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Abstract. This paper is concerned with a structural econometric model of non-equilibrium
behavior in games, with the goal of identifying and estimating the solution concepts that
individuals use to generate their actions in games. The model is primarily based on various
notions of limited strategic reasoning, allowing multiple modes of strategic reasoning and
also heterogeneity in strategic reasoning across individuals and within individuals. The
paper proposes the model, and provides sufficient conditions for point identification of the
unknown parameters. Then, the model is estimated on data from an experiment involving
two-player guessing games. The application illustrates the empirical relevance of the main
features of the model.
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1. Introduction

In game theory, there is not a definitive prediction about how players choose their actions.
The Nash equilibrium solution concept (e.g., Nash (1950)) is ubiquitous, but theory also
provides other solution concepts. There is considerable empirical evidence of behavior that
does not conform to the predictions of Nash equilibrium (e.g., Camerer (2003)). This paper
is concerned with a structural econometric model of non-equilibrium behavior in games,
with the goal of determining the solution concepts that individuals use to generate their
actions in games. Broadly, similar empirical questions have been a major focus in the
literature on experimental game theory, although the focus in this paper is on understanding
the econometrics of the newly proposed structural model. The paper proposes the model,
establishes sufficient conditions for point identification of the model, and estimates the model
on real data.
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The prior literature on identification in the econometrics of games1 has tended to focus on
the problem of identifying the utility function under the assumption that the econometrician
knows the solution concept, whereas this paper is concerned with identifying the solution
concept(s) under the assumption that the econometrician knows the utility function, as in
an experiment. Prior work in the experimental economics literature, which addresses similar
empirical questions, has not focused on formal identification results as much as the literature
on econometrics of games. Evidently, that is because the models/“empirical strategies” used
previously are “obviously” point identified, often without formal proof. However, as discussed
throughout the paper, that is not the case for the model in this paper.2

The model allows that individuals generate their actions based on solution concepts other
than Nash equilibrium, though Nash equilibrium is still included in the model. One alterna-
tive solution concept is rationalizability (e.g., Bernheim (1984) and Pearce (1984)). Ratio-
nalizability is equivalent to common knowledge of rationality and independence of actions
across players (e.g., Tan and da Costa Werlang (1988)). In two player games, rationalizability
is also equivalent to infinitely many steps of iterated deletion of dominated strategies.3

Due to limited strategic reasoning, for example bounded cognitive ability, individuals may
carry out only finitely many steps of iterated deletion of dominated strategies,4 and so the
model also formalizes and includes that possibility as the “steps of unanchored strategic
reasoning.” In most games, a set of actions are consistent with any given number of steps
of unanchored strategic reasoning. Consequently, unanchored strategic reasoning is an “in-
complete model” of behavior that does not uniquely determine the action that an individual
takes. Moreover, a given action can be consistent with multiple different numbers of steps
of unanchored strategic reasoning. Therefore, it is not possible to simply “infer” the number
of steps of unanchored strategic reasoning that an individual uses by inspecting whether an
observed action is equal to that predicted by a particular number of steps of unanchored
strategic reasoning. One of the contributions of the paper is to study the empirical rele-
vance of unanchored strategic reasoning, in particular by providing a structural model in

1Papers in that literature (among papers studying complete information), typically based on Nash equi-
librium, include Tamer (2003), Aradillas-Lopez and Tamer (2008), Bajari, Hong, and Ryan (2010), Kline and
Tamer (2012), Aradillas-Lopez and Rosen (2013), Dunker, Hoderlein, and Kaido (2013), Fox and Lazzati
(2013), and Kline (2015a,b). See de Paula (2013) for a review.

2However, important identification results in experimental economics do include Haile, Hortaçsu, and
Kosenok (2008) (identification of the quantal response equilibrium model), and Gillen (2010) and An (2013)
(identification of the level-k model in auctions).

3See for example Tan and da Costa Werlang (1988) or Fudenberg and Tirole (1991). In any given game,
rationalizability might be equivalent to a certain finite number of steps of iterated deletion of dominated
strategies, if additional strategies are no longer deleted in further iterations. But, in general, rationalizability
requires infinitely many (or, at least, unbounded) steps of iterated deletion.

4Or, equivalently, individuals may use actions that are not consistent with common knowledge of ratio-
nality and independence of actions, perhaps because doing so (even in two player games) requires them to
carry out infinitely many steps of iterated deletion of dominated strategies.
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which it is possible to identify/estimate how many steps of unanchored strategic reasoning
individuals carry out. Equivalently, resolving the identification problems mentioned above
is a contribution of the paper. Unanchored strategic reasoning is found to be empirically
relevant in the application.

Another solution concept related to limited strategic reasoning is the level-k model of
thinking, commonly used in the experimental game theory literature.5 In the level-k model of
thinking, individuals that use 0 steps of reasoning are “anchored” to a particular distribution
of actions, usually the uniform distribution over the action space. Hence, this paper uses
the term “anchored strategic reasoning” to refer to this solution concept. Individuals that
use more than 0 steps of anchored strategic reasoning best respond to the strategy used by
an individual of the immediately lower number of steps of anchored strategic reasoning.

Rather than suppose that a single solution concept is responsible for generating all actions
of all individuals, the model allows heterogeneity in the solution concept(s) that generate the
actions. The model allows both across-individual and within-individual heterogeneity. Es-
sentially, the model aims to estimate how often individuals use each of the solution concepts.
Equivalently, the model aims to estimate how often individuals use each mode of strategic
reasoning (anchored versus unanchored), and the number of steps of reasoning that indi-
viduals use. Across-individual heterogeneity allows that different individuals use different
solution concepts, an important stylized fact from the experimental game theory literature.
Similarly, within-individual heterogeneity allows that even a given individual uses multi-
ple different solution concepts, a contribution of the structural model in this paper. Prior
empirical work in the related experimental game theory literature has been based on the
assumption that each individual uses just one solution concept. In particular, the prior liter-
ature based on the level-k model of thinking characterizes individuals as a “level-1” thinker
or a “level-2” thinker, and so on. The model in this paper allows that a given individual is
characterized by the use of multiple solution concepts, rather than just one solution concept,
just as the overall population of individuals is characterized by the use of multiple solu-
tion concepts, rather than just one solution concept. For example, a given individual might
sometimes carry out one step of iterated deletion of dominated strategies, but other times
carry out two steps of iterated deletion of dominated strategies. Both across-individual and
within-individual heterogeneity are found to be important in the empirical application.

5See for example Camerer (2003) or Crawford, Costa-Gomes, and Iriberri (2012) for a discussion of the
related experimental literature, which includes in particular (not exhaustive): Stahl and Wilson (1994, 1995),
Nagel (1995), Ho, Camerer, and Weigelt (1998), Costa-Gomes, Crawford, and Broseta (2001), Camerer, Ho,
and Chong (2004), Costa-Gomes and Crawford (2006), and Crawford and Iriberri (2007a,b).
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After proposing the model, the paper establishes sufficient conditions for point identifi-
cation of the unknown parameters. In the absence of such sufficient conditions, it is shown
by example that it can easily happen that the unknown parameters are not point identified.
Many of the main sufficient conditions concern the structure of the games that subjects
are observed to play, providing guidance to the design of the experiment. One of the main
sufficient conditions is that the econometrician observes each subject play multiple games.

Then, the model is estimated using data that comes from the “two-person guessing game”
experiment in Costa-Gomes and Crawford (2006), in order to establish the empirical rele-
vance of the results in the context of a well-known and representative experimental design.
The results suggest that both across-individual and within-individual heterogeneity, and
unanchored strategic reasoning, all are important. A complete discussion of the empirical
results is deferred until after formalizing the setup and identification of the model.

Beyond the difference in focus (identification versus empirical results), the model in this
paper differs from prior models in experimental game theory. Those differences are the
reason for the more difficult identification problem in this paper, compared to prior work
in experimental game theory. In particular, allowing unanchored strategic reasoning and
within-individual heterogeneity substantially complicates the identification problem, but the
application shows that those features of the model are empirically relevant.

1.1. Outline of the paper. Section 2 sets up the model. Section 3 sets up the identification
problem, and sections 4 and 5 establish sufficient conditions for point identification. Section
6 reports the empirical application. Section 7 concludes. Appendix A collects supplemental
results, including additional estimation results and the proof of point identification.

2. Model

2.1. Notation for the games. The goal of the model is to study strategic behavior in
complete information games with continuous action spaces.6 The setup for game g is:

(1) There are Mg agents, indexed by j = 1, 2, . . . ,Mg. Note that the “agent indexed by
j” or just “agent j” corresponds to the indexing of agents in the game, and is not
the same as subject j in the dataset. (So “agent j” could alternatively be called, for
example, the “row player” in the game.)

(2) The action of agent j is aj.
(3) The utility function of agent j in game g is ujg(a1, . . . , aMg).

6It is possible to propose a similar model for games with discrete action spaces, but games with continuous
action spaces provide more scope for different solution concepts to make different predictions about the action
an individual takes, which is necessary for identification.
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(4) The action space for agent j in game g is the interval [αLg(j), αUg(j)], hence contin-
uous action space.

(5) All of these facts are common knowledge among the agents, so the game is complete
information. Also, all of these facts are known by the econometrician.

As formalized in section 2.4, the econometrician has data on the behavior of subjects in
these games. There is an important distinction between “agent” and “subject” in this paper.
The term “subject” refers to an actual individual in the real world. The term “subject”
reflects the fact that the data typically concerns “experimental subjects.” The term “agent”
refers to the more generic game theory concept, for example an “agent” could refer to the
“row player” (i.e., characterized by preferences and action space) in a particular game.

2.2. Setup of model. Essentially, the model in this paper is concerned with recovering
information about the solution concepts that individuals use to generate their actions in
games, based on observing the actions of those individuals.

By solution concept, this paper means a possibly set-valued mapping between the struc-
ture of a game (e.g., utility functions, and action spaces) and the set of strategies for the
players. Each solution concept can be viewed as making a set-valued prediction about behav-
ior. In particular, following the literature on experimental game theory, this paper focuses
on non-equilibrium solution concepts, which do not necessarily have any sort of “equilib-
rium” property as does, for example, Nash equilibrium. Each (non-equilibrium) solution
concept therefore can be viewed as making a prediction about behavior for each player in
a game, without necessarily any connection to the actual behavior of the other players in
the games. Even equilibrium solution concepts like Nash equilibrium can be viewed as mak-
ing “non-equilibrium” predictions, in the sense of making predictions for each individual
player. Consequently, a player can be said to use (its part of) a solution concept (e.g., Nash
equilibrium), without consideration of what the other players in the game actually do.

