, \ldots, p \text{ or } \Pi_{0,j}(g)' \lambda_0 \neq 0 \text{ for some } j = p + 1, \ldots, k\} ) > 0 \).

Assumption LA3’ requires that either (i) the moment equalities detect violations of the null hypothesis for \( g \) functions in a set with positive \( Q \) measure or (ii) the moment inequalities are not too far from being binding, i.e., \( h_{1,j}(g) < \infty \), and the perturbation \( \lambda_0 \) occurs in a direction that yields moment inequality violations for \( g \) functions in a set with positive \( Q \) measure.

Assumption LA3 is employed with the KS test. It is weaker than Assumption LA3’. It is shown in Supplemental Appendix B that if Assumption LA3 holds with \( \lambda = \beta \lambda_0 \) (and some other assumptions), then the power of KS-GMS and KS-PA tests against the perturbation \( \lambda \) is arbitrarily close to one for \( \beta \) arbitrarily large.

In Supplemental Appendix B we illustrate the verification of Assumptions LA1-LA3 and LA3’ in a simple example. In this example, \( v = 0 \), \( h_{1,j}(g) < \infty \forall g \in G \), and \( \Pi_{0,j}(g) = - Eg(X_i) \forall g \in G \), so \( \Pi_{0,j}(g)' \lambda_0 < 0 \) in Assumption LA3’ \( \forall g \in G \) with \( Eg(X_i) > 0 \) for all \( \lambda_0 > 0 \).

Assumptions LA3 and LA3’ can fail to hold even when the null hypothesis is violated. This typically happens if the true parameter/true distribution is fixed, i.e., \( (\theta_n, F_n) = (\theta_0, F_0) \in F \) for all \( n \) in Assumption LA1(a), the null hypothesis parameter \( \theta_{n,*} \) drifts
with \( n \) as in Assumption LA1(a), and \( P_{F_0}(X_i \in \mathcal{X}_{zero}) = 0 \), where \( \mathcal{X}_{zero} = \{ x \in \mathbb{R}^d : E_{F_0}(m(W_i, \theta_0)|X_i = x) = 0 \} \). In such cases, typically \( h_{1,j}(g) = \infty \forall g \in \mathcal{G} \) (because the conditional moment inequalities are non-binding with probability one), Assumptions LA3 and LA3' fail, and Theorem 4 below shows that GMS and PA tests have trivial asymptotic power against such \( n^{-1/2} \)-local alternatives. For example, this occurs in the example of Section 12.5 in Supplemental Appendix B when \( P_{F_0}(X_i \in \mathcal{X}_{zero}) = 0 \).

As discussed in Section 12.5, asymptotic results based on a fixed true distribution provide poor approximations when \( P_{F_0}(X_i \in \mathcal{X}_{zero}) = 0 \). Hence, one can argue that it makes sense to consider local alternatives for sequences of true distributions \( \{ F_n : n \geq 1 \} \) for which \( h_{1,j}(g) < \infty \) for a non-negligible set of \( g \in \mathcal{G} \), as in Assumption LA3', because such sequences are the ones for which the asymptotics provide good finite-sample approximations. For such sequences, GMS and PA tests have non-trivial power against \( n^{-1/2} \)-local alternatives, as shown in Theorem 4 below.

Nevertheless, local-alternative power results can be used for multiple purposes and for some purposes, one may want to consider local-alternatives other than those that satisfy Assumptions LA3 and LA3'.

The asymptotic distribution of \( T_n(\theta_{n,*}) \) under \( n^{-1/2} \)-local alternatives is shown to be \( J_{h,\lambda} \). By definition, \( J_{h,\lambda} \) is the distribution of

\[
T(h_1 + \Pi_0 \lambda, h_2) = \int S(\nu_{h_2}(g) + h_1(g) + \Pi_0(g)\lambda, h_2(g) + \varepsilon I_k)dQ(g),
\]

where \( h = (h_1, h_2) \), \( \Pi_0 \) denotes \( \Pi_0(\cdot) \), and \( \nu_{h_2}(\cdot) \) is a mean zero Gaussian process with covariance kernel \( h_2 = h_{2,F_0}(\theta_0) \). For notational simplicity, the dependence of \( J_{h,\lambda} \) on \( \Pi_0 \) is suppressed.

Next, we introduce two assumptions, viz., Assumptions LA4 and LA5, that are used only for GMS tests in the context of local alternatives. The population analogues of \( \Sigma_n(\theta, g) \) and its diagonal matrix are

\[
\overline{\Sigma}_F(\theta, g) = \Sigma_F(\theta, g, g) + \varepsilon \Sigma_F(\theta, 1_k, 1_k) \quad \text{and} \quad \overline{D}_F(\theta, g) = \text{Diag}(\overline{\Sigma}_F(\theta, g)),
\]

where \( \Sigma_F(\theta, g, g) \) is defined in (5.1). Let \( \overline{\sigma}_{F,j}(\theta, g) \) denote the square-root of the \((j, j)\) element of \( \overline{\Sigma}_F(\theta, g) \).

**Assumption LA4.** \( \kappa_n^{-1} n^{1/2} E_{F_n} m_j(W_i, \theta_n, g)/\overline{\sigma}_{F,j}(\theta_n, g) \rightarrow \pi_{1,j}(g) \) for some \( \pi_{1,j}(g) \in [0, \infty] \) for \( j = 1, \ldots, p \) and \( g \in \mathcal{G} \).
In Assumption LA4 the functions are evaluated at the true value $\theta_n$, not at the null value $\theta_n^*$, and $(\theta_n, F_n) \in \mathcal{F}$. In consequence, the moment functions in Assumption LA4 satisfy the moment inequalities and $\pi_{1,j}(g) \geq 0$ for all $j = 1, \ldots, p$ and $g \in \mathcal{G}$. Note that $0 \leq \pi_{1,j}(g) \leq h_{1,j}(g)$ for all $j = 1, \ldots, p$ and all $g \in \mathcal{G}$ (by Assumption LA1(b) and $\kappa_n \to \infty$).

Let $\pi_1(g) = (\pi_{1,1}(g), \ldots, \pi_{1,p}(g), 0, \ldots, 0)' \in [0, \infty]^p \times \{0\}^n$. Let $c_0(\varphi(\pi_1), h_2, 1 - \alpha)$ denote the $1 - \alpha$ quantile of

$$T(\varphi(\pi_1), h_2) = \int S(\nu_{h_2}(g) + \varphi(\pi_1(g)), h_2(g) + \varepsilon I_n)dQ(g),$$

where

$$\varphi(\pi_1(g)) = (\varphi(\pi_{1,1}(g)), \ldots, \varphi(\pi_{1,p}(g)), 0, \ldots, 0)' \in \mathbb{R}^k$$

and

$$\varphi(x) = 0 \text{ if } x \leq 1 \text{ and } \varphi(x) = \infty \text{ if } x > 1.$$  

Let $\varphi(\pi_1)$ denote $\varphi(\pi_1(\cdot))$. The probability limit of the GMS critical value $c(\varphi_n(\theta), \widehat{h}_{2,n}(\theta), 1 - \alpha)$ is shown below to be $c(\varphi(\pi_1), h_2, 1 - \alpha) = c_0(\varphi(\pi_1), h_2, 1 - \alpha + \eta) + \eta$.

**Assumption LA5.**

(a) $Q(G_\varphi) = 1$, where $G_\varphi = \{g \in \mathcal{G} : \pi_{1,j}(g) \neq 1 \text{ for } j = 1, \ldots, p\}$, and

(b) the distribution function of $T(\varphi(\pi_1), h_2)$ is continuous and strictly increasing at $x = c(\varphi(\pi_1), h_2, 1 - \alpha)$, where $h_2 = h_{2,F_0}(\theta_0)$.

The value 1 that appears in $G_\varphi$ in Assumption LA5(a) is the discontinuity point of $\varphi$. Assumption LA5(a) implies that the $n^{-1/2}$-local power formulae given below do not apply to certain “discontinuity vectors” $\pi_1(\cdot)$, but this is not particularly restrictive.\(^{17}\)

Assumption LA5(b) typically holds because of the absolute continuity of the Gaussian random variables $\nu_{h_2}(g)$ that enter $T(\varphi(\pi_1), h_2)$.\(^{18}\)

The following assumption is used only for PA tests.

**Assumption LA6.** The distribution function of $T(0, h_2)$ is continuous and strictly increasing at $x = c(0, h_2, 1 - \alpha)$, where $h_2 = h_{2,F_0}(\theta_0)$.

\(^{17}\)Assumption LA5(a) is not particularly restrictive because in cases where it fails, one can obtain lower and upper bounds on the local asymptotic power of GMS tests by replacing $c(\varphi(\pi_1), h_2, 1 - \alpha)$ by $c(\varphi(\pi_1), h_2, 1 - \alpha)$ and $c(\varphi(\pi_1), h_2, 1 - \alpha)$, respectively, in Theorem 4(a). By definition, $\varphi(\pi_1(-)) = \varphi(\pi_1(\cdot)-)$ and $\varphi(\pi_1(\cdot)+)$ is the limit from the right of $\varphi(x)$ at $x = \pi_1(g)$. Likewise $\varphi(\pi_1(+)) = \varphi(\pi_1(\cdot)+)$ and $\varphi(\pi_1(\cdot)+)$ is the limit from the right of $\varphi(x)$ at $x = \pi_1(g)$.

\(^{18}\)If Assumption LA5(b) fails, one can obtain lower and upper bounds on the local asymptotic power of GMS tests by replacing $J_{h,\lambda}(c(\varphi(\pi_1), h_2, 1 - \alpha))$ by $J_{h,\lambda}(c(\varphi(\pi_1), h_2, 1 - \alpha)+)$ and $J_{h,\lambda}(c(\varphi(\pi_1), h_2, 1 - \alpha)-)$, respectively, in Theorem 4(a), where the latter are the limits from the left and right, respectively, of $J_{h,\lambda}(x)$ at $x = c(\varphi(\pi_1), h_2, 1 - \alpha)$. 