Each subject i (i.e., each individual in the real world) has a strategic decision making rule

θi = (λi(·), δi, ρi)

that characterizes how it behaves in games. These are ex ante unknown by the econometri-
cian. The elements of the strategic decision making rule are:

(1) λi(·) is a distribution over solution concepts that characterizes the probabilities that
subject i uses particular solution concepts. For example, λi(NE) gives the probability
that subject i uses the Nash equilibrium (NE) solution concept, when it plays a
game. The possibility that λi(·) does not place probability 1 on one solution concepts
reflects the possibility of within-individual heterogeneity, one of the contributions of
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this paper: a given individual might use more than one solution concept. See remark
2.1 for further discussion. The solution concepts are described in section 2.5.

(2) The parameters δi and ρi are the probability and magnitude of computational mis-
takes made by subject i, respectively. Roughly, this allows that a subject might “in-
tend” to use a particular solution concept, but fail to compute the associated action
correctly and actually take an action that is only approximately equal to the action
predicted by the “intended” solution concept. Computational mistakes are described
in section 2.6. A special case of the model rules out computational mistakes.

The behavioral implications of the model can be described in the following procedural
way. The details of each step are described in subsequent subsections.

(1) Each subject is “born” and permanently assigned its strategic decision making rule
θi = (λi(·), δi, ρi) by nature per section 2.3.

(2) Each time subject i encounters a game to play:
(a) Subject i chooses the solution concept it intends to use in that game. The

probability that subject i chooses solution concept “k” is λi(k). It might choose,
for example, to use the Nash equilibrium, or to use one step of unanchored
strategic reasoning. The set of solution concepts is described in section 2.5.

(b) If the intended solution concept is not subject to computational mistakes, as
described in section 2.6, then the subject takes an action according to that solu-
tion concept. Otherwise, the subject attempts to calculate the action associated
with the intended solution concept. The subject either correctly or incorrectly
calculates the action:

(i) The probability of correct calculation is 1 − δi. In this case, the subject
actually takes the action associated with the intended solution concept.

(ii) The probability of incorrect calculation is δi. In this case, the subject
actually takes an action that is only approximately equal to the action as-
sociated with the intended solution concept. The details of computational
mistakes are described in section 2.6.

For example, if λi(k) = 0.2, and δi = 0.05, then subject i uses solution concept “k” 20
percent of the time. Supposing that “k” is subject to computational mistakes, 95 percent of
the time it correctly computes the solution concept, and actually does take the associated
action; but, 5 percent of the time it makes a small computational mistake, and takes an
action that is only approximately equal to the “intended” action under solution concept “k”.
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Remark 2.1 (Within-individual heterogeneity). The model does not attempt to estimate
the “reason” for within-individual heterogeneity. As with other economic models, and in
particular as with solution concepts in general, within-individual heterogeneity is a model
of observed behavior, with potentially many “as if” explanations for why that observed be-
havior arises. One of the goals of the model is to provide a framework by which to answer
empirical questions relating to individuals exhibiting (or not) within-individual heterogene-
ity. (Other goals include studying the empirical relevance of unanchored strategic reasoning.)
Related papers are similar, providing frameworks by which to answer the empirical question
of whether or not individuals conform to the predictions of some economic theory (e.g., Nash
equilibrium, level-k thinking, across-individual heterogeneity, etc.), without attempting to
explain the “reason why” they conform (or not) to the predictions of that theory. Neverthe-
less, as with other models of observed behavior, it is possible to provide some ex ante “as
if” reasons to suspect the existence of within-individual heterogeneity. Then, the empirical
application finds evidence of within-individual heterogeneity.

One possible explanation is that individuals find multiple solution concepts to make “com-
pelling” recommendations for their strategic behavior, just as economic theorists might find
many different solution concepts “compelling.” As a consequence, individuals exhibit within-
individual heterogeneity.

Another possible explanation is that individuals have beliefs about the type of their op-
ponent, and each time they play a game, they resolve their uncertainty about the type of
their opponent before they take an action. An individual that has non-degenerate beliefs
about the type of the opponent can exhibit within-individual heterogeneity. For example,
in the level-k model of thinking (i.e., anchored strategic reasoning in this paper, detailed in
section 2.5), an individual that believes the opponent is level-0 with probability p and level-1
with probability 1−p will use the level-1 strategy with probability p and the level-2 strategy
with probability 1−p. This differs from the standard approach to responding to uncertainty
about the type of the opponent, which would not generate within-individual heterogeneity,
because it would entail individuals using the strategy that is the best response to the entire
distribution of beliefs about the type of the opponent. By resolving their uncertainty about
the opponent before taking an action, individuals can exhibit within-individual heterogeneity.

More generally, especially in the empirical experimental game theory literature concerning
the level-k model of thinking (i.e., anchored strategic reasoning in this paper), issues related
to but distinct from within-individual heterogeneity have been investigated as a sort of
robustness check on the stability of the estimates. The details vary across papers.7 One

7See Stahl and Wilson (1995) or Georganas, Healy, and Weber (2015) for some examples.
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question concerns checking whether the aggregate distribution of “types” (i.e., the fraction
of level-1 thinkers, the fraction of level-2 thinkers, etc.), in models that assume that each
individual is exclusively one “type” of thinker, appears to be the same across multiple sets of
games. Note that the example in section 3.2 shows that the fraction of individuals exhibiting
any given number of steps of reasoning can be the same across games, even though particular
individuals do exhibit within-individual heterogeneity. Therefore, questions concerning the
aggregate distribution of “types” are distinct from questions concerning within-individual
heterogeneity, and indeed within-individual heterogeneity can be obscured when investigating
only the aggregate distribution of “types.” Another question concerns checking whether a
particular individual is “estimated” to be the same type across multiple sets of games (or,
more or less equivalently, whether individuals appear to statistically conform “out of sample”
to their “estimated” type). This question is more similar to, but still distinct from, questions
concerning within-individual heterogeneity. In particular, note that an individual that most
often uses a particular solution concept is likely to always be “estimated” to be that type
(across different sets of games), since that provides the best “fit” among the types restricted
to using one solution concept, regardless of underlying within-individual heterogeneity. More
generally, models that are restricted to “estimating” each individual to be a “type” that
exclusively uses one solution concept (e.g., level-1 or level-2) are misspecified in the presence
of within-individual heterogeneity. In contrast, the model framework provided in this paper
explicitly allows for within-individual heterogeneity.

2.3. Types of strategic decision making rules. The model is based on the assumption
that there are at most R strategic decision making rules used in the population, indexed by
r = 1, 2, . . . , R, denoted as Θr = (Λr,∆r,Pr), and known as the strategic decision making
types. Although R is known by the econometrician, Θr is unknown by the econometrician.
This helps make the model parsimonious, and also is required for it to be possible to point
identify the model. Each subject is one of these R strategic decision making types, or
equivalently uses the strategic decision making rule associated with one of these strategic
decision making types. The population fraction of subjects who are type r is π(r). This
population fraction is unknown by the econometrician. So, the econometrician knows there
are at most R strategic decision making types, but otherwise knows nothing about those
strategic decision making types. It is allowed that π(r) = 0 for some r, so that fewer than R
strategic decision making types exist. When subject i is “born” it is assigned to be strategic
decision making type Θτ(i), where τ(i) ∈ {1, 2, . . . , R}, according to the distribution π(·)
over {1, 2, . . . , R}. By construction, θi = Θτ(i). The identification result in this paper shows
sufficient conditions for point identification of the unknown {Θr, π(r)}Rr=1.
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2.4. Econometrics: data and sketch of identification problem. The data observed by
the econometrician is the actions taken by each of N subjects, in games of the sort described
in section 2.1. The subjects are indexed by i = 1, 2, . . . , N . Each subject plays each of G
games, indexed by g = 1, 2, . . . , G. It is assumed (essentially without loss of generality, by
re-defining the agent roles appropriately) that the subjects in the dataset are always agent 1
in the games. The observed action of subject i in game g is yig. See the empirical application
in section 6 for one of many instances of such a dataset from the experimental game theory
literature. As discussed in section 2.2, because of the non-equilibrium nature of the analysis,
the actions of the “opponents” of a subject are not relevant to the analysis, since the analysis
focuses on learning which solution concept(s) generate the behavior of individual subjects.
Indeed, in principle, it would be enough for an experiment to present each subject with each
of the games, without actually presenting the games to the “opponents.”

The population distribution of the observed data is P ({yg}Gg=1): the distribution of ac-
tions in the G games across the population of subjects. The identification problem concerns
establishing sufficient conditions under which it is possible to uniquely recover the unknown
model parameters {Θr, π(r)}Rr=1 from P ({yg}Gg=1).

Identification and estimation corresponds to N → ∞ while G is fixed. An alternative
identification problem would be to suppose that a population of subjects is observed to play
a population of games. Under that setup, identification and estimation would correspond to
N → ∞ and G → ∞. Identification in that data setup would require making assumptions
about the “population distribution of games,” including games that are not actually among
the finitely many observed games. It seems difficult to interpret assumptions on games that
are not observed. In contrast, the identification results in the fixed G setup requires only
that the econometrician verify that the observed games satisfy certain conditions. Therefore,
identification results in the G→∞ setup would inevitably be less plausible than identifica-
tion results in the fixed G setup.

2.5. Solution concepts. The model includes the following solution concepts. These solu-
tion concepts are demonstrated by example in the empirical application in section 6.

2.5.1. Nash equilibrium. The Nash equilibrium solution concept predicts that agents use
strategies that are mutually best responses. According to Nash equilibrium, agent j in game
g uses a strategy σjg, with the property that σjg is a distribution supported on the set of
solutions to

max
aj∈[αLg(j),αUg(j)]

Eσ−j,g

(
ujg(a1, . . . , aMg)

)



10 BRENDAN KLINE

where [αLg(j), αUg(j)] is the action space for agent j in game g, and the expectation notation
indicates that a−j are distributed according to the Nash equilibrium strategies of the other
agents in game g (i.e., according to σ−j,g). The model is based on the assumption that there
is a unique pure strategy Nash equilibrium that predicts that agent j in game g takes action
cjg(NE), as is the typical case for games studied in the related experimental game theory
literature. The notation for Nash (e.g., as argument in λ(·)) is NE.

2.5.2. Unanchored strategic reasoning. The “steps of unanchored strategic reasoning” is a
class of solution concepts that are iteratively-defined “steps” of increasingly sophisticated
strategic reasoning closely related to iterated deletion of dominated strategies, particularly
in two-player games,8 and the rationalizability solution concept (e.g., Bernheim (1984) and
Pearce (1984)). One contribution of this paper is to study the empirical relevance of unan-
chored strategic reasoning, in particular by providing a structural model in which it is possible
to identify/estimate how many steps of unanchored strategic reasoning individuals carry out.

The following formally describes unanchored strategic reasoning. Let Djg be the family of
all strategies (i.e., distributions) supported on [αLg(j), αUg(j)]. Then, define

Σ̃0
jg = {σj ∈ Djg}.

By definition, the strategies in Σ̃0
jg are exactly those strategies (i.e., all strategies) that can be

used by agent j in game g that uses zero steps of unanchored strategic reasoning. Similarly,
define

Σ0
jg = [αLg(j), αUg(j)]

to be the set of actions that are consistent with the use of zero steps of unanchored strategic
reasoning. Of course, by construction, Σ0

jg is the entire action space. Then, for s ≥ 0, define

Σ̃s+1
jg = {σj ∈ Djg : ∃σ−j ∈ Πj′ 6=jco

(
Σ̃s
j′g

)
s.t. σj is supported on

the set of solutions to max
aj∈[αLg(j),αUg(j)]

Eσ−j

(
ujg(a1, . . . , aMg)

)
}.

By definition, the strategies in Σ̃s+1
jg are exactly those strategies that can be used by agent j

in game g that uses s + 1 steps of unanchored strategic reasoning. These are the strategies
σj for which there are strategies σ−j of the other agents, that can be used by other agents
that use s steps of unanchored strategic reasoning9, such that σj is the best response to the

8See for example Tan and da Costa Werlang (1988) or Fudenberg and Tirole (1991). Unanchored strategic
reasoning (under the name “level-k rationality”) has been assumed to generate the data in Aradillas-Lopez
and Tamer (2008), Kline and Tamer (2012), and Kline (2015b), in order to identify the utility function.

9Or, technically, are mixtures of such strategies, in cases of non-convexity.
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other agents using those strategies. Similarly, define

Σs+1
jg = {aj ∈ [αLg(j), αUg(j)] : ∃σ−j ∈ Πj′ 6=jco

(
Σ̃s
j′g

)
s.t.

aj ∈ arg max
aj∈[αLg(j),αUg(j)]

Eσ−j

(
ujg(a1, . . . , aMg)

)
}.

to be the set of actions that are consistent with the use of s+1 steps of unanchored strategic
reasoning. Σs+1

jg can be viewed as the set of pure strategies consistent with s + 1 steps of
unanchored strategic reasoning, noting that the mixed strategies consistent with s+ 1 steps
of unanchored strategic reasoning are mixtures over Σs+1

jg .
Note the intuitive appeal of s steps of unanchored strategic reasoning, in terms of iterated

deletion of dominated strategies, especially in the case of two-player games. Intuitively,
strategies in Σ̃1

jg are best responses to some strategies of the opponents, and therefore survive
1 round of deletion of dominated strategies; Σ̃2

jg are best responses to some strategies of the
opponents that survive 1 round of deletion of dominated strategies, and therefore survive
2 rounds of deletion of dominated strategies; and so forth. See Tan and da Costa Werlang
(1988) or Fudenberg and Tirole (1991) for further details.

By the principle of indifference, agent j in game g that uses s + 1 steps of unanchored
strategic reasoning takes an action drawn from the uniform distribution on Σs+1

jg .10 See
remark 4.1 for further discussion.

By construction, Σs′
jg ⊆ Σs

jg for 0 ≤ s ≤ s′, so any action consistent with s′ steps of unan-
chored strategic reasoning is also consistent with s steps of unanchored strategic reasoning.
This complicates the association between the action than an individual takes and the number
of steps of unanchored strategic reasoning that individual used to generate that action. A
given action can be consistent with many different numbers of steps of unanchored strategic
reasoning, making it difficult to infer the number of steps of unanchored strategic reasoning
used to generate that action. The notation for s steps of unanchored strategic reasoning
(e.g., as argument in λ(·)) is sunanch.

Remark 2.2 (Epistemic interpretation). The results of Tan and da Costa Werlang (1988)
can be used to provide an epistemic interpretation of s steps of unanchored strategic rea-
soning. Using s = 1 step of unanchored strategic reasoning is “equivalent” to being rational
(at least), and for s ≥ 2, using s steps of unanchored strategic reasoning is “equivalent”

10The principle of indifference applies, since all actions in Σs+1
jg are “equally” consistent with s+1 steps of

unanchored strategic reasoning. In contrast, if some actions in Σs+1
jg were used less often than other actions,

that suggests the use of a solution concept other than s + 1 steps of unanchored strategic reasoning. For
example, if some actions in Σs+1

jg were used with 0 probability, that would suggest the use of some refinement
of s+ 1 steps of unanchored strategic reasoning. This implicitly requires, as a technical regularity condition,
that such a uniform distribution is well-defined. Consequently, it is implicitly assumed that Σs

jg either: (a)
is a finite set, or (b) is Lebesgue measurable with non-zero measure.
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to being rational and also knowing everyone (knows everyone)s−2 is rational (at least), in
addition to some other conditions (including those related to players acting independently of
each other). Rationalizability, or s =∞ steps of unanchored strategic reasoning, is roughly
equivalent to common knowledge of rationality.

Remark 2.3 (Example). For example, in a two-player game, agent 1 who uses two steps
of unanchored strategic reasoning can be interpreted “as if” to use the following strategic
reasoning: I think my opponent will use strategy σ2. I think my opponent will use σ2 because
σ2 would be a best response from the perspective of my opponent, if I were to use strategy
σ1. And given that I think my opponent will use σ2, I should use the strategy σ′1, which is
a best response to σ2.

Remark 2.4 (Consistency with unanchored strategic reasoning). The experimental game
theory literature has sometimes checked whether observed actions are consistent with some
number of steps of unanchored strategic reasoning (under names like “iterated deletion of
dominated strategies”), as a standalone exercise separate from, for example, estimating a
structural “level-k model.” In contrast, in this paper, “unanchored strategic reasoning” is
included as a solution concept in a model alongside other solution concepts (e.g., alongside
the “level-k model”), making it possible to answer the question of how often (and/or whether)
a subject uses a given number of steps of unanchored strategic reasoning (versus, for example,
a different number of steps that also is consistent with an observed action), similar to the
same question about other solution concepts. Note the fundamental distinction between
these approaches, which is exacerbated by the fact that generally a given action will be
consistent with multiple steps of unanchored strategic reasoning, so that the fact that an
action is consistent with a given number of steps of unanchored strategic reasoning is not
necessarily evidence that the subject taking that action actually used exactly that number
of steps of unanchored strategic reasoning.

2.5.3. Anchored strategic reasoning. It is possible to add to the above iterated definitions
the condition that, for all agents j and games g, Σ̃0

jg consists of only one strategy: the
uniform distribution over the action space. This results in “anchored strategic reasoning,”
because the steps of strategic reasoning become “anchored” to the uniform distribution being
used by agents that use zero steps of strategic reasoning. In the experimental game theory
literature, this is known as the “level-k model,” but “anchored” and “unanchored” are used
in this paper to emphasize the relationship between the two classes of solution concept.11

11See citations on the level-k model in the introduction.
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Zero steps of unanchored strategic reasoning is observationally equivalent to zero steps
of anchored strategic reasoning, but “anchoring” does revise the implications of using more
than zero steps of strategic reasoning, by working through the iterated definition of steps of
strategic reasoning described in section 2.5.2. For example, an agent that uses one step of
anchored strategic reasoning would use a strategy that is a best response to the other agents
using the strategy that is the uniform distribution over the action space, and an agent that
uses two steps of anchored strategic reasoning would use a strategy that is the best response
to the other agents using a strategy consistent with one step of anchored strategic reasoning.

Generically, in the sorts of games studied in experimental game theory, there is a unique
action (or equivalently, a unique pure strategy) consistent with s steps of anchored strategic
reasoning (for each s ≥ 1), whereas there is a range of actions consistent with s steps of
unanchored strategic reasoning. The results are derived based on the assumption that there
is a unique action consistent with anchored strategic reasoning, as is typically the case for
games studied in the related experimental game theory literature: agent j in game g that
uses s steps of anchored strategic reasoning takes action cjg(sanch). The notation for s steps
of anchored strategic reasoning (e.g., as argument in λ(·)) is sanch.

It is possible to distinguish between an individual that uses unanchored strategic reasoning
and an individual that uses the special case of anchored strategic reasoning, because the latter
will always take the action associated with anchored strategic reasoning, whereas the former
will not.

2.5.4. Assumptions on strategic reasoning. Assumption 2.1 supposes that the set of steps of
strategic reasoning that subjects possibly use is known by the econometrician to be a finite
set. Note that this is consistent with prior experimental results, which indicate individuals
use a very small number of steps of reasoning. It would be extremely difficult to distinguish
between infinitely many solution concepts, especially given finite data. The consequence of
assumption 2.1 is that λi(·) is a distribution over a finite set of solution concepts, rather
than an infinite set of solution concepts.

Assumption 2.1 (Steps of strategic reasoning). The numbers of steps of unanchored strate-
gic reasoning that subjects might use is the known finite set U . The numbers of steps of
anchored strategic reasoning that subjects might use is the known finite set A.

2.6. Computational mistakes. Roughly following the literature on experimental game
theory, computational mistakes arise when a subject “intends” to use a certain solution
concept, but fails to correctly take the associated action. The solution concepts subject to
computational mistakes are the solution concepts that are associated with a unique action,
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collected in the set M: the steps of anchored strategic reasoning and Nash equilibrium.12

The econometrician can assume ex ante that subjects do not make computational mistakes,
in which case the sufficient conditions for point identification are weaker.