32
The probability limit of the PA critical value is shown to be \( c(0_{G}, h_2, 1 - \alpha) = c_0(0_{G}, h_2, 1 - \alpha + \eta) + \eta \), where \( c_0(0_{G}, h_2, 1 - \alpha) \) denotes the \( 1 - \alpha \) quantile of \( J_{0_{G},h_2,\theta_{0_{G}}} \).

**Theorem 4.** Under Assumptions M, S1, S2, and LA1-LA2,

(a) \( \lim_{n \to \infty} P_{n}(T_n(\theta_{n,*}) > c(\varphi_n(\theta_{n,*}), \hat{h}_{2,n}(\theta_{n,*}), 1 - \alpha)) = 1 - J_{h,\lambda}(c(\varphi_1), h_2, 1 - \alpha) \)

provided Assumptions GMS1, LA4, and LA5 also hold,

(b) \( \lim_{n \to \infty} P_{n}(T_n(\theta_{n,*}) > c(0_{G}, \hat{h}_{2,n}(\theta_{n,*}), 1 - \alpha)) = 1 - J_{h,\lambda}(0_{G}, h_2, 1 - \alpha) \)

provided Assumption LA6 also holds, and

(c) \( \lim_{\beta \to \infty}[1 - J_{h,\beta\lambda_0}(c(\varphi_1), h_2, 1 - \alpha)] = \lim_{\beta \to \infty}[1 - J_{h,\beta\lambda_0}(0_{G}, h_2, 1 - \alpha)] = 1 \)

provided Assumptions LA3', S3, and S4 hold.

**Comments.** 1. Theorem 4(a) and 4(b) provide the \( n^{-1/2} \)-local alternative power function of the GMS and PA tests, respectively. Theorem 4(c) shows that the asymptotic power of GMS and PA tests is arbitrarily close to one if the \( n^{-1/2} \)-local alternative parameter \( \lambda = \beta\lambda_0 \) is sufficiently large in the sense that its scale \( \beta \) is large.

2. We have \( c(\varphi_1), h_2, 1 - \alpha \leq c(0, h_2, 1 - \alpha) \) (because \( \varphi_1(g) \geq 0 \) for all \( g \in G \) and \( S(m, \Sigma) \) is non-increasing in \( m \) by Assumption S1(b), where \( m = (m_1', m_{11}') \)). Hence, the asymptotic local power of a GMS test is greater than or equal to that of a PA test. Strict inequality holds whenever \( \pi_1(\cdot) \) is such that \( Q(\{g \in G : \varphi_1(g) > 0\}) > 0 \). The latter typically occurs whenever the conditional moment inequality \( E_{F_n}(m_j(W_i, \theta_{n,*}) | X_i) \) for some \( j = 1, \ldots, p \) is bounded away from zero as \( n \to \infty \) with positive \( X_i \) probability.

3. The results of Theorem 4 hold under the null hypothesis as well as under the alternative. The results under the null quantify the degree of asymptotic non-similarity of the GMS and PA tests.

4. Suppose the assumptions of Theorem 4 hold and each distribution \( F_n \) generates the same identified set, call it \( \Theta_0 = \Theta_{F_n} \forall n \geq 1 \). Then, Theorem 4(a) implies that the asymptotic probability that a GMS CS includes, \( \theta_{n,*} \), which lies within \( O(n^{-1/2}) \) of the identified set, is \( J_{h,\lambda}(\varphi_1, h_2, 1 - \alpha) \). If \( \lambda = \beta\lambda_0 \) and Assumptions LA3', S3, and S4 also hold, then \( \theta_{n,*} \) is not in \( \Theta_0 \) (at least for \( \beta \) large) and the asymptotic probability that a GMS or PA CS includes \( \theta_{n,*} \) is arbitrarily close to zero for \( \beta \) arbitrarily large by Theorem 4(c). Analogous results hold for PA CS’s.
8 Preliminary Consistent Estimation of Identified Parameters and Time Series

In this section, we consider the case in which the moment functions in (2.4) depend on a parameter $\tau$ as well as $\theta$ and a preliminary consistent estimator, $\hat{\tau}_n(\theta)$, of $\tau$ is available when $\theta$ is the true value. (This requires that $\tau$ is identified given the true value $\theta$.) For example, this situation often arises with game theory models, as in the third model considered in Section 9 below. The parameter $\tau$ may be finite dimensional or infinite dimensional. As pointed out to us by A. Aradillas-López, infinite-dimensional parameters arise as expectations functions in some game theory models. Later in the section, we also consider the case where $f_{W_i}$ are time series observations.

Suppose the moment functions are of the form $m_j(W_i; b_n(W_i; g))$ and the model specifies that (2.1) holds with $m_j(W_i, \tau_F(\theta))$ in place of $m_j(W_i, \theta)$ for $j \leq k$ for some $\tau_F(\theta)$ that may depend on $\theta$ and $F$.

The normalized sample moment functions are of the form

$$n^{1/2} \overline{m}_n(\theta, g) = n^{-1/2} \sum_{i=1}^{n} m(W_i, \theta, \hat{\tau}_n(\theta), g).$$

(8.1)

In the infinite-dimensional case, $m(W_i, \theta, \hat{\tau}_n(\theta), g)$ can be of the form $m^*(W_i, \theta, \hat{\tau}_n(W_i, \theta), g)$, where $\hat{\tau}_n(W_i, \theta) : R^{d_w} \times \Theta \to R^{d_r}$ for some $d_r < \infty$.

Given (8.1), the quantity $\Sigma_F(\theta, g, g^*)$ in (5.1) denotes the asymptotic covariance of $n^{1/2} \overline{m}_n(\theta, \hat{\tau}_n(\theta), g)$ and $n^{1/2} \overline{m}_n(\theta, \hat{\tau}_n(\theta), g^*)$ under $(\theta, F)$, rather than $\text{Cov}_F(m(W_i, \theta, g), m(W_i, \theta, g^*))$. Correspondingly, $\widehat{\Sigma}_n(\theta, g, g^*)$ is not defined by (4.5) but is taken to be an estimator of $\Sigma_F(\theta, g, g^*)$ that is consistent under $(\theta, F)$. With these adjusted definitions of $\overline{m}_n(\theta, g)$ and $\widehat{\Sigma}_n(\theta, g, g^*)$, the test statistic $T_n(\theta)$ and GMS or PA critical value $c_{n, 1-\alpha}(\theta)$ are defined in the same way as above.\footnote{When computing bootstrap critical values, one needs to bootstrap the estimator $\hat{\tau}_n(\theta)$ as well as the observations $\{W_i : i \leq n\}$.}

For example, when $\tau$ is finite dimensional, the preliminary estimator $\hat{\tau}_n(\theta)$ is chosen to satisfy:

$$n^{1/2}(\hat{\tau}_n(\theta) - \tau_F(\theta)) \xrightarrow{d} Z_F \text{ as } n \to \infty \text{ under } (\theta, F) \in \mathcal{F},$$

(8.2)
The normalized sample moments can be written as

\[ n^{1/2} \overline{m}_n(\theta, g) = D_F^{1/2}(\theta)(\nu_{n,F}(\theta, g) + h_{1,n,F}(\theta, g)), \]

where

\[ \nu_{n,F}(\theta, g) = n^{-1/2} \sum_{i=1}^{n} D_F^{-1/2}(\theta)[m(W_i, \theta, \hat{\tau}_n(\theta), g) - E_F m(W_i, \theta, \tau_F(\theta), g)], \]

\[ h_{1,n,F}(\theta, g) = n^{1/2} D_F^{-1/2}(\theta) E_F m(W_i, \theta, \tau_F(\theta), g). \]  

(8.3)

In place of Assumption M, we use the following empirical process (EP) assumption. Let \( \Rightarrow \) denote weak convergence. Let \( \{a_n : n \geq 1\} \) denote a subsequence of \( \{n\} \).

**Assumption EP.** (a) For some specification of the parameter space \( \mathcal{F} \) that imposes the conditional moment inequalities and equalities and all \( (\theta, F) \in \mathcal{F}, \nu_{n,F}(\theta, \cdot) \Rightarrow \nu_{h_2,F}(\theta)(\cdot) \) as \( n \to \infty \) under \( (\theta, F) \), for some mean zero Gaussian process \( \nu_{h_2,F}(\theta)(\cdot) \) on \( \mathcal{G} \) with covariance kernel \( h_{2,F}(\theta) \) on \( \mathcal{G} \times \mathcal{G} \) and bounded uniformly \( \rho \)-continuous sample paths a.s. for some pseudo-metric \( \rho \) on \( \mathcal{G} \).

(b) For any subsequence \( \{(\theta_{a_n}, F_{a_n}) \in \mathcal{F} : n \geq 1\} \) for which \( \lim_{n \to \infty} \sup_{g,g^* \in \mathcal{G}} ||h_{2,F_{a_n}}(\theta_{a_n}, g, g^*) - h_2(g, g^*)|| = 0 \) for some \( k \times k \) matrix-valued covariance kernel on \( \mathcal{G} \times \mathcal{G} \), we have (i) \( \nu_{a_n,F_{a_n}}(\theta_{a_n}, \cdot) \Rightarrow \nu_{h_2}(\cdot) \) and (ii) \( \sup_{g,g^* \in \mathcal{G}} ||\hat{h}_{2,a_n,F_{a_n}}(\theta_{a_n}, g, g^*) - h_2(g, g^*)|| \to_p 0 \) as \( n \to \infty \).

The quantity \( \hat{h}_{2,a_n,F_{a_n}}(\theta_{a_n}, g, g^*) \) is defined as in previous sections but with \( \hat{\Sigma}_n(\theta, g, g^*) \) and \( \Sigma_F(\theta, g, g^*) \) defined as in this section.