Let ξ(·) be a known bounded and continuous density defined on support [−1, 1] that is
bounded away from zero, in the sense that ξ(x) ≥ κ > 0 for all x ∈ [−1, 1] for some κ.13

Suppose that subject i “intends” to use a particular solution concept inM that predicts the
action c, and that subject i is playing in the role of agent j in game g. There is δi probability
that the subject makes a computational mistake. If there is a computational mistake, then
the subject actually takes an action according to the ξ(·) density, translated to an interval
of radius ρi (αUg(j)− αLg(j)) that is centered at the “intended” action c, intersected with
the action space [αLg(j), αUg(j)]:

[αLg(j), αUg(j)] ∩ [c− ρi (αUg(j)− αLg(j)) , c+ ρi (αUg(j)− αLg(j))].

The intersection with [αLg(j), αUg(j)] guarantees that the action is within the action space.
Consequently, the subject takes an action a according to the density

ωjg,c,ρi
(a) ≡ 2

min{αUg(j), c+ ρi (αUg(j)− αLg(j))} −max{αLg(j), c− ρi (αUg(j)− αLg(j))}
×

ξ

a− min{αUg(j),c+ρi(αUg(j)−αLg(j))}+max{αLg(j),c−ρi(αUg(j)−αLg(j))}
2

min{αUg(j),c+ρi(αUg(j)−αLg(j))}−max{αLg(j),c−ρi(αUg(j)−αLg(j))}
2

 .
The parameter ρi characterizes the magnitude of computational mistakes: larger ρi imply

the possibility of larger computational mistakes. The range of computational mistakes is ρi
multiplied by the width of the action space (i.e., (αUg(j)− αLg(j))) to reflect the fact that
games with larger action spaces are more subject to relatively larger computational mistakes.
The model of computational mistakes is formalized in assumption 2.2. Similar identification
strategies could be used for similar models of computational mistakes.

Assumption 2.2 (Computational mistakes). Either:

(1) The econometrician allows the possibility of computational mistakes. The probability
that subject i makes a computational mistake is 0 ≤ δi < 1. The magnitude of the
mistakes made by subject i is ρi > 0. If subject i makes a computational mistake in
game g as role j, and intended to use a solution concept that would result in taking
action c, then subject i takes an action according to the ξ(·) density, translated to

12Computational mistakes arise only with solution concepts that are associated with a unique action
(which is where computational mistakes have been allowed in the prior literature), avoiding the ambiguity
about what it would mean to “incorrectly compute the action” associated with a solution concept that is
consistent with a range of actions, as in unanchored strategic reasoning.

13Conversely, ξ(·) is zero off the support [−1, 1], by definition of support. The continuity at the endpoints
−1 and 1 is implicitly understood to be right- and left- continuity.
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[αLg(j), αUg(j)] ∩ [c − ρi (αUg(j)− αLg(j)) , c + ρi (αUg(j)− αLg(j))]. The econome-
trician knows ρ such that ρi < ρ for all subjects i.

(2) The econometrician does not allow the possibility of computational mistakes, and
therefore knows that δi ≡ 0 and ρi ≡ 0 for all subjects i. For the purposes of future
assumptions, the econometrician sets ρ = 0.

If the econometrician allows the possibility of computational mistakes, it is assumed that
ρi > 0 for all subjects i. If it were allowed that ρi = 0, then there would be a complication
relating to the fact that players that do not make computational mistakes (δi = 0) are obser-
vationally equivalent to players that do make computational mistakes with zero magnitude
(δi > 0 but ρi = 0).

3. Setup of the identification problem

The identification problem in this model concerns the question of whether it is possible
to recover the parameters of the model (i.e., {Θr, π(r)}Rr=1) from the population distribution
of the data. The model will fail to be point identified if it happens that more than one
specification of the parameters generate the same distribution of the data, because then the
“true” specification of the parameters cannot be distinguished from a “false” specification
of the parameters. Therefore, point identification is a necessary logical prerequisite for
estimating the parameters of the model.14 The parameters of the model are not point
identified without non-trivial sufficient conditions, as section 3.2 provides a counterexample
to point identification in the absence of the sufficient conditions for point identification and
section 3.3 provides a discussion of further threats to point identification.

3.1. Definition of point identification. In order to define point identification, it is nec-
essary to define observational equivalence of strategic decision making types. If there are
two strategic decision making types that are not observationally equivalent, then at least in
principle (for some logically possible game) those two strategic decision making types could
generate different observed behavior, and therefore be distinguished from each other. Con-
versely, if there are two strategic decision making types that are observationally equivalent,
then there are no games in which those two strategic decision making types would generate
different observed behavior. Therefore, it is impossible to distinguish between observation-
ally equivalent strategic decision making types.

14If the model were not point identified, inference following Chernozhukov, Hong, and Tamer (2007),
Beresteanu and Molinari (2008), Rosen (2008), Andrews and Soares (2010), Bugni (2010), Canay (2010),
Romano and Shaikh (2010), Kline (2011), or Kline and Tamer (2015), among others, would be necessary.
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It follows that any point identification result can at most be expected to achieve point
identification up to observational equivalence of strategic decision making types. But, by
definition, point identification up to observational equivalence is enough to answer any in-
teresting question about behavior, precisely because point identification up to observational
equivalence exhausts the relevant information needed to understand the behavior generated
from the strategic decision making types.

Definition 1 (Observational equivalence of strategic decision making types). Θ1 = (Λ1,∆1,P1)
and Θ2 = (Λ2,∆2,P2) are observationally equivalent if:

(1.1) Λ1 = Λ2

(1.2) ∆11[∑k∈M Λ1(k) > 0] = ∆21[∑k∈M Λ2(k) > 0]
(1.3) P11[∆1 > 0]1[∑k∈M Λ1(k) > 0] = P21[∆2 > 0]1[∑k∈M Λ2(k) > 0]

Therefore, two strategic decision making types are observationally equivalent if: they use
the solution concepts with the same probability (i.e., condition 1.1), make computational
mistakes with the same probability provided that the types actually use solution concepts
subject to computational mistakes (i.e., condition 1.2), and make computational mistakes
with the same magnitude provided that the types actually use solution concepts subject to
computational mistakes and make computational mistakes with positive probability (i.e.,
condition 1.3). It is not possible to require that “observationally equivalent” types have
the same probability of making computational mistakes if those types never use solution
concepts subject to computational mistakes, because in that case the probability of making
a computational mistake has no observable implications in any game.15 Similarly, it is
not possible to require that “observationally equivalent” types have the same magnitude of
computational mistakes if those types never use solution concepts subject to computational
mistakes, or never make computational mistakes, because in that case the magnitude of
computational mistakes has no observable implications in any game.

Then, the following is the definition of point identification.

Definition 2 (Point identification of model parameters). The model parameters are point
identified if: for any specifications {Θ0r, π0(r)}R̃0

r=1 and {Θ1r, π1(r)}R̃1
r=1 of the model param-

eters that satisfy the assumptions and also are such that

(1) {Θ0r, π0(r)}R̃0
r=1 and {Θ1r, π1(r)}R̃1

r=1 both generate the observable data
15In other words, if “observationally equivalent” types were required to have the same probability of

making computational mistakes even if the types never use solution concepts subject to computational
mistakes, then two strategic decision making types that generate the same behavior (i.e., two types that
use the solution concepts with the same probabiltiies, never use solution concepts subject to computational
mistakes, and have different probabilities of making a computational mistake) would be defined as not
“observationally equivalent.”
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(2) π0(·) > 0 and π1(·) > 0
(3) Θ0r and Θ0r′ are not observationally equivalent for all r 6= r′, and Θ1r and Θ1r′ are

not observationally equivalent for all r 6= r′.

then R̃0 = R̃ = R̃1 and there is a permutation φ of {1, 2, . . . , R̃} such that for each r =
1, 2, . . . , R̃ it holds that π0(r) = π1(φ(r)) and Θ0r is observationally equivalent to Θ1φ(r).

This is the standard definition of point identification, adjusted for two issues. First, point
identification can only be up to “observationally equivalent” strategic decision making types,
as discussed above. (Note that this only concerns parameters relating to computational
mistakes, which are assumed known by the econometrician when the model is specified to
have no computational mistakes, and otherwise might be viewed as “nuisance parameters.”)
And second, point identification can only be up to permutations of the labeling of the
strategic decision making types, because the labeling has no observable implications.16

The condition that π(·) > 0 is required because it is not possible to point identify the
strategic decision making types that are “used” with zero probability. (Types that are “used”
by zero percent of the population have no observable implications.) So, in a specification
that has R̃ strategic decision making types, it is assumed that indeed all R̃ types are used
with positive probability. This can be taken as the definition of a specification “using” R̃
strategic decision making types, ruling out “using” a type with zero probability. Moreover,
the condition that the strategic decision making types in a specification are not observation-
ally equivalent is required because it is always possible to “split” a strategic decision making
type into two identical copies of that type, and generate the same observable data, as long
as the sum of the probabilities of the use of those two types equals the probability of the
use of the original type. By requiring that the types are not observationally equivalent, this
uninteresting source of non-identification is ruled out.

3.2. Counterexample to point identification. It is possible to give a counterexample
to point identification in the absence of the sufficient conditions established in this paper.
This counterexample illustrates the difficulty in distinguishing between across-individual
heterogeneity and within-individual heterogeneity.

The counterexample involves two specifications of the parameters. In the first specification,
R = 1, and (λ1(NE), λ1(1anch)) = (1

2 ,
1
2), and δ1 = 0. In the second specification, R = 2,

with πr = 1
2 and (λr(NE), λr(1anch)) = (1[r = 1], 1[r = 2]), and δr = 0, for 1 ≤ r ≤ 2.

16It is not possible to identify which strategic decision making type is “truly” type r since being type
r rather than type r′ has no observable implications. This arises in any model with “types,” and has no
substantive consequence.



18 BRENDAN KLINE

There are a total of three types across these two specifications, and no pair of types are
observationally equivalent according to definition 1.

In the first specification, all subjects use the same strategic decision making rule, and
that rule uses the Nash equilibrium and one step of anchored strategic reasoning with equal
probability. In the second specification, there are two equally probable strategic decision
making rules, and each rule uses just one of the solution concepts.