With Assumption EP in place of Assumption M, the results of Theorem 2 hold when the GMS or PA CS depends on a preliminary estimator \( \hat{\tau}_n(\theta) \). (The proof is the same as that given for Theorem 2 in Supplemental Appendices A and C with Assumption EP replacing the results of Lemma A1.)

Next, we consider time series observations \( \{W_i : i \leq n\} \). Let the moment conditions and sample moments be defined as in (2.3) and (3.3), but do not impose the definitions of \( \mathcal{F} \) and \( \hat{\Sigma}_n(\theta, g) \) in (2.3) and (3.4). Instead, define \( \hat{\Sigma}_n(\theta, g) \) in a way that is suitable for the temporal dependence properties of \( \{m(W_i, \theta, g) : i \leq n\} \). For example, \( \hat{\Sigma}_n(\theta, g) \) might need to be defined to be a heteroskedasticity and autocorrelation consistent (HAC) variance estimator. Or, if \( \{m(W_i, \theta) : i \leq n\} \) have zero autocorrelations under \( (\theta, F) \), define \( \hat{\Sigma}_n(\theta, g) \) as in (3.4). Given these definitions of \( \overline{m}_n(\theta, g) \) and \( \hat{\Sigma}_n(\theta, g) \), define the

\[ \underline{\text{Equation (8.2) is only needed for this result in order to verify Assumption EP(a) in the finite-dimensional } \tau \text{ case}.} \]
test statistic \(T_n(\theta)\) and GMS or PA critical value \(c_{n,1-\alpha}(\theta)\) as in previous sections.\(^{21}\)

Define \(\nu_{n,r}(\theta, g)\) as in (5.2). Now, with Assumption EP in place of Assumption M, the results of Theorem 2 hold with time series observations.

Note that Assumption EP also can be used when the observations are independent but not identically distributed.

9 Monte Carlo Simulations

In this section, we describe how the tests introduced in this paper are computed and provide simulation evidence concerning their finite-sample properties. We consider three models: a quantile selection model, an interval-outcome linear regression model (as in Manski and Tamer (2002)), and an entry game model with multiple equilibria. For brevity, the results for the second model are reported in Supplemental Appendix F. The size and power results for this model are remarkably similar to those for the “flat bound” version of the quantile selection model, in spite of the substantial differences between the models.

9.1 Computation of the Tests

Here we describe the steps used to compute the tests. For specificity, we focus on tests based on countable cubes and approximate GMS critical values in an i.i.d. context. We describe both the asymptotic distribution and bootstrap implementations of the critical values.

Step 1. Compute the test statistic.

(a) Transform each regressor to lie in \([0, 1]\). Let \(X_i^\dagger \in R^d\) denote the untransformed regressor vector. In the simulations reported below, we transform \(X_i^\dagger\) via a shift and rotation and then an application of the standard normal distribution function. Specifically, first compute \(\hat{\Sigma}_{X,n} = n^{-1}\sum_{i=1}^n (X_i^\dagger - \bar{X}_n^\dagger)(X_i^\dagger - \bar{X}_n^\dagger)'\), where \(\bar{X}_n^\dagger = n^{-1}\sum_{i=1}^n X_i^\dagger\). Then, let \(X_i = \Phi(\hat{\Sigma}_{X,n}^{-1/2}(X_i^\dagger - \bar{X}_n^\dagger))\), where \(\Phi(x) = (\Phi(x_1), ..., \Phi(x_d))'\) for \(x = (x_1, ..., x_d) \in R^d\) and \(\Phi(x_j)\) is the standard normal distribution function at \(x_j \in R\).

(b) Specify the functions \(g\). For countable cubes, the functions are \(g_{a,r}(x) = 1(x \in C_{a,r})\) for \(C_{a,r} \in C_{c-cube}\), where \(C_{a,r}\) and \(C_{c-cube}\) are defined in (3.12).

\(^{21}\) With bootstrap critical values, the bootstrap employed needs to take account of the time series structure of the observations. For example, a block bootstrap does so.
(c) Specify the weight function $Q_{AR}$. In the simulations, we take it to be uniform on $a \in \{1, \ldots, 2r\}^d$ given $r$, combined with $w(r) = (r^2 + 100)^{-1}$ for $r = 1, \ldots, r_{1,n}$. (See below regarding the choice of $r_{1,n}$.)

(d) Compute the CvM test statistic, which is defined by

$$ T_{n, r_{1,n}}(\theta) = \sum_{r=1}^{r_{1,n}} (r^2 + 100)^{-1} \sum_{a \in \{1, \ldots, 2r\}^d} (2r)^{-d} S(n^{1/2} \overline{m}_n(\theta, g_{a,r}), \Sigma_n(\theta, g_{a,r})), \quad (9.1) $$

where $S = S_1, S_2, \text{ or } S_3$, as defined in (3.8)-(3.10), and $\overline{m}_n(\theta, g_{a,r})$ and $\Sigma_n(\theta, g_{a,r})$ are defined in (3.3)-(3.5) with $\varepsilon = .05$. Alternatively, compute the KS statistic, which is $\sup_{g_{a,r} \in G_{c,cube}} S(n^{1/2} \overline{m}_n(\theta, g_{a,r}), \Sigma_n(\theta, g_{a,r}))$.

**Step 2.** Compute the GMS critical value based on the asymptotic distribution.

(a) Compute $\varphi_n(\theta, g_{a,r})$, as defined in (4.10), for $(a, r) \in AR$. We recommend taking $\kappa_n = (0.3 \ln(n))^{1/2}$ and $B_n = (0.4 \ln(n)/\ln \ln(n))^{1/2}$.

(b) Simulate a $(kN_g) \times \tau_{\text{reps}}$ matrix $Z$ of standard normal random variables, where $k$ is the dimension of $m(W_i, \theta)$, $N_g = \sum_{r=1}^{r_{1,n}} (2r)^d$ is the number of $g$ functions employed in Step 1(d), and $\tau_{\text{reps}}$ is the number of simulation repetitions used to simulate the asymptotic Gaussian process.

(c) Compute the $(kN_g) \times (kN_g)$ covariance matrix $\widehat{h}_{2,n,\text{mat}}(\theta)$ whose elements are the covariances $\widehat{h}_{2,n}(\theta, g_{a,r}, g_{a,r}^*)$ defined in (4.5) for functions $g_{a,r}, g_{a,r}^*$ as in Step 1(b), where $a \in \{1, \ldots, 2r\}^d$ and $r = 1, \ldots, r_{1,n}$.

(d) Compute the $(kN_g) \times \tau_{\text{reps}}$ matrix $\widehat{\nu}_n(\theta) = \widehat{h}_{2,n,\text{mat}}(\theta)^{1/2}$. Let $\widehat{\nu}_{n,j}(\theta, g_{a,r})$ denote the element of $\widehat{\nu}_n$ that corresponds to the row indexed by $g_{a,r}$ and column $j$ for $j = 1, \ldots, \tau_{\text{reps}}$.

(e) For $j = 1, \ldots, \tau_{\text{reps}}$, compute the test statistic $T_{n, r_{1,n}, j}(\theta)$ just as $T_{n, r_{1,n}}(\theta)$ is computed in Step 1(d) but with $n^{1/2} \overline{m}_n(\theta, g_{a,r})$ replaced by $\widehat{\nu}_{n,j}(\theta, g_{a,r}) + \varphi_n(\theta, g_{a,r})$.

(f) Take the critical value to be the $1 - \alpha - \eta$ sample quantile of the bootstrap test statistics $\{T_{n, r_{1,n}, j}(\theta) : j = 1, \ldots, \tau_{\text{reps}}\}$ plus $\eta$, where $\eta$ is a very small positive constant, such as $10^{-6}$. In the simulations, we obtain the same results with $\eta = 0$ as with $10^{-6}$.

For the bootstrap version of the critical value, Steps 2(b)-2(e) are replaced by the following steps:

**Step 2_{boot}.** (b) Generate $B$ bootstrap samples $\{W_i^* : i = 1, \ldots, n\}$ for $b = 1, \ldots, B$ using the standard nonparametric i.i.d. bootstrap. That is, draw $W_i^*$ from the empirical distribution of $\{W_{\ell} : \ell = 1, \ldots, n\}$ independently across $i$ and $b$. 
(c) For each bootstrap sample, transform the regressors as in Step 1(a) and compute $\bar{m}_{n,b}(\theta, g_{a,r})$ and $\Sigma_{n,b}(\theta, g_{a,r})$ just as $\bar{m}_n(\theta, g_{a,r})$ and $\Sigma_n(\theta, g_{a,r})$ are computed, but with the bootstrap sample in place of the original sample.

(d) For each bootstrap sample, compute the bootstrap test statistic $T^*_{n,r_{1,n},b}(\theta)$ as $T_{n,r_{1,n}}(\theta)$ is computed in Step 1(d) but with $n^{1/2} \bar{m}_n(\theta, g_{a,r})$ replaced by $\hat{D}_n(\theta)^{-1/2} n^{1/2}(\bar{m}_{n,b}(\theta, g_{a,r}) - \bar{m}_n(\theta, g_{a,r})) + \varphi_n(\theta, g_{a,r})$ and with $\Sigma_n(\theta, g_{a,r})$ replaced by $\hat{D}_n(\theta)^{-1/2} \Sigma_{n,b}(\theta, g_{a,r}) \hat{D}_n(\theta)^{-1/2}$, where $\hat{D}_n(\theta) = \text{Diag}(\hat{\Sigma}_n(\theta, 1_k, 1_k))$.

(e) Take the critical value to be the $1 - \alpha - \eta$ sample quantile of the bootstrap test statistics $\{T^*_{n,r_{1,n},b}(\theta) : b = 1, \ldots, B\}$ plus $\eta$, where $\eta$ is a very small positive constant, such as $10^{-6}$. In the simulations, we obtain the same results with $\eta = 0$ as with $10^{-6}$.