These two specifications generate the same distribution of the data in any one game:
the distribution that is an equally weighted mixture of point masses at the actions associ-
ated with Nash equilibrium, and one step of anchored strategic reasoning. Consequently,
these two specifications cannot be distinguished on the basis of observing subjects play just
one game, and therefore the parameters of the model are not point identified if the econo-
metrician observes subjects play just one game. Note that in particular this shows that
within-individual heterogeneity can be obscured by across-individual heterogeneity, in the
data from just one game: fundamentally, this is because within-individual heterogeneity is a
property of individuals, and therefore individuals must be observed to play multiple games
in order to identify within-individual heterogeneity. This counterexample is unrelated to
the additional complications introduced by computational mistakes, or unanchored strategic
reasoning, which are discussed in section 3.3.

Similar counterexamples can be shown in the context of data on more than one game,
but less than the number of games established as sufficient for point identification. These
counterexamples become quite notationally cumbersome, when the number of games is large
but not large enough for point identification, but it is possible to provide another relatively
simple counterexample when there are two games. Consider the parameterized specification
that R = 2, with parameters πr and (λr(NE), λr(1anch)) = (λr, 1 − λr) (by some abuse of
notation), and δr = 0, for 1 ≤ r ≤ 2. Note that π2 = 1 − π1. The free parameters are
π1, λ1, and λ2. The data when G = 2 can be summarized by the following four observed
probabilities concerning the distribution of individuals’ behavior across G = 2 games:

(1) probability that a subject uses Nash in both games: P (NE,NE) = λ2
1π1 +λ2

2(1−π1)
(2) probability that a subject uses Nash and then 1 step of anchored strategic reasoning:

P (NE, 1anch) = λ1(1− λ1)π1 + λ2(1− λ2)(1− π1)
(3) equally, due to the assumption that behavior is independent across games, so the

order of games doesn’t matter, the probability that a subject uses 1 step of anchored
strategic reasoning and then Nash: P (1anch, NE) = λ1(1−λ1)π1 +λ2(1−λ2)(1−π1)

(4) probability that a subject uses 1 step of anchored strategic reasoning in both games:
P (1anch, 1anch) = (1− λ1)2π1 + (1− λ2)2(1− π1)
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Consequently, if there are two distinct specifications of π1, λ1, and λ2 that give rise
to the same numerical values for these four probabilities (i.e., P (NE,NE), P (NE, 1anch),
P (1anch, NE), P (1anch, 1anch)), then the model is not point identified. It is a fairly straightfor-
ward computational exercise to establish. For just one example, the specification (π1 = 0.16,
λ1 = 0.65, and λ2 = 0.4) generates the same values for these four probabilities as does
(π1 = 0.3, λ1 = 0.3, and λ2 = 0.5).

3.3. Further threats to point identification. Section 3.2 is an example of one issue that
threatens point identification, but many other issues also threaten point identification.

First, even if a subject does not use an action associated with a particular solution con-
cept, it may still be that that subject used that solution concept, because of computational
mistakes. So, it is not enough to check whether a subject uses the associated action in order
to check whether that subject used that solution concept.

Second, when multiple solution concepts predict the same action in a given game, then
based on observing a subject take that action it is impossible to uniquely determine the
solution concept. In particular, any action that is predicted by s′ steps of unanchored
strategic reasoning is also predicted by s steps of unanchored strategic reasoning for 0 ≤ s ≤
s′, as discussed in section 2.5.

Third, the distribution of observed actions is not necessarily identical across games. For
example, in one game, it might be that a particular range of actions is consistent with both
zero and one steps of unanchored strategic reasoning, but in another game, that “same” range
of actions is consistent with only zero steps of unanchored strategic reasoning. Consequently,
the probability of observing actions in that range would be different across the two games,
even holding fixed the probabilities that subjects use the various solution concepts. This
implies that observed actions across games are not necessarily identically distributed, despite
the fact that the use of solution concepts is identically distributed across games per λi(·).

4. Sufficient conditions for point identification of all model parameters

This section provides the main sufficient conditions for point identification of all unknown
model parameters, in the sense of definition 2. Because the main sufficient conditions for
point identification concern the properties of the games that subjects are observed to play, the
identification result can be interpreted as a result on experimental design: an econometrician
with the goal of identifying the solution concepts should run an experiment that has subjects
play games that satisfy the conditions of the identification result. Mechanically, estimation
is straightforward, under the sufficient conditions for point identification, and proceeds by
maximizing the likelihood derived in appendix A.1.
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Obviously, the sufficient conditions for point identification must be at least as strong as
any necessary condition for point identification. And, it is a necessary condition for point
identification that each pair of solution concepts in the model makes distinct predictions
about the action in the games that subjects are observed to play. Otherwise, if two solution
concepts in the model make the same predictions about the action, in all of the games that
subjects are observed to play, then obviously those two solution concepts are observationally
equivalent relative to the observed games. Also, per the counterexample in section 3.2, a
necessary condition for point identification is that each subject is observed to play multiple
games. The sufficient conditions for point identification are, therefore, necessarily related to
these two necessary conditions.

In particular, in order to distinguish between the use of different numbers of steps of unan-
chored strategic reasoning, it is necessary that the different numbers of steps of unanchored
strategic reasoning make distinct predictions about the action in the games that subjects are
observed to play. However, section 2.5.2 discussed the fact that, in every game, some actions
are consistent with multiple different numbers of steps of unanchored strategic reasoning.
Nevertheless, it is possible to distinguish between the use of different numbers of steps of
unanchored strategic reasoning, because some actions are inconsistent with certain numbers
of steps of unanchored strategic reasoning.

So, define the set Ujg(s, ε) to be a (possibly empty) set of actions for agent j in game g
that: are consistent with s steps of unanchored strategic reasoning, are not consistent with
s′ ∈ U with s′ > s steps of unanchored strategic reasoning, and collectively will be taken
with zero probability by subjects that use any solution concept k ∈M and possibly make a
computational mistake of magnitude at most ε. The set Ujg(s, ε) can be written as:

U1
jg(s, ε) = Σs

jg ∩
⋂
k∈M

[cjg(k)− ε(αUg(j)− αLg(j)), cjg(k) + ε(αUg(j)− αLg(j))]C ∩
⋂

s′>s,s′∈U
(Σs′

jg)C

U0
jg(s) = Σs

jg ∩
⋂
k∈M
{cjg(k)}C ∩

⋂
s′>s,s′∈U

(Σs
jg)C

Ujg(s, ε) =


U1
jg(s, ε) if Σs

jg is not a finite set

U0
jg(s) if Σs

jg is a finite set

Let Rjg(s, s′, ε) be the probability of Ujg(s, ε) under the uniform distribution on Σs′
jg.17 By

construction, Rjg(s, s′, ε) = 0 if s′ > s and s′ ∈ U . Let Ujg(s) = Ujg(s, ρ), where ρ comes
from assumption 2.2. Also, let Ωjg = αUg(j)− αLg(j).

17For example, if s′ ≤ s and Σs′

jg = [cLjg(s′), cUjg(s′)] is a non-degenerate interval, then Rjg(s, s′, ε) is the
ratio of the Lebesgue measure of Ujg(s, ε) to cUjg(s′)− cLjg(s′).
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The addition of assumption 4.1 is sufficient for point identification. A stylized depiction of
the assumption is provided in figure 1, showing the arrangement of various quantities in the
action space, in the case that Σs

1g = [cL1g(s), cU1g(s)]. Recall from section 2.4 that without
loss of generality the subjects in the dataset are always agent 1 in the games. Assumption
4.1 is discussed in more detail in the context of the empirical application in section 6.

Assumption 4.1 (Conditions on the games). The dataset includes at least 2R − 1 games,
such that each game g of those 2R− 1 games satisfies all of the following conditions:

(4.1.1) Ω1g > 0
(4.1.2) For each k ∈M and k′ ∈M such that k 6= k′, |c1g(k)− c1g(k′)| > 2ρΩ1g

(4.1.3) For each k ∈M and s ∈ U such that Σs
1g is a finite set, c1g(k) /∈ Σs

1g

(4.1.4) For each k ∈M, ρΩ1g < max{αUg(1)− c1g(k), c1g(k)− αLg(1)}
(4.1.5) For each s ∈ U , R1g(s, s, ρ) > 0

Condition 4.1.1 requires that the game has non-degenerate action space. If the game had
a degenerate action space, then all solution concepts would make the same prediction, and
therefore would be observationally equivalent.

Condition 4.1.2 requires that the game be such that the actions predicted by solution
concepts subject to computational mistakes are far enough apart from each other (relative
to the largest possible computational mistakes), so that a subject that uses solution concept
k ∈M will take a different action than a subject that uses solution concept k′ ∈M for k′ 6=
k, even if the subjects make computational mistakes. Note that if the econometrician specifies
the model to have no computational mistakes (i.e., ρ = 0), this requires simply that c1g(k) 6=
c1g(k′). Despite this condition, note that it is not necessarily possible to determine the
intended solution concept of a subject even if a subject is observed to take an action “close”
to an action predicted by a particular solution concept k∗ ∈ M, because it is still possible
that the subject used some number of steps of unanchored strategic reasoning that resulted
in taking an action “close” to the action predicted by solution concept k∗. Moreover, it is not
possible to determine the probability that a subject intends to use a solution concept k∗ ∈M
by checking how often the subject takes the action exactly predicted by solution concept k∗,
because with unknown probability the subject will make a computational mistake. In figure
1, this condition is reflected by the fact that [c1g(NE) − ρΩ1g, c1g(NE) + ρΩ1g] is disjoint
from [c1g(1anch)− ρΩ1g, c1g(1anch) + ρΩ1g].