The choices of $\varepsilon$, $\kappa_n$, and $B_n$ above are based on some experimentation.\textsuperscript{22} Smaller values of $\varepsilon$, such as $\varepsilon = .01$, do not perform as well if the expected number of observations per cube (for some cubes) is small, say 15 or less.

For the quantile selection and interval-outcome models, in which $X_i$ is a scalar, we take $r_{1,n} = 7$ when $n = 250$ and obtain quite similar results for $r_{1,n} = 5$, 9, and 11. For the entry game model, in which bivariate regressor indices appear, we take $r_{1,n} = 3$ when $n = 500$ and obtain similar results for $r_{1,n} = 2$ and 4. Based on the simulation results, we recommend taking $r_{1,n}$ so that the expected number of observations in the smallest cubes is between 10 and 20 (when $\varepsilon = .05$). For example, with $(n, d_X, r_{1,n}) = (250, 1, 7)$, (500, 2, 3), and (1000, 3, 2), the expected number of observations in the smallest cells are 17.9, 13.9, and 15.6, respectively.

Note that the number of cubes with side-edge length indexed by $r$ is $(2r)^{d_X}$, where $d_X$ denotes the dimension of the covariate $X_i$. The computation time is approximately linear in the number of cubes. Hence, it is linear in $\sum_{r=1}^{r_{1,n}} (2r)^{d_X}$.

In Step 1(a), when there are discrete variables in $X_i$, the sets $C_{a,r}$ can be formed by taking interactions of each value of the discrete variable(s) with cubes based on the other variable(s).\textsuperscript{23}

When the dimension, $d_X$, of $X_i$ is greater than three (or equal to three with $n$ small, say less than 750), the number of cubes is too large to be practical and the expected number of observations per cube is too small, even if $r_{1,n}$ is small. In such cases, we suggest replacing the sets $C_{a,r}$ above with sets that are rectangles with sub-intervals of $[0,1]$ in 2 dimensions (equal to the two-dimensional cubes in $C_{c-cube}$ when

\textsuperscript{22}These values are the basecase values used in the simulations reported below.

\textsuperscript{23}See Example 5 in the second subsection of Supplemental Appendix B for details.
\(d_X = 2\) and \([0, 1]\) in the other dimensions, and constructing such sets using all possible combinations of 2 dimensions out of \(d_X\) dimensions. For example, if \(d_X = 6\), then there are \(6!/(4!2!) = 15\) combinations of 2 dimensions out of 6. For each choice of 2 dimensions there are 20 cubes if \((r_0, r_{1,n}) = (1, 2)\) and 56 cubes if \((r_0, r_{1,n}) = (1, 3)\), which yields totals of 300 and 840 cubes, respectively, when \(d_X = 6\).

Restricting the shape of the sets in this way means that there is a potential loss in information asymptotically compared to the information in the conditional moment inequalities, unless one increases the dimension 2 above to 3, 4, ... as \(n \to \infty\).

9.2 Tests Considered in the Simulations

In the simulation results reported below, we compare different test statistics and critical values in terms of their coverage probabilities (CP’s) for points in the identified set and their false coverage probabilities (FCP’s) for points outside the identified set. Obviously, one wants FCP’s to be as small as possible. FCP’s are directly related to the power of the tests used to constructed the CS and are related to the volume of the CS, see Pratt (1961).

The following test statistics are considered: (i) CvM/Sum, (ii) CvM/QLR, (iii) CvM/Max, (iv) KS/Sum, (v) KS/QLR, and (vi) KS/Max, as defined in Section 9.1. Both bootstrap and asymptotic normal versions of these tests are computed.

In all three models we consider the PA/Asy and GMS/Asy critical values. In the first two models we also consider the PA/Bt, GMS/Bt, and Sub critical values. The critical values are simulated using 5001 repetitions (for each original sample repetition). The "basecase" values of \(\kappa_n, B_n, \text{and } \varepsilon\) for the GMS critical values are specified above and are used in all three models. Additional results are reported for variations of these values. The subsample size is 20 when the sample size is 250. Results are reported for nominal 95% CS’s. The number of simulation repetitions used to compute CP’s and FCP’s is

---

24 For example, with \(n = 500\) and \(r_{1,n} = 2\), the expected number of observations per cube is 125 or 31.3 depending on the cube. With \(n = 1000\) and \(r_{1,n} = 3\), the expected number of observations per cube is 250, 62.5, or 15.6. These expected numbers hold for any value of \(d_X\). Computation time is proportional to \((d_X!/(d_X!2!)) \cdot \sum_{r=1}^{r_{1,n}} (2r)^{d_X}\).

25 The Sum, QLR, and Max statistics use the functions \(S_1, S_2, \text{and } S_3\), respectively. The PA/Asy and PA/Bt critical values are based on the asymptotic distribution and bootstrap, respectively, and likewise for the GMS/Asy and GMS/Bt critical values. The quantity \(\eta\) is set to 0 because its value, provided it is sufficiently small, has no effect in these models. Sub denotes a (non-recentered) subsampling critical value. It is the .95 sample quantile of the subsample statistics, each of which is defined exactly as the full sample statistic is defined but using the subsample in place of the full sample. The number of subsamples considered is 5001. They are drawn randomly without replacement.
5000 for all cases. This yields a simulation standard error of .0031.

The reported FCP’s are “CP corrected” by employing a critical value that yields a CP equal to .95 at the closest point of the identified set if the CP at the closest point is less than .95. If the CP at the closest point is greater than .95, then no CP correction is carried out. The reason for this “asymmetric” CP correction is that CS’s may have CP’s greater than .95 for points in the identified set, even asymptotically, in the present context and one does not want to reward over-coverage of points in the identified set by CP correcting the critical values when making comparisons of FCP’s.

9.3 Quantile Selection Model

9.3.1 Description of the Model

In this model we are interested in the conditional $\tau$-quantile of a treatment response given the value of a covariate $X_i$. The results also apply to conditional quantiles of arbitrary responses that are subject to selection. Selection yields the conditional quantile to be unidentified. We use a quantile monotone instrumental variable (QMIV) condition that is a variant of Manski and Pepper’s (2000) Monotone Instrumental Variable (MIV) condition to obtain bounds on the conditional quantile. (The MIV condition applies when the parameter of interest is a conditional mean of a treatment response.) A nice feature of the QMIV condition is that non-trivial bounds are obtained without assuming that the support of the response variable is bounded, which is restrictive in some applications. The nontrivial bounds result from the fact that the distribution functions that define the quantiles are naturally bounded between 0 and 1.

Other papers that bound quantiles using the natural bounds of distribution functions include Manski (1994), Lee and Melenberg (1998), Blundell, Gosling, Ichimura, and Meghir (2007), and Giustinelli (2010). The QMIV condition differs from the conditions in these papers, except Giustinelli (2010), although it is closely related to them. Giustinelli (2010) derives bounds on unconditional quantiles with a finite-support IV,
whereas we consider bounds on conditional quantiles with a continuous (or discrete) IV.

The model set-up is quite similar to that in Manski and Pepper (2000). The observations are i.i.d. for \( i = 1, \ldots, n \). Let \( y_{i}(t) \in \mathcal{Y} \) be individual \( i \)'s “conjectured” response variable given treatment \( t \in \mathcal{T} \). Let \( T_{i} \) be the realization of the treatment for individual \( i \). The observed outcome variable is \( Y_{i} = y_{i}(T_{i}) \). Let \( Y_{i} \) be the realization of \( Y_{i} \).

Let \( y_{i}(t) \in \mathcal{Y} \) be individual \( i \)'s “conjectured” response variable given treatment \( t \in \mathcal{T} \). Let \( T_{i} \) be the realization of the treatment for individual \( i \). The observed outcome variable is \( Y_{i} = y_{i}(T_{i}) \). Let \( T_{i} \) be the realization of \( T_{i} \).

Let \( X_{i} \) be a covariate whose support contains an ordered set \( X \). We observe \( W_{i} = (Y_{i}, X_{i}, T_{i}) \). The parameter of interest, \( \theta \), is the conditional \( \tau \)-quantile of \( y_{i}(t) \) given \( X_{i} = x \) for some \( t \in \mathcal{T} \) and some \( x_{0} \in \mathcal{X} \), which is denoted \( Q_{y_{i}(t)|X_{i}}(\tau|x_{0}) \). We assume the conditional distribution of \( y_{i}(t) \) given \( X_{i} = x \) is absolutely continuous at its \( \tau \)-quantile for all \( x \in \mathcal{X} \).

For examples, one could have: (i) \( y_{i}(t) \) is conjectured wages of individual \( i \) for \( t \) years of schooling, \( T_{i} \) is realized years of schooling, and \( X_{i} \) is measured ability or wealth, (ii) \( y_{i}(t) \) is conjectured wages when individual \( i \) is employed, say \( t = 1 \), \( X_{i} \) is measured ability or wealth, and selection occurs due to elastic labor supply, (iii) \( y_{i}(t) \) is consumer durable expenditures when a durable purchase is conjectured, \( X_{i} \) is income or non-durable expenditures, and selection occurs because an individual may decide not to purchase a durable, and (iv) \( y_{i}(t) \) is some health response of individual \( i \) given treatment \( t \), \( T_{i} \) is the realized treatment, which may be non-randomized or randomized but subject to imperfect compliance, and \( X_{i} \) is some characteristic of individual \( i \), such as weight, blood pressure, etc.

The quantile monotone IV assumption is as follows:

**Assumption QMIV.** The covariate \( X_{i} \) satisfies: for some \( t \in \mathcal{T} \) and all \( (x_{1}, x_{2}) \in \mathcal{X}^{2} \) such that \( x_{1} \leq x_{2} \), \( Q_{y_{i}(t)|X_{i}}(\tau|x_{1}) \leq Q_{y_{i}(t)|X_{i}}(\tau|x_{2}) \), where \( \tau \in (0, 1) \), \( \mathcal{X} \) is some ordered subset of the support of \( X_{i} \), and \( Q_{y_{i}(t)|X_{i}}(\tau|x) \) is the quantile function of \( y_{i}(t) \) conditional on \( X_{i} = x \).\(^{\text{27}}\)

This assumption may be suitable in the applications mentioned above.

\(^{\text{27}}\)The “\( \tau \)-quantile monotone IV” terminology follows that of Manski and Pepper (2000). Alternatively, it could be called a “\( \tau \)-quantile monotone covariate.”

Assumption QMIV can be extended to the case where additional (non-monotone) covariates arise, say \( Z_{i} \). In this case, the QMIV condition becomes \( Q_{y_{i}(t)|Z_{i},X_{i}}(\tau|z,x_{1}) \leq Q_{y_{i}(t)|Z_{i},X_{i}}(\tau|z,x_{2}) \) when \( x_{1} \leq x_{2} \) for all \( z \) in some subset \( \mathcal{Z} \) of the support of \( Z_{i} \). Also, as in Manski and Pepper (2000), the assumption QMIV is applicable if \( \mathcal{X} \) is only a partially-ordered set.
Given Assumption QMIV, we have: for \((x, x_0) \in \mathcal{X}^2\) with \(x \leq x_0\),

\[
\tau = P \left( y_i(t) \leq Q_{y_i(t)|X_i}(\tau|x) | X_i = x \right)
\leq P \left( y_i(t) \leq \theta | X_i = x \right)
= P \left( y_i(t) \leq \theta & T_i = t | X_i = x \right) + P \left( y_i(t) \leq \theta & T_i \neq t | X_i = x \right)
\leq P \left( Y_i \leq \theta & T_i = t | X_i = x \right) + P \left( T_i \neq t | X_i = x \right),
\]

(9.2)

where first equality holds by the definition of the \(\tau\)-quantile \(Q_{y_i(t)|X_i}(\tau|x)\), the first inequality holds by Assumption QMIV, and the second inequality holds because \(Y_i = y_i(T_i)\) and \(P(A \cap B) \leq P(B)\).

Analogously, for \((x, x_0) \in \mathcal{X}^2\) with \(x \geq x_0\),

\[
\tau = P \left( y_i(t) \leq Q_{y_i(t)|X_i}(\tau|x) | X_i = x \right)
\geq P \left( y_i(t) \leq \theta | X_i = x \right)
= P \left( y_i(t) \leq \theta & T_i = t | X_i = x \right) + P \left( y_i(t) \leq \theta & T_i \neq t | X_i = x \right)
\geq P \left( Y_i \leq \theta & T_i = t | X_i = x \right),
\]

(9.3)

where the first and second inequalities hold by Assumption QMIV and \(P(A) \geq 0\).

The inequalities in (9.2) and (9.3) impose sharp bounds on \(\theta\). They can be rewritten as conditional moment inequalities:

\[
E \left( 1(X_i \leq x_0)[1(Y_i \leq \theta, T_i = t) + 1(T_i \neq t) - \tau] | X_i \right) \geq 0 \text{ a.s. and}
E \left( 1(X_i \geq x_0)[\tau - 1(Y_i \leq \theta, T_i = t)] | X_i \right) \geq 0 \text{ a.s.} \tag{9.4}
\]

For the simulations, we consider the following data generating process (DGP):

\[
y_i(1) = \mu(X_i) + \sigma(X_i) u_i, \text{ where } \partial \mu \left( x \right) / \partial x \geq 0 \text{ and } \sigma \left( x \right) \geq 0,
T_i = 1\{L(X_i) + \varepsilon_i \geq 0\}, \text{ where } \partial L \left( x \right) / \partial x \geq 0,
X_i \sim Unif[0, 2], \ (\varepsilon_i, u_i) \sim N(0, I_2), \ X_i \perp (\varepsilon_i, u_i),
Y_i = y_i(T_i), \text{ and } t = 1. \tag{9.5}
\]

The variable \(y_i(0)\) is irrelevant (because \(Y_i\) enters the moment inequalities in (9.4) only through \(1(Y_i \leq \theta, T_i = t)\)) and, hence, is left undefined. With this DGP, \(X_i\) satisfies the QMIV assumption for any \(\tau \in (0, 1)\). We consider the median: \(\tau = 0.5\). We focus on
the conditional median of \(y_i(1)\) given \(X_i = 1.5\), i.e., \(\theta = Q_{y_i(1)|X_i}(0.5|1.5)\) and \(x_0 = 1.5\).

Some algebra shows that the conditional moment inequalities in (9.4) imply:

\[
\begin{align*}
\theta & \geq \underline{\theta}(x) := \mu(x) + \sigma(x) \Phi^{-1} \left(1 - \left[2\Phi(L(x))\right]^{-1}\right) \text{ for } x \leq 1.5 \text{ and } \\
\theta & \leq \bar{\theta}(x) := \mu(x) + \sigma(x) \Phi^{-1} \left([2\Phi(L(x))]^{-1}\right) \text{ for } x \geq 1.5.
\end{align*}
\]

(9.6)

We call \(\underline{\theta}(x)\) and \(\bar{\theta}(x)\) the lower and upper bound functions on \(\theta\), respectively. The identified set for the quantile selection model is \(\left[\sup_{x \leq x_0} \underline{\theta}(x), \inf_{x \geq x_0} \bar{\theta}(x)\right]\).

The shape of the lower and upper bound functions depends on the shape of the \(L\), \(\mu\), and \(\sigma\) functions. We consider two specifications, one that yields flat bound functions and the other that yields kinky bound functions.

Under the flat bound DGP, \(\mu(x) = 2\), \(\sigma(x) = 1\), and \(L(x) = 1\ \forall x \in [0,2]\). In this case, \(\underline{\theta}(x) = 2 + \Phi^{-1} \left(1 - \left[2\Phi(1)\right]^{-1}\right)\) for \(x \leq 1.5\) and \(\bar{\theta}(x) = 2 + \Phi^{-1} \left([2\Phi(1)]^{-1}\right)\) for \(x \geq 1.5\). Figure 1 shows the flat bound functions. The solid line is the lower bound function \(\underline{\theta}(x)\), and the dashed line is the upper bound function \(\bar{\theta}(x)\). Note that \(\underline{\theta}(x)\) is defined only for \(x \in [0,1.5]\) and \(\bar{\theta}(x)\) only for \(x \in [1.5,1]\).

Under the kinky bound DGP, \(\mu(x) = 2(x \wedge 1)\), \(\sigma(x) = x\), \(L(x) = x \wedge 1\). In this case, \(\underline{\theta}(x) = 2(x \wedge 1) + x \cdot \Phi^{-1} \left(1 - \left[2\Phi(x \wedge 1)\right]^{-1}\right)\) for \(x \leq 1.5\) and \(\bar{\theta}(x) = 2(x \wedge 1) + x \cdot \Phi^{-1} \left([2\Phi(x \wedge 1)]^{-1}\right)\) for \(x \geq 1.5\). Figure 2 shows the kinky bound functions.

We consider a basecase sample size of \(n = 250\), as well as \(n = 100\), \(500\), and \(1000\).

---

\(^{28}\)The kinky shaped \(\mu\) and \(L\) functions are the same as in the simulation example in Chernozhukov, Lee, and Rosen (2008).
9.3.2 $g$ Functions

The $g$ functions employed by the test statistics are indicator functions of hypercubes in $[0, 1]$, i.e., intervals. It is not assumed that the researcher knows that $X_i \sim U[0, 2]$. The regressor $X_i$ is transformed via the method described in Section 9.1 to lie in $(0, 1)$. The hypercubes have side-edge lengths $(2r)^{-1}$ for $r = r_0, \ldots, r_1$, where $r_0 = 1$ and the basecase value of $r_1$ is $7$. The basecase number of hypercubes is 56. We also report results for $r_1 = 5, 9, \text{ and } 11$, which yield 30, 90, and 132 hypercubes, respectively. With $n = 250$ and $r_1 = 7$, the expected number of observations per cube is 125, 62.5, ..., 20.8, or 17.9 depending on the cube. With $n = 250$ and $r_1 = 11$, the expected number also can equal 12.5 or 11.4. With $n = 100$ and $r_1 = 7$, the expected number is 50, 25, ..., 8.3, or 7.3.

9.3.3 Simulation Results

Tables I-III report CP’s and CP-corrected FCP’s for a variety of test statistics and critical values for a range of cases. The CP’s are for the lower endpoint of the identified interval in Tables I-III. (Supplemental Appendix F provides additional results for the upper endpoints.) FCP’s are for points below the lower endpoint. 

Table I provides comparisons of different test statistics when each statistic is coupled with PA/Asy and GMS/Asy critical values. Table II provides comparisons of the PA/Asy, PA/Bt, GMS/Asy, GMS/Bt, and Sub critical values for the CvM/Max and KS/Max test statistics. Table III provides robustness results for the CvM/Max and KS/Max statistics coupled with GMS/Asy critical values. The results in Table III show the degree of sensitivity of the results to (i) the sample size, $n$, (ii) the number of cubes employed, as indexed by $r_1$, (iii) the choice of $(k_n, B_n)$ for the GMS/Asy critical values, and (iv) the value of $\varepsilon$, upon which the variance estimator $\overline{\Sigma}_n(\theta, g)$ depends. Table III also reports results for confidence intervals with nominal level .5, which yield asymptotically half-median unbiased estimates of the lower endpoint.

---

29 This method takes the transformed regressor to be $\Phi((X_i - \overline{X}_n)/\sigma_{X,n})$, where $\overline{X}_n$ and $\sigma_{X,n}$ are the sample mean and standard deviations of $X_i$ and $\Phi(\cdot)$ is the standard normal distribution function.