Condition 4.1.3 requires that the game be such that, if it happens that s steps of unan-
chored strategic reasoning predicts a finite set of actions, then the actions predicted by so-
lution concepts subject to computational mistakes are not equal to one of the finitely many
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Figure 1. Stylized graphical depiction of assumption 4.1: This figure com-
plements the discussion of assumption 4.1, showing a stylized depiction of the
arrangement of various quantities in the action space. In this depiction, sub-
jects might use 0 or 1 steps of unanchored strategic reasoning, or 1 step of
anchored strategic reasoning, or Nash equilibrium. (Recall 0 steps of anchored
strategic reasoning is the same as 0 steps of unanchored strategic reasoning.)

actions predicted by s steps of unanchored strategic reasoning. This helps identification, in
particular it helps distinguish between anchored and unanchored strategic reasoning, because
it implies that the actions predicted by solution concepts subject to computational mistakes
will not arise with positive probability due to the use of unanchored strategic reasoning. In
figure 1, this condition is not relevant as it is assumed that Σs

1g is a non-degenerate interval.
Condition 4.1.4 requires that the game be such that the actions predicted by solution con-

cepts subject to computational mistakes are sufficiently far from at least one of the boundaries
of the action space so that there will be some actions between the largest (or, respectively,
smallest) action that arises due to computational mistakes and the upper bound (or, respec-
tively, lower bound) of the action space. Otherwise, it would not be possible to determine
the “true” magnitude of computational mistakes. It allows that the action predicted by a so-
lution concept subject to computational mistakes equals one of the boundaries of the action
space. In figure 1, this condition is reflected by the fact that [c1g(NE)−ρΩ1g, c1g(NE)+ρΩ1g]
and [c1g(1anch)− ρΩ1g, c1g(1anch) + ρΩ1g] are strictly contained in the action space.

Condition 4.1.5 requires that the game be such that for each number of steps of unanchored
strategic reasoning s ∈ U that there is a set of actions that can only arise from s or fewer
steps of unanchored strategic reasoning. This helps to identify the probability of using s+ 1
steps of unanchored strategic reasoning, by the difference between the probabilities of using
s or fewer and using s + 1 or fewer steps of unanchored strategic reasoning. In figure 1,
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this condition is reflected by U1g(0), which can arise from the use of 0 but not 1 step of
unanchored strategic reasoning (and also not the use of other solution concepts).

Assumption 4.1 requires that the econometrician observes each of the subjects play at
least 2R−1 games satisfying these conditions. This is necessary to avoid the threat to point
identification that was described in section 3.2.

The econometrician must also observe subjects play at least one game that satisfies some
of the above conditions, and a condition described in the following assumption.

Assumption 4.2 (Conditions on at least one game). The econometrician observes in the
dataset at least one game g satisfying conditions 4.1.1, 4.1.2, and 4.1.4 in assumption 4.1,
and the condition that:

(4.2.1) For each k ∈M and s ∈ U ∪ {0unanch}, one of the following holds:
(a) [c1g(k)− ρΩ1g, c1g(k) + ρΩ1g] is a subset of Σs

1g

(b) [c1g(k)− ρΩ1g, c1g(k) + ρΩ1g] is disjoint from Σs
1g

(c) [c1g(k), c1g(k) + ρΩ1g] is a subset of Σs
1g and c1g(k) = αLg(1)

(d) [c1g(k)− ρΩ1g, c1g(k)] is a subset of Σs
1g and c1g(k) = αUg(1)

Condition 4.2.1 requires that the range of possible “computational mistakes” from any
solution concept k ∈ M cannot overlap the boundary of the range of predictions from any
number of steps of unanchored strategic reasoning. This assumption is used to identify the
magnitude of computational mistakes, by inspecting whether actions slightly closer to the ac-
tions predicted by solution concepts subject to computational mistakes are more likely than
those slightly further. This assumption guarantees that over the relevant range of possible
computational mistakes, the use of unanchored strategic reasoning cannot either “mimic”
or alternatively “mask” computational mistakes. Parts 4.2.1a and 4.2.1b of assumption 4.2
can be viewed, roughly, as meaning that assumption 4.2 is satisfied whenever the actions
associated with the strategies in M are suitably distinct from the boundaries of the sets
of actions associated with unanchored strategic reasoning. Parts 4.2.1c and 4.2.1d of as-
sumption 4.2 allows that an action associated with a strategy in M is on the boundary of
the action space. Recall from above that ρ = 0 whenever computational mistakes are ruled
out: in that case, note that logically either 4.2.1a or 4.2.1b must be true, since the singleton
c1g(k) must either be a subset or disjoint from any given set. In figure 1, this is reflected by
the fact that c1g(NE) and c1g(1anch) are distinct from the boundaries of the sets of actions
associated with unanchored strategic reasoning, hence [c1g(NE)−ρΩ1g, c1g(NE)+ρΩ1g] and
[c1g(1anch) − ρΩ1g, c1g(1anch) + ρΩ1g] are contained in both Σ0

1g and Σ1
1g. As with the other
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assumptions, this assumption is further discussed in the context of the empirical application
in section 6.3.1.

The following theorem establishes that the model is point identified under the above
assumptions. The lengthy proof of this theorem is collected in appendix A.2. A stylized
sketch of the proof is provided in section 4.1.

Theorem 4.1. Under assumptions 2.1, 2.2, 4.1, and 4.2, the parameters of the model are
point identified in the sense of definition 2.

This theorem does not imply that only the games that satisfy the conditions in assumptions
4.1 or 4.2 are informative about model parameters, or that only such games should be used
in estimation. All games should be used in estimation for the purposes of maximizing the
efficiency of the estimator relative to the available data.

Remark 4.1 (The role of distributional assumptions). In section 2.5.2, it was assumed that
individuals that use s steps of unanchored strategic reasoning choose an action uniformly at
random from the set of actions consistent with s steps of unanchored strategic reasoning.
This assumption was motivated on theoretical grounds (e.g., appealing to the principle of
indifference), and is discussed further in the context of the empirical application, where it
is shown to be reasonable based on inspecting the overall empirical distributions of actions
in each game, and finding that they exhibit features compatible with this distributional
assumption (see in particular sections 6.2).

Moreover, in addition to being theoretically and empirically justified, it is fundamental
for point identification of the model for the econometrician to maintain these sorts of dis-
tributional assumptions, though potentially the uniform distribution could be replaced by
some other distribution that is known by the econometrician. Essentially, this requirement
to maintain a distributional assumption is an implication of the more general fact that arbi-
trary mixtures of densities are not point identified. For example, suppose that there is only
one strategic decision making type (i.e., R = 1), and suppose that the econometrician is
willing to assume that strategic decision making type uses either 0 or 1 steps of unanchored
strategic reasoning (i.e., U = {0unanch, 1unanch} and A =M = ∅). Then a specification of the
model would entail, for that one type: the specification of Λ1(0unanch) and Λ1(1unanch), and
also, for each game, a distribution Hg0 that is supported on the actions associated with 0
steps of unanchored strategic reasoning in game g, and a distribution H1g that is supported
on the actions associated with 1 step of unanchored strategic reasoning in game g. With
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the uniform distributional assumption, H0g and H1g are assumed to be uniform distribu-
tions on Σ0

1g and Σ1
1g respectively, in all games g. But, without a distributional assump-

tion, H0g and H1g could be any distribution with the appropriate support. The specification
(Λ1(0unach),Λ1(1unanch), H0g, H1g) implies the observed distribution of actions in game g that
is given by the mixture Λ1(0unanch)H0g+Λ1(1unanch)H1g. Now, consider the strategic decision
making type that uses 0 steps of unanchored strategic reasoning with probability 1, and uses
the Λ1(0unanch)H0 + Λ1(1unanch)H1 distribution on Σ0

1g. By construction, that results in the
same observed distribution of actions. Intuitively, this can happen if individuals that use 0
steps of unanchored strategic reasoning are “biased” toward using the actions that are also
consistent with using 1 step of unanchored strategic reasoning, but in that case, evidently
the individual is using a refinement of 0 steps of unanchored strategic reasoning leading to
that “bias” toward actually using 1 step of unanchored strategic reasoning. Consequently,
these two specifications of the model are observationally equivalent, establishing the sense
in which the distributional assumptions are important for point identification.

4.1. Sketch of proof. The proof is lengthy and technical, but it is possible to provide a
sketch. The discussion of assumptions 4.1 and 4.2 already describes the sources of identi-
fication, and this sketch describes how that is formalized in the proof. This sketch states
without justification main claims that are non-trivial to prove, and proving those claims
comprises a significant fraction of the proof.

It can be shown that a vector of probabilities of events related to the observed actions
(e.g., “the probability of an observed action within a certain range”) in game g due to a
subject that uses strategic decision making rule θ, Pg,θ, can be written as a matrix Qg (that
depends on the structure of game g) times a vector that is a known function η∗(·) (defined in
the appendix) of strategic decision making rule θ. So, Pg,θ = Qgη

∗(θ). Pg,θ is not observable,
since the population uses more than one strategic decision making rule. Critically, Qg is non-
singular under the identification assumptions, although that is not obvious and requires a
lengthy proof. That implies that if it were possible to observe Pg,θ, then it would be possible
to recover η∗(θ). Let G be a subset of games of {1, 2, . . . , G}. Let G(p) be the p-th smallest
element of G, and let Gp = {G(1), . . . ,G(p)}.

Then, by the algebra of the Kronecker product, the joint distribution of those events
across games in the first p games out of G is PG,θ,p ≡

⊗
g∈Gp

Pg,θ = ⊗
g∈Gp

(Qgη
∗(θ)) =

(⊗g∈Gp
Qg)(

⊗p η∗(θ)) = Q
(p)
G η

∗(θ)(p). Again by the algebra of the Kronecker product, Q(p)
G ≡⊗

g∈Gp
Qg is non-singular since each Qg is non-singular. Let PG,θ = (1, PG,θ,1, . . . , PG,θ,|G|).

Let η∗(θ)(0) = 1 and η∗(θ)(p) = η∗(θ) ⊗ · · · ⊗ η∗(θ) be the p-times Kronecker product. Let
η∗(θ) = (1, η∗(θ)(1), . . . , η∗(θ)(|G|)). Let QG be the block diagonal matrix with blocks along
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the diagonal equal to Q
(0)
G , . . . , Q

(|G|)
G , which is non-singular as each term is non-singular.

And, PG,θ = QGη
∗(θ).

Suppose that the true parameters of the data generating process are rules Θ0,1, . . . ,Θ0,R,
that are used by π0(1), . . . , π0(R) percent of the population. Let Υ∗0 be a matrix that stacks
(η∗(Θ0,r)) for r = 1, 2, . . . , R as its columns. So, then, the observable joint distribution of
those events across games is PG = QGΥ∗0π0. Suppose that another specification of the param-
eters with rules Θ1,1, . . . ,Θ1,R, that are used by π1(1), . . . , π1(R) percent of the population
is observationally equivalent, so that there is an Υ∗1 derived from those parameters so that
PG = QGΥ∗1π1. Then, it would hold that 0 = QGΥ

∗
π, where Υ∗ collect the unique columns

of Υ∗0 and Υ∗1. Correspondingly, π collects the difference between π0 and π1. The value of
π0 (or π1) for a strategic decision making rule that does not appear in specification 0 (or 1)
is by convention zero, reflecting the fact that that strategic decision making rule is used by
zero percent of the population under specification 0 (or 1).

Therefore, π is in the null space of QGΥ
∗. It can be shown (as a non-trivial claim under

the conditions of the identification results) that there is a non-singular matrix T such that
0 = QGT

−1TΥ∗ where TΥ∗ has full column rank. This step critically uses the fact that the
econometrician observes at least 2R − 1 games satisfying the conditions of assumption 4.1.
SinceQG has full column rank and thereforeQGT−1 has full column rank, it follows thatQGΥ

∗

has full column rank, so it must be that π = 0, so that the columns of Υ∗0 and Υ∗1 are the same
(up to permutations of the order of the columns). That implies that (up to permutations
of the labels), that η∗(·) applied to the strategic decision making rules in specification 0 is
the same as η∗(·) applied to the strategic decision making rules in specification 1. It can
be shown that η∗(·) is “injective” (up to the issues relating to possible lack of observable
implications of parameters relating to computational mistakes accounted for in definition 1).
So, the parameters are point identified in the sense of definition 2.

5. Sufficient conditions for point identification except for the magnitude
of computational mistakes

This section establishes sufficient conditions for point identification of all unknown pa-
rameters except for those related to the magnitude of computational mistakes, under weaker
conditions than used by theorem 4.1. The result does still allow that individuals might make
computational mistakes. This can be interpreted as a partial identification result, showing
that some but not necessarily all of the parameters are point identified. Alternatively, this
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can be interpreted as a point identification result, showing that a model without computa-
tional mistakes (or even a model with computational mistakes with known magnitudes of
computational mistakes) is point identified.

The identification result in this section uses a different definition of observational equiv-
alence of strategic decision making types. Essentially, the alternative definition treats the
magnitude of computational mistakes as irrelevant and is similar to definition 1, except the
last condition involving P is dropped. There is a corresponding definition of point identifi-
cation, ignoring the magnitude of computational mistakes.

Definition 3 (Observational equivalence of strategic decision making types, ignoring the
magnitude of computational mistakes). Θ1 = (Λ1,∆1,P1) and Θ2 = (Λ2,∆2,P2) are obser-
vationally equivalent ignoring the magnitude of computational mistakes if:

(3.1) Λ1 = Λ2

(3.2) ∆11[∑k∈M Λ1(k) > 0] = ∆21[∑k∈M Λ2(k) > 0]

Definition 4 (Point identification of model parameters, ignoring the magnitude of com-
putational mistakes). The model parameters are point identified ignoring the magnitude of
computational mistakes if: for any specifications {Θ0r, π0(r)}R̃0

r=1 and {Θ1r, π1(r)}R̃1
r=1 of the

model parameters that satisfy the assumptions and also are such that

(1) {Θ0r, π0(r)}R̃0
r=1 and {Θ1r, π1(r)}R̃1

r=1 both generate the observable data
(2) π0(·) > 0 and π1(·) > 0
(3) Θ0r and Θ0r′ are not observationally equivalent ignoring the magnitude of computa-

tional mistakes for all r 6= r′, and Θ1r and Θ1r′ are not observationally equivalent
ignoring the magnitude of computational mistakes for all r 6= r′.

then R̃0 = R̃ = R̃1 and there is a permutation φ of {1, 2, . . . , R̃} such that for each r =
1, 2, . . . , R̃ it holds that π0(r) = π1(φ(r)) and Θ0r is observationally equivalent ignoring the
magnitude of computational mistakes to Θ1φ(r).

The main difference between the sufficient conditions of this section, and the sufficient
conditions of section 4, is that assumption 4.1 is dropped in favor of the weaker assumption
5.1. Moreover, assumption 4.2 is dropped entirely.

Assumption 5.1 (Conditions on the games). The dataset includes at least 2R − 1 games,
such that each game g of those 2R− 1 games satisfies all of the following three conditions:

(5.1.1) Ω1g > 0
(5.1.2) For each k ∈M and k′ ∈M such that k 6= k′, c1g(k) 6= c1g(k′)
(5.1.3) For each k ∈M and s ∈ U such that Σs

1g is a finite set, c1g(k) /∈ Σs
1g
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The dataset includes at least 2R − 1 games, such that each game g of those 2R − 1 games
satisfies the following condition:

(5.1.4) For each s ∈ U , R1g(s, s, ρ) > 0

Assumption 4.1 requires that the same games satisfy all of the conditions stated in as-
sumption 4.1, whereas assumption 5.1 allows that some games satisfy conditions 5.1.1, 5.1.2,
and 5.1.3, and other games satisfy condition 5.1.4. However, it is allowed that the set of
games satisfying conditions 5.1.1, 5.1.2, and 5.1.3 arbitrarily overlaps with the set of games
satisfying condition 5.1.4.

The next assumption disallows certain “knife-edge” cases and requires additional notation.
Use the notation thatM(r) is the r-th smallest element ofM (with Nash equilibrium the
largest element by convention) and U(r) is the r-th smallest element of U .

Assumption 5.2 (No knife-edge strategic decision making rules). There are R̃ strategic
decision making rules used in the population, with π(r) > 0 for r = 1, 2, . . . , R̃. For each
r′ 6= r, it holds that:

(5.2.1) ((1−∆r)Λr(M(1)), . . . , (1−∆r)Λr(M(|M|))) 6= ((1−∆r′)Λr′(M(1)), . . . , (1−∆r′)Λr′(M(|M|)))
and (Λr(U(1)), . . . ,Λr(U(|U|))) 6= (Λr′(U(1)), . . . ,Λr′(U(|U|)))

(5.2.2) π(r) 6= π(r′)

Condition 5.2.1 rules out the knife-edge case that strategic decision making rules r and r′

used in the population, despite being distinct, are such that ((1 − ∆r)Λr(M(1)), . . . , (1 −
∆r)Λr(M(|M|))) = ((1−∆r′)Λr′(M(1)), . . . , (1−∆r′)Λr′(M(|M|))) or (Λr(U(1)), . . . ,Λr(U(|U|))) =
(Λr′(U(1)), . . . ,Λr′(U(|U|))). Condition 5.2.2 rules out the knife-edge case that two strategic
decision making rules are used with the same probability.

Theorem 5.1. Under assumptions 2.1, 2.2, 5.1, and 5.2, the parameters of the model are
point identified in the sense of definition 4.

6. Empirical application

The application shows that the features of the model are empirically relevant, in the
context of a well-known and representative experimental design, motivating the main contri-
butions of the paper: proposing and understanding identification of the model. Specifically,
the empirical application establishes evidence for within-individual heterogeneity, and also
unanchored strategic reasoning.

6.1. Data. The data for the empirical application comes from the “two-player guessing
game” experiment conducted in Costa-Gomes and Crawford (2006). The following briefly
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describes the data. The data concerns N = 88 subjects, each of whom play G = 16 games.
An important feature of the experimental design is that the subjects face new opponents
in each game and do not learn the actions of their opponents until after the conclusion of
the experiment. This eliminates basically any role for “learning,” or “specializing” their play
against their “perception” of their current opponent. This is consistent with the broader view
that non-equilibrium models are best studied in a setting without learning.18 The empirical
analysis of this data is quite different in Costa-Gomes and Crawford (2006), because of
the difference in models. In Costa-Gomes and Crawford (2006), as representative of the
literature, each subject is assumed to have no within-individual heterogeneity, and the model
does not include “unanchored strategic reasoning,” which means that the “main result” of
estimating the model is essentially assigning each subject to its level out of the “level-k
model.”19 The analysis in this current paper does not use the novel “information search
data” that is also studied in Costa-Gomes and Crawford (2006), simply because the dataset
without the “information search data” is more representative of the literature, since most
studies do not (yet) use such data. Because of these fundamental differences, the analysis in
this current paper is not in any sense an attempt to “replicate” the results of Costa-Gomes
and Crawford (2006), though section 6.4 does show how the results are related. Rather,
the analysis is intended to show the empirical relevance of the theoretical results of this
current paper (proposing and point identifying the model), in the context of a well-known
and representative experimental design.20

All of the games are “two-player guessing games,” which are related to the beauty contests
studied by Nagel (1995), Ho, Camerer, and Weigelt (1998), and Bosch-Domenech, Montalvo,
Nagel, and Satorra (2002), among others. In a two-player guessing game, two agents simul-
taneously make a “guess.” The utility function for an agent j in game g is a decreasing
function of the difference between its own guess (aj), and that agent’s “target” (pjg) times
the guess of the other agent (a−j). In game g, the action space for agent j is [αLg(j), αUg(j)].
The utility function for agent j in game g is:

18 Another important feature of the experimental design is that the experiment involves only 8 different
two-player games in the traditional sense of the definition of “game.” However, each subject plays each game
once in each of the player roles (i.e., row player and column player), so that each subject plays 16 times. Each
such game × player role pair is denoted a separate “game.” Essentially the same convention is maintained
in Costa-Gomes and Crawford (2006).

19The model in Costa-Gomes and Crawford (2006) also allows Nash equilibrium, and certain “dominance”
or “sophisticated” strategies (which are rare). Note that the “dominance” type is distinct from “unanchored
strategic reasoning” despite the fact that “unanchored strategic reasoning” relates to iterated dominance.
Specifically, all of the “dominance” or “sophisticated” types make a unique prediction, fundamentally unlike
unanchored strategic reasoning. Costa-Gomes and Crawford (2006) also check for consistency with iterated
deletion of dominated strategies, in the sense discussed in section 2.5.2.