30 For simplicity, we let $r_1 = r_{1,n}$ here and below.

31 Note that the DGP is the same for FCP’s as for CP’s, just the value $\theta$ that is to be covered is different. For the lower endpoint of the identified set and the flat bound, FCP’s are computed for $\theta$ equal to $\theta(1) - 0.25 \times \text{sqrt}(250/n)$. For the lower endpoint with the kinky bound, FCP’s are computed for $\theta$ equal to $\theta(1) - 0.58 \times \text{sqrt}(250/n)$. These points are chosen to yield similar values for the FCP’s across the different cases considered.
### Table I. Quantile Selection Model: Basecase Test Statistic Comparisons

#### (a) Coverage Probabilities

<table>
<thead>
<tr>
<th>DGP</th>
<th>Statistic:</th>
<th>CvM/Sum</th>
<th>CvM/QLR</th>
<th>CvM/Max</th>
<th>KS/Sum</th>
<th>KS/QLR</th>
<th>KS/Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flat Bound</td>
<td>PA/Asy</td>
<td>.979</td>
<td>.979</td>
<td>.976</td>
<td>.972</td>
<td>.972</td>
<td>.970</td>
</tr>
<tr>
<td></td>
<td>GMS/Asy</td>
<td>.953</td>
<td>.953</td>
<td>.951</td>
<td>.963</td>
<td>.963</td>
<td>.960</td>
</tr>
<tr>
<td>Kinky Bound</td>
<td>PA/Asy</td>
<td>.999</td>
<td>.999</td>
<td>.999</td>
<td>.994</td>
<td>.994</td>
<td>.994</td>
</tr>
<tr>
<td></td>
<td>GMS/Asy</td>
<td>.983</td>
<td>.983</td>
<td>.983</td>
<td>.985</td>
<td>.985</td>
<td>.984</td>
</tr>
</tbody>
</table>

#### (b) False Coverage Probabilities (coverage probability corrected)

<table>
<thead>
<tr>
<th>DGP</th>
<th>Statistic:</th>
<th>.51</th>
<th>.50</th>
<th>.48</th>
<th>.68</th>
<th>.67</th>
<th>.66</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flat Bound</td>
<td>PA/Asy</td>
<td>.37</td>
<td>.37</td>
<td>.37</td>
<td>.60</td>
<td>.60</td>
<td>.59</td>
</tr>
<tr>
<td></td>
<td>GMS/Asy</td>
<td>.65</td>
<td>.65</td>
<td>.62</td>
<td>.68</td>
<td>.68</td>
<td>.67</td>
</tr>
<tr>
<td>Kinky Bound</td>
<td>PA/Asy</td>
<td>.35</td>
<td>.35</td>
<td>.34</td>
<td>.53</td>
<td>.53</td>
<td>.52</td>
</tr>
<tr>
<td></td>
<td>GMS/Asy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*These results are for the lower endpoint of the identified interval.

Table I shows that all tests have CP’s greater than or equal to .95 with flat and kinky bound DGP’s. The PA/Asy critical values lead to noticeably larger over-coverage than the GMS/Asy critical values. The GMS/Asy critical values lead to CP’s that are close to .95 with the flat bound DGP and larger than .95 with the kinky bound DGP. The CP results are not sensitive to the choice of test statistic function: Sum, QLR, or Max. They are only marginally sensitive to the choice of test statistic form: CvM or KS.

The FCP results of Table I show (i) a clear advantage of CvM-based CI’s over KS-based CI’s, (ii) a clear advantage of GMS/Asy critical values over PA/Asy critical values, and (iii) little difference between the test statistic functions: Sum, QLR, and Max. These results hold for both the flat and kinky bound DGP’s.

Table II compares the critical values PA/Asy, PA/Bt, GMS/Asy, GMS/Asy, and Sub. The results show little difference in terms of CP’s and FCP’s between the Asy and Bt versions of the PA and GMS critical values in most cases. The GMS critical values noticeably out-perform the PA critical values in terms of FCP’s. For the CvM/Max statistic, which is the better statistic of the two considered, the GMS critical values also noticeably out-perform the Sub critical values in terms of FCP’s.
Table II. Quantile Selection Model: Basecase Critical Value Comparisons*

(a) Coverage Probabilities

<table>
<thead>
<tr>
<th>DGP</th>
<th>Critical Value:</th>
<th>PA/Asy</th>
<th>PA/Bt</th>
<th>GMS/Asy</th>
<th>GMS/Bt</th>
<th>Sub</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Statistic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flat Bound</td>
<td>CvM/Max</td>
<td>.976</td>
<td>.977</td>
<td>.951</td>
<td>.950</td>
<td>.983</td>
</tr>
<tr>
<td></td>
<td>KS/Max</td>
<td>.970</td>
<td>.973</td>
<td>.960</td>
<td>.959</td>
<td>.942</td>
</tr>
<tr>
<td>Kinky Bound</td>
<td>CvM/Max</td>
<td>.999</td>
<td>.999</td>
<td>.983</td>
<td>.982</td>
<td>.993</td>
</tr>
<tr>
<td></td>
<td>KS/Max</td>
<td>.994</td>
<td>1.00</td>
<td>.984</td>
<td>.982</td>
<td>.950</td>
</tr>
</tbody>
</table>

(b) False Coverage Probabilities (coverage probability corrected)

| Flat Bound | CvM/Max | .48   | .49   | .37    | .36    | .57  |
|           | KS/Max  | .66   | .69   | .59    | .57    | .69  |
| Kinky Bound | CvM/Max | .62   | .64   | .34    | .33    | .47  |
|           | KS/Max  | .67   | .72   | .52    | .50    | .47  |

*These results are for the lower endpoint of the identified interval.

Table III provides results for the CvM/Max and KS/Max statistics coupled with the GMS/Asy critical values for several variations of the basecase. The table shows that these CS’s perform quite similarly for different sample sizes, different numbers of cubes, and a smaller constant $\varepsilon$. There is some sensitivity to the magnitude of the GMS tuning parameters, $(\kappa_n, B_n)$—doubling their values increases CP’s, but halving their values does not decrease their CP’s below .95. Across the range of cases considered the CvM-based CS’s out perform the KS-based CS’s in terms of FCP’s and are comparable in terms of CP’s.

The last two rows of Table III show that a CS based on $\alpha = .5$ provides a good choice for an estimator of the identified set. For example, the lower endpoint estimator based on the CvM/Max-GMS/Asy CS with $\alpha = .5$ is close to being median-unbiased. It is less than the lower bound with probability is .518 and exceeds it with probability .482 when $n = 250$.

---

32The $\theta$ value at which the FCP’s are computed differs from the lower endpoint of the identified set by a distance that depends on $n^{-1/2}$. Hence, Table III suggests that the “local alternatives” that give equal FCP’s decline with $n$ at a rate that is slightly faster than $n^{-1/2}$ over the range $n = 100$ to 1000.
Table III. Quantile Selection Model with Flat Bound: Variations on the Basecase*

<table>
<thead>
<tr>
<th>Case</th>
<th>Statistic:</th>
<th>(a) Coverage Probabilities</th>
<th>(b) False Cov Probs (CPcor)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>CvM/Max</td>
<td>KS/Max</td>
</tr>
<tr>
<td></td>
<td>Crit Val:</td>
<td>GMS/Asy</td>
<td>GMS/Asy</td>
</tr>
<tr>
<td>Basecase ((n = 250, r_1 = 7, \varepsilon = 5/100))</td>
<td>.951</td>
<td>.960</td>
<td>.37</td>
</tr>
<tr>
<td>(n = 100)</td>
<td>.957</td>
<td>.968</td>
<td>.40</td>
</tr>
<tr>
<td>(n = 500)</td>
<td>.954</td>
<td>.955</td>
<td>.36</td>
</tr>
<tr>
<td>(n = 1000)</td>
<td>.948</td>
<td>.948</td>
<td>.34</td>
</tr>
<tr>
<td>(r_1 = 5)</td>
<td>.949</td>
<td>.954</td>
<td>.36</td>
</tr>
<tr>
<td>(r_1 = 9)</td>
<td>.951</td>
<td>.963</td>
<td>.37</td>
</tr>
<tr>
<td>(r_1 = 11)</td>
<td>.951</td>
<td>.966</td>
<td>.37</td>
</tr>
<tr>
<td>((\kappa_n, B_n) = 1/2(\kappa_{n,be}, B_{n,be}))</td>
<td>.948</td>
<td>.954</td>
<td>.38</td>
</tr>
<tr>
<td>((\kappa_n, B_n) = 2(\kappa_{n,be}, B_{n,be}))</td>
<td>.967</td>
<td>.968</td>
<td>.38</td>
</tr>
<tr>
<td>(\varepsilon = 1/100)</td>
<td>.949</td>
<td>.957</td>
<td>.37</td>
</tr>
<tr>
<td>(\alpha = .5)</td>
<td>.518</td>
<td>.539</td>
<td>.03</td>
</tr>
<tr>
<td>(\alpha = .5 &amp; n = 500)</td>
<td>.513</td>
<td>.531</td>
<td>.03</td>
</tr>
</tbody>
</table>

* These results are for the lower endpoint of the identified interval.

In conclusion, we find that the CS based on the CvM/Max statistic with the GMS/Asy critical value performs best in the quantile selection models considered. Equally good are the CS’s that use the Sum or QLR statistic in place of the Max statistic and the GMS/Bt critical value in place of the GMS/Asy critical value. The CP’s and FCP’s of the CvM/Max-GMS/Asy CS are quite good over a range of sample sizes.

### 9.4 Entry Game Model

#### 9.4.1 Description of the Model

This model is a complete information simultaneous game (entry model) with two players and \(n\) i.i.d. plays of the game. We consider Nash equilibria in pure strategies. Due to the possibility of multiple equilibria, the model is incomplete. In consequence, two conditional moment inequalities and two conditional moment equalities arise. Andrews, Berry, and Jia (2004), Beresteanu, Molchanov, and Molinari (2009), Galichon
and Henry (2009b), and Ciliberto and Tamer (2009) also consider moment inequalities and equalities in models of this sort.

Following the approach in Section 8 in this model, eight non-competitive effects parameters are estimated via a preliminary maximum likelihood estimator based on the number of entrants, similar to Bresnahan and Reiss (1991) and Berry (1992). These estimators are plugged into a set of moment conditions that includes two moment inequalities and two moment equalities.

We consider the case where the two players’ utility/profits depend linearly on vectors of covariates, \(X_{i,1}\) and \(X_{i,2}\), with corresponding parameters \(\tau_1\) and \(\tau_2\). A scalar parameter \(\theta_1\) indexes the competitive effect on player 1 of entry by player 2. Correspondingly, \(\theta_2\) indexes the competitive effect on player 2 of entry by player 1.

Specifically, for player \(b = 1, 2\), player \(b\)’s utility/profits are given by

\[
\begin{align*}
X_{i,b}' \tau_b + U_{i,b} & \text{ if the other player does not enter and} \\
X_{i,b}' \tau_b - \theta_b + U_{i,b} & \text{ if the other player enters,}
\end{align*}
\]

where \(U_{i,b}\) is an idiosyncratic error known to both players, but unobserved by the econometrician. The random variables observed by the econometrician are the covariates \(X_{i,1} \in \mathbb{R}^4\) and \(X_{i,2} \in \mathbb{R}^4\) and the outcome variables \(Y_{i,1}\) and \(Y_{i,2}\), where \(Y_{i,b}\) equals 1 if player \(b\) enters and 0 otherwise for \(b = 1, 2\). The unknown parameters are \(\theta = (\theta_1, \theta_2)' \in [0, \infty)^2\), and \(\tau = (\tau_1', \tau_2')' \in \mathbb{R}^8\). Let \(Y_i = (Y_{i,1}, Y_{i,2})\) and \(X_i = (X_{i,1}', X_{i,2}')'\).

The covariate vector \(X_{i,b}\) equals \((1, X_{i,b,2}, X_{i,b,3}, X_{i,b,4}')' \in \mathbb{R}^4\), where \(X_{i,b,2}\) has a \(\text{Bern}(p)\) distribution with \(p = 1/2\), \(X_{i,b,3}\) has a \(\text{N}(0, 1)\) distribution, \(X_{i,b,4}'\) has a \(\text{N}(0, 1)\) distribution and is the same for \(b = 1, 2\). The idiosyncratic error \(U_{i,b}\) has a \(\text{N}(0, 1)\) distribution. All random variables are independent of each other. Except when specified otherwise, the equilibrium selection rule (ESR) used to generate the data is a maximum profit ESR (which is unknown to the econometrician and not used by the CS’s). That is, if \(Y_i\) could be either \((1, 0)\) or \((0, 1)\) in equilibrium, then it is \((1, 0)\) if player 1’s monopoly profit exceeds that of player 2 and is \((0, 1)\) otherwise. We also provide some results when the data is generated by a “player 1 first” ESR in which \(Y_i = (1, 0)\) whenever \(Y_i\) could be either \((1, 0)\) or \((0, 1)\) in equilibrium.
The moment inequality functions are

\[ m_1(W_i, \theta, \tau) = P(X'_{i1} \tau_1 + U_{i1} \geq 0, X'_{i2} \tau_2 - \theta_2 + U_{i2} \leq 0 | X_i) - 1(Y_i = (1, 0)) \]
\[ = \Phi(X'_{i1} \tau_1)\Phi(-X'_{i2} \tau_2 + \theta_2) - 1(Y_i = (1, 0)) \]
\[ m_2(W_i, \theta, \tau) = P(X'_{i1} \tau_1 - \theta_1 + U_{i1} \leq 0, X'_{i2} \tau_2 + U_{i2} \geq 0 | X_i) - 1(Y_i = (0, 1)), \]
\[ = \Phi(-X'_{i1} \tau_1 + \theta_1)\Phi(X'_{i2} \tau_2) - 1(Y_i = (0, 1)). \]  

(9.8)

We have \( E(m_1(W_i, \theta_0, \tau_0)|X_i) \geq 0 \) a.s., where \( \theta_0 \) and \( \tau_0 \) denote the true values, because given \( X_i \) a necessary condition for \( Y_i = (1, 0) \) is \( X'_{i1} \tau_1 + U_{i1} \geq 0 \) and \( X'_{i2} \tau_2 - \theta_2 + U_{i2} \leq 0 \). However, this condition is not sufficient for \( Y_i = (1, 0) \) because some sample realizations with \( Y_i = (0, 1) \) also may satisfy this condition. An analogous argument leads to \( E(m_2(W_i, \theta_0, \tau_0)|X_i) \geq 0 \) a.s.

The two moment equality functions are

\[ m_3(W_i, \theta, \tau) = 1(Y_i = (1, 1)) - P(X'_{i1} \tau_1 - \theta_1 + U_{i1} \geq 0, X'_{i2} \tau_2 - \theta_2 + U_{i2} \geq 0 | X_i), \]
\[ = 1(Y_i = (1, 1)) - \Phi(X'_{i1} \tau_1 - \theta_1)\Phi(X'_{i2} \tau_2 - \theta_2), \]
\[ m_4(W_i, \theta, \tau) = 1(Y_i = (0, 0)) - P(X'_{i1} \tau_1 + U_{i1} \leq 0, X'_{i2} \tau_2 + U_{i2} \leq 0 | X_i) \]
\[ = 1(Y_i = (0, 0)) - \Phi(-X'_{i1} \tau_1)\Phi(-X'_{i2} \tau_2). \]  

(9.9)

We employ a preliminary estimator of \( \tau \) given \( \theta \), as in Section 8. In particular, we use the probit ML estimator \( \hat{\tau}_n(\theta) = (\hat{\tau}_{n,1}(\theta)', \hat{\tau}_{n,2}(\theta)')' \) of \( \tau = (\tau'_1, \tau'_2)' \) given \( \theta \) based on the observations \( \{(Y_i = (0, 0), Y_i = (1, 1)), X_{i1}, X_{i2} : i \leq n\} \).  

33See Supplemental Appendix F for the specification of the log likelihood function and its gradient.  
34Tamer (2003) uses a large support condition on one regressor in each index \( X'_{i1} \tau_1 \) and \( X'_{i2} \tau_2 \) to obtain point identification. However, this is just a sufficient condition. It seems that identification is likely to hold in many cases under much less stringent conditions on the distribution of the regressors. See Supplemental Appendix F for further discussion.
comparing the finite-sample FCP’s of the tests introduced in this paper with those of Wald, Lagrange multiplier, and likelihood ratio CS’s based on the ML estimator which groups the outcomes \((0, 1)\) and \((1, 0)\), as in Bresnahan and Reiss (1991) and Berry (1992).

We consider a basecase sample size of \(n = 500\), as well as \(n = 250\) and \(1000\).

### 9.4.2 \(g\) Functions

We take the functions \(g\) to be hypercubes in \(R^2\). They are functions of the 2-vector \(X_1^\top = (X_{i,1}^{\top}, X_{i,2}^{\top})' = (X_{i,1}^{\top}, X_{i,2}^{\top}, \hat{\tau}_{n,1}(\theta), \hat{\tau}_{n,2}(\theta))'\). The vector \(X_1^\top\) is transformed first to have sample mean equal to zero and sample variance matrix equal to \(I_2\) (by multiplication by the inverse of the upper-triangular Cholesky decomposition of the sample covariance matrix of \(X_1^\top\)). Then, it is transformed to lie in \([0, 1]^2\) by applying the standard normal distribution function \(\Phi(\cdot)\) element by element.

The hypercubes have side-edge lengths \((2r)^{-1}\) for \(r = r_0, \ldots, r_1\), where \(r_0 = 1\) and the basecase value of \(r_1\) is 3. The basecase number of hypercubes is 56. We also report results for \(r_1 = 2\) and \(4\), which yield 20 and 120 hypercubes, respectively. With \(n = 500\) and \(r_1 = 3\), the expected number of observations per cube is 125, 31.3, or 13.9 depending on the cube. With \(n = 500\) and \(r_1 = 4\), the expected number also can equal 7.8. With \(n = 250\) and \(r_1 = 3\), the expected number is 25, 15.6, or 6.9.

### 9.4.3 Simulation Results

Tables IV and V provide results for the entry game model. Results are provided for GMS/Asy critical values only because (i) PA/Asy critical values are found to provide similar results and (ii) bootstrap and subsampling critical values are computationally quite costly because they require computation of the bootstrap or subsample ML estimator for each repetition of the critical value calculations.

Table IV provides CP’s and FCP’s for competitive effect \(\theta\) values ranging from \((0, 0)\) to \((3, 1)\). Table IV shows that the CP’s for all CS’s vary as \(\theta\) varies with values ranging from .913 to .987. The QLR-based CS’s tend to have higher CP’s than the Sum- and Max-based CS’s. The CvM/Max statistic dominates all other statistics except the CvM/QLR statistic in terms of FCP’s. In addition, CvM/Max dominates CvM/QLR—in most cases by a substantial margin—at except for \(\theta = (2, 2)\) or \((3, 1)\). Hence, CvM/Max is clearly the best statistic in terms of FCP’s. The CP’s of the CvM/Max CS are good for many \(\theta\).

\[^{35}\]The \(\theta\) values for which FCP’s are computed are given by \(\theta_1 - .1 \times sqrt(500/n)\) and \(\theta_2 - .1 \times sqrt(500/n)\), where \((\theta_1, \theta_2)\) is the true parameter vector.
Table IV. Entry Game Model: Test Statistic Comparisons for Different Competitive Effects Parameters \((\theta_1, \theta_2)\)

<table>
<thead>
<tr>
<th>Case</th>
<th>Statistic:</th>
<th>CvM/Sum</th>
<th>CvM/QLR</th>
<th>CvM/Max</th>
<th>KS/Sum</th>
<th>KS/QLR</th>
<th>KS/Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>((\theta_1, \theta_2) = (0, 0))</td>
<td>.979</td>
<td>.972</td>
<td>.980</td>
<td>.977</td>
<td>.975</td>
<td>.985</td>
<td></td>
</tr>
<tr>
<td>((\theta_1, \theta_2) = (1, 0))</td>
<td>.961</td>
<td>.980</td>
<td>.965</td>
<td>.959</td>
<td>.983</td>
<td>.972</td>
<td></td>
</tr>
<tr>
<td>((\theta_1, \theta_2) = (1, 1))</td>
<td>.961</td>
<td>.985</td>
<td>.961</td>
<td>.955</td>
<td>.985</td>
<td>.962</td>
<td></td>
</tr>
<tr>
<td>((\theta_1, \theta_2) = (2, 0))</td>
<td>.935</td>
<td>.982</td>
<td>.935</td>
<td>.944</td>
<td>.984</td>
<td>.952</td>
<td></td>
</tr>
<tr>
<td>((\theta_1, \theta_2) = (2, 1))</td>
<td>.943</td>
<td>.974</td>
<td>.940</td>
<td>.953</td>
<td>.987</td>
<td>.947</td>
<td></td>
</tr>
<tr>
<td>((\theta_1, \theta_2) = (3, 0))</td>
<td>.921</td>
<td>.975</td>
<td>.915</td>
<td>.938</td>
<td>.935</td>
<td>.984</td>
<td></td>
</tr>
<tr>
<td>((\theta_1, \theta_2) = (2, 2))</td>
<td>.928</td>
<td>.942</td>
<td>.913</td>
<td>.943</td>
<td>.972</td>
<td>.922</td>
<td></td>
</tr>
<tr>
<td>((\theta_1, \theta_2) = (3, 1))</td>
<td>.928</td>
<td>.950</td>
<td>.918</td>
<td>.949</td>
<td>.973</td>
<td>.932</td>
<td></td>
</tr>
</tbody>
</table>

(b) False Coverage Probabilities (coverage probability corrected)

<table>
<thead>
<tr>
<th>Case</th>
<th>Statistic:</th>
<th>CvM/Sum</th>
<th>CvM/QLR</th>
<th>CvM/Max</th>
<th>KS/Sum</th>
<th>KS/QLR</th>
<th>KS/Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>((\theta_1, \theta_2) = (0, 0))</td>
<td>.76</td>
<td>.99</td>
<td>.59</td>
<td>.91</td>
<td>.99</td>
<td>.83</td>
<td></td>
</tr>
<tr>
<td>((\theta_1, \theta_2) = (1, 0))</td>
<td>.60</td>
<td>.99</td>
<td>.42</td>
<td>.83</td>
<td>.66</td>
<td>.99</td>
<td></td>
</tr>
<tr>
<td>((\theta_1, \theta_2) = (1, 1))</td>
<td>.62</td>
<td>.96</td>
<td>.41</td>
<td>.82</td>
<td>.99</td>
<td>.58</td>
<td></td>
</tr>
<tr>
<td>((\theta_1, \theta_2) = (2, 0))</td>
<td>.51</td>
<td>.83</td>
<td>.35</td>
<td>.66</td>
<td>.96</td>
<td>.47</td>
<td></td>
</tr>
<tr>
<td>((\theta_1, \theta_2) = (2, 1))</td>
<td>.57</td>
<td>.57</td>
<td>.38</td>
<td>.69</td>
<td>.82</td>
<td>.44</td>
<td></td>
</tr>
<tr>
<td>((\theta_1, \theta_2) = (3, 0))</td>
<td>.49</td>
<td>.41</td>
<td>.36</td>
<td>.61</td>
<td>.43</td>
<td>.64</td>
<td></td>
</tr>
<tr>
<td>((\theta_1, \theta_2) = (2, 2))</td>
<td>.59</td>
<td>.34</td>
<td>.39</td>
<td>.65</td>
<td>.42</td>
<td>.49</td>
<td></td>
</tr>
<tr>
<td>((\theta_1, \theta_2) = (3, 1))</td>
<td>.57</td>
<td>.27</td>
<td>.39</td>
<td>.65</td>
<td>.47</td>
<td>.44</td>
<td></td>
</tr>
</tbody>
</table>

values, but they are low for relatively large \(\theta\) values. For \(\theta = (3, 0), (2, 2),\) and \((3, 1)\), its CP’s are .915, .913, and .918, respectively. This is a “small” sample effect—for \(n = 1000\), this CS has CP’s for these three cases equal to .934, .951, and .952, respectively.

Table V provides results for variations on the basecase \(\theta\) value of \((1, 1)\) for the CvM/Max and KS/Max statistics combined with GMS/Asy critical values. The CP’s and FCP’s of the CvM/Max CS increase with \(n\). They are not sensitive to the number of hypercubes. There is some sensitivity to the magnitude of \((\kappa_n, B_n)\), but it is relatively small. There is noticeable sensitivity of the CP of the KS/Max CS to \(\varepsilon\), but less so for the CvM/Max CS. There is relatively little sensitivity of CP’s to changes in the DGP via changes in the regressor variances \((of X_{i,b,2} and X_{i,b,3} for b = 1, 2) or a change in the
Table V. Entry Game Model: Variations on the Basecase \((\theta_1, \theta_2) = (1, 1)\)

<table>
<thead>
<tr>
<th>Case</th>
<th>Statistic:</th>
<th>(a) Coverage Probabilities</th>
<th>(b) False Cov Probs (CPcor)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>CvM/Max</td>
<td>KS/Max</td>
</tr>
<tr>
<td></td>
<td>Crit Val:</td>
<td>GMS/Asy</td>
<td>GMS/Asy</td>
</tr>
<tr>
<td>Basecase ((n = 500, r_1 = 3, \varepsilon = 5/100))</td>
<td>.961</td>
<td>.962</td>
<td>.41</td>
</tr>
<tr>
<td>(n = 250)</td>
<td>.948</td>
<td>.963</td>
<td>.39</td>
</tr>
<tr>
<td>(n = 1000)</td>
<td>.979</td>
<td>.968</td>
<td>.52</td>
</tr>
<tr>
<td>(r_1 = 2) (20 cubes)</td>
<td>.962</td>
<td>.956</td>
<td>.41</td>
</tr>
<tr>
<td>(r_1 = 4) (120 cubes)</td>
<td>.962</td>
<td>.964</td>
<td>.42</td>
</tr>
<tr>
<td>((\kappa_n, B_n) = 1/2(\kappa_{n,bc}, B_{n,bc}))</td>
<td>.954</td>
<td>.959</td>
<td>.39</td>
</tr>
<tr>
<td>((\kappa_n, B_n) = 2(\kappa_{n,bc}, B_{n,bc}))</td>
<td>.967</td>
<td>.962</td>
<td>.42</td>
</tr>
<tr>
<td>(\varepsilon = 1/100)</td>
<td>.926</td>
<td>.873</td>
<td>.32</td>
</tr>
<tr>
<td>Reg’r Variances = 2</td>
<td>.964</td>
<td>.968</td>
<td>.54</td>
</tr>
<tr>
<td>Reg’r Variances = 1/2</td>
<td>.963</td>
<td>.966</td>
<td>.29</td>
</tr>
<tr>
<td>Player 1 First Eq Sel Rule</td>
<td>.955</td>
<td>.957</td>
<td>.39</td>
</tr>
<tr>
<td>(\alpha = .5)</td>
<td>.610</td>
<td>.620</td>
<td>.05</td>
</tr>
<tr>
<td>(\alpha = .5 &amp; n = 1000)</td>
<td>.695</td>
<td>.650</td>
<td>.06</td>
</tr>
</tbody>
</table>

The last two rows of Table V provide results for estimators of the identified set based on CS’s with \(\alpha = .5\). The two CS’s considered are half-median unbiased. For example, the CvM/Max-GMS/Asy CS with \(\alpha = .5\) covers the true value with probability .610, which exceeds .5, when \(n = 500\).

In conclusion, in the entry game model we prefer the CvM/Max-GMS/Asy CS over other CS’s considered because of its the clear superiority in terms of FCP’s even though it under-covers somewhat for large values of the competitive effects vector \(\theta\).

Finally, Figure 3 compares the finite-sample (CP-corrected) FCP’s of two CS’s introduced in this paper with the FCP’s of three CS’s that do not exploit the moment inequalities. Figure 3 graphs the FCP’s of the CvM/Max and KS/Max CS’s using the GMS/Asy critical values (with the basecase values of the tuning parameters). It also graphs the FCP’s of the Wald, Lagrange multiplier, and likelihood ratio CS’s based on
the ML estimator that groups the outcomes \((1, 0)\) and \((0, 1)\) (which ignore the moment inequalities). The sample size is \(n = 500\) and the true values of \((\theta_1, \theta_2)\) are \((1, 1)\). The horizontal axis in Figure 3 gives the distance between the true value of \(\theta_1\), i.e., \(\theta_{1,0} = 1\), and the null value of \(\theta_1\), i.e., \(\theta_{1,\text{null}}\). The distance for the corresponding values of \(\theta_2\) is taken to be the same.

As \(\theta_{1,0} - \theta_{1,\text{null}}\) increases, the FCP’s decrease for all CS’s, as expected. Figure 3 shows that the CS’s that exploit the moment inequalities have far better (lower) FCP’s. Specifically, to obtain a FCP equal to \(p\) for any \(p\) in \([0.75, 0.0]\), the distance of a parameter from the identified set needs to be three times as far or farther when using the Wald, LM, or LR CS as compared to the CvM/Max or KS/Max CS. Thus, we conclude that the CS’s introduced here, which exploit the moment inequalities and equalities, are noticeably superior to those that just employ the moment equalities.

Figure 3. False Coverage Probabilities of Several Nominal 95% Confidence Sets in the Entry Game Model.

---

36 Hence, the Euclidean distance between points outside the identified set and points on the boundary of the identified set are proportional to the distances on the horizontal axis in Figure 1.
References