20Using prior experimental data also avoids the time and financial cost of running an experiment that
would, in any case, attempt to be representative of other experiments. So since the point is not to innovate
the experimental design, it seems to make most sense to use prior experimental data.
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Game specification Predictions of solution concepts
Agent 1 Agent 2 Targets Anchored reasoning Unanchored reasoning

g αL(1) αU (1) αL(2) αU (2) p1 p2 c1(1anch) c1(2anch) ∆1
1 c1(NE)

1 100 500 100 900 0.70 0.50 350 105 [100, 500] 100
2 100 900 100 500 0.50 0.70 150 175 [100, 250] 100
3 100 900 300 500 0.50 0.70 200 175 [150, 250] 150
4 300 500 100 900 0.70 0.50 350 300 [300, 500] 300
5 300 500 300 900 1.50 1.30 500 500 [450, 500] 500
6 300 900 300 500 1.30 1.50 520 650 [390, 650] 650
7 300 900 300 900 1.30 1.30 780 900 [390, 900] 900
8 300 900 300 900 1.30 1.30 780 900 [390, 900] 900
9 100 900 100 500 0.50 1.50 150 250 [100, 250] 100
10 100 500 100 900 1.50 0.50 500 225 [150, 500] 150
11 300 900 100 900 0.70 1.30 350 546 [300, 630] 300
12 100 900 300 900 1.30 0.70 780 455 [390, 900] 390
13 300 500 100 900 0.70 1.50 350 420 [300, 500] 500
14 100 900 300 500 1.50 0.70 600 525 [450, 750] 750
15 100 500 100 500 0.70 1.50 210 315 [100, 350] 350
16 100 500 100 500 1.50 0.70 450 315 [150, 500] 500

Some numbers are rounded to the nearest integer in this table, in order to avoid clutter.
However, in the econometric analysis, the un-rounded numbers are used. These numerical
values for these strategies are derived using the method described in the text.

Table 1. Experimental design

ujg(a1, a2) = max{0, 200− (aj − pjga−j)}+ max
{

0, 100− (aj − pjga−j)
10

}
.

For example, if an agent’s target is 2
3 , then that agent’s utility is maximized, holding fixed

the other agent’s guess, by guessing two-thirds of the other agent’s guess. As displayed in
table 1, the 16 games differ along two dimensions: the action spaces and the targets. The
experimental design (and arrangement of the dataset) is such that when a subject is observed
to play some game g, that subject is agent 1 in the game.

The strategies corresponding to the various solution concepts described in section 2 for
agent 1 are in the last columns of the table.21 In these games, the Nash equilibrium solution

21Strategies for agent 2 are not explicitly shown, but the experimental design described in footnote 18
implies that the strategies of agent 2 in even (odd) numbered games are the strategies of agent 1 in the
previous (next) game in the table.
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concept is indistinguishable from the rationalizability solution concept, since they imply the
same guess (i.e., same pure strategy).

As detailed in Costa-Gomes and Crawford (2006), the derivation of the guesses predicted
by anchored strategic reasoning (the “level-k model”) in these games is straightforward.
Similarly, the derivation of the ranges of guesses predicted by unanchored strategic reasoning
is also straightforward. Let

χjg(a) =


αLg(j) if a < αLg(j)

a if αLg(j) ≤ a ≤ αUg(j)

αUg(j) if a > αUg(j)

The result is that Σs
jg = [cLjg(s), cUjg(s)] is an interval. The biggest guess that agent

j in game g that uses one step of unanchored strategic reasoning can make is cUjg(1) =
χjg(pjgαUg(−j)). That is because the biggest justifiable guess is the biggest possible guess
of the opponent times the target. (And if that would be outside the action space, then the
boundary of the action space is the biggest guess.) Similarly, the smallest guess that agent
j in game g that uses one step of unanchored strategic reasoning can make is cLjg(1) =
χjg(pjgαLg(−j)). More generally, the biggest (respectively, smallest) guess that agent j
in game g that uses s steps of unanchored strategic reasoning can make is cUjg(s) =
χjg(pjgcU,−j,g(s− 1)) (respectively, cLjg(s) = χjg(pjgcL,−j,g(s− 1))).

6.2. Non-parametric estimates. It is useful to plot the empirical cumulative distribution
functions of the observed actions in each of the games. Figure 2 shows this for game 1. The
rest of the figures are displayed in appendix A.3, to save space.22

Along the bottom of the figure, along the horizontal axis, is displayed the action predicted
by 1, 2, and 3 steps of anchored strategic reasoning, and the Nash equilibrium. Along the
top of the figure is displayed via red endpoints the (interval of) actions predicted by 1, 2, and
3 steps of unanchored strategic reasoning. The actions predicted by 0 steps of unanchored
strategic reasoning is necessarily the entire action space, so is not specifically noted.

Figure 2, and the other estimates in appendix A.3, shows clear evidence of mass points
corresponding to a small number of actions, and otherwise a roughly continuous distribution
of actions. In this game, it appears that there are mass points corresponding to using one
and two steps of anchored strategic reasoning, and the Nash equilibrium, and otherwise a
uniform distribution over the action space. The uniform distribution of actions is exactly
consistent with the model, which supposes in section 2.5.2 the uniform distribution from

22See Appendix D of Costa-Gomes and Crawford (2006) for a different way of displaying the actions.
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Figure 2. Distribution of actions of subjects, game 1

using unanchored strategic reasoning (thus, helping to motivate that part of the model).23

In this game, zero and one steps of unanchored strategic reasoning make the same predictions
about actions, but in other games displayed in appendix A.3 the predictions are different.

6.3. Model specification and estimation results. This subsection discusses the final
details of model specification and the estimation results. Section 6.3.1 establishes that the
sufficient conditions for identification hold in this application. Section 6.3.2 discusses esti-
mation of R, based on model selection. Sections 6.3.3 and 6.4 discuss the estimation results.

The estimated model does not allow computational mistakes. As a robustness check, the
estimation results that do allow computational mistakes are almost identical, as displayed
in appendix A.4. It is not surprising that the results allowing computational mistakes are
almost identical, based on the following argument involving the figures in section 6.2 and
appendix A.3. Note that computational mistakes would imply a higher density of actions in
the neighborhoods around the actions associated with the strategies subject to computational
mistakes (i.e., the steps of anchored strategic reasoning or Nash equilibrium), compared to the
density of actions slightly further away from the actions associated with those same strategies.
In the figures, which display the empirical cumulative distribution functions, that would
translate to a “greater slope” of the empirical cumulative distribution functions in those

23The defining characteristic of a uniformly distributed random variable is a cumulative distribution
function with constant slope, which seems to essentially be the case here, after accounting for the mass
points. That is, the displayed empirical cumulative distribution function is essentially that of a mixture
of point masses and a uniform distribution over the action space. Uniform distributions over the actions
consistent with various numbers of steps of unanchored strategic reasoning also appear in the other figures
in appendix A.3, consistent with section 2.5.2.
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same neighborhoods, compared to the slope just outside of those neighborhoods. However,
there appears to be no such feature in the figures. Note that this argument is agnostic about
the exact model of computational mistakes: although this paper has specified a particular
model of computational mistakes, it seems that any reasonable model of computational
mistakes would have similar implications for the density of actions. The actions that do not
correspond to anchored strategic reasoning nor Nash equilibrium appear better explained by
unanchored strategic reasoning, not computational mistakes, as the estimation formalizes.

6.3.1. Model assumptions. This section establishes that the sufficient conditions for identi-
fication are satisfied in this empirical application. The same basic approach would be taken
in any empirical application.

First, it is necessary to specify the sets A and U from assumption 2.1. Overall, based on
visually inspecting the figures from section 6.2 and appendix A.3, it appears that there is
essentially no subject that uses three or more steps of anchored strategic reasoning, basically
the standard finding in experimental game theory. Therefore, assumption 2.1 is maintained
with A = {1anch, 2anch}. Further, assumption 2.1 is maintained with U = {0unanch, 1unanch},
largely because there are not enough games in this dataset such that the predictions of 1 and
2 steps of unanchored strategic reasoning differ sufficiently to guarantee point identification
of the model with a larger set for U , given the conditions in assumptions 4.1 or 5.1. (See
below for further discussion of assumptions 4.1 or 5.1.)

Second, assumption 2.2 is simply the assumption that the model of computational mistakes
is correct, and therefore is directly assumed by the econometrician. Specifically, the empirical
exercise rules out computational mistakes. (Note that, particularly when verifying latter
assumptions, because computational mistakes are ruled out, ρ = 0.)

Third, verifying assumption 4.1 (or, by similar steps, assumption 5.1) requires inspecting
table 1 and checking which games satisfy the conditions in assumption 4.1 (or, the weaker
conditions in assumption 5.1):

(1) Condition 4.1.1: requires that the game has a non-degenerate action space. Obvi-
ously, all games in this dataset satisfy this.

(2) Condition 4.1.2: requires that the game is such that the actions associated with the
strategies in M (in this application: 1 and 2 steps of anchored strategic reasoning,
and Nash equilibrium) are all distinct. It is easy to directly verify by inspecting
table 1 that games 1, 2, 3, 9, 10, 11, 12, 13, 14, 15, and 16 satisfy this condition.
(More generally, the condition requires that if computational mistakes were to be
allowed, then those actions would need to separated from each other by a sufficient
magnitude.)
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(3) Condition 4.1.3: requires that if a certain number of steps of unanchored strategic
reasoning in U (in this application: 0 or 1 steps) predicts a finite set of actions,
then those actions are distinct from the predictions of the steps of anchored strategic
reasoning in A and Nash equilibrium. Since no game is such that 0 or 1 steps
of unanchored strategic reasoning predicts a finite set of actions, this condition is
satisfied in all games in the dataset.

(4) Condition 4.1.4: requires that the game be such that the actions associated with the
strategies in M (in this application: 1 and 2 steps of anchored strategic reasoning,
and Nash equilibrium), are not on both end points of the action space. Since the
action spaces are all intervals, it is not possible for any given action to be on both
end points, so all games in this dataset satisfy this. (More generally, the condition
requires that if computational mistakes were to be allowed, then those actions would
be required to be separated from at least one of the end points of the action space
by a sufficient magnitude.)

(5) Condition 4.1.5: requires that the game be such that, for each s ∈ U , there are
actions used by s steps of unanchored strategic reasoning that are not used by s′

steps of unanchored strategic reasoning (for each s′ ∈ U with s′ > s), nor used by the
strategies inM. In this application, that means there must be actions used by 0 step
of unanchored strategic reasoning, but not used by 1 step of unanchored strategic
reasoning, nor used by 1 or 2 steps of anchored strategic reasoning, nor used by Nash
equilibrium. And also this means there must be actions used by 1 step of unanchored
strategic reasoning but not used by 1 or 2 steps of anchored strategic reasoning, nor
used by Nash equilibrium. It is easy to directly verify by inspecting table 1 that
games 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, and 16 satisfy this condition. (More
generally, the condition requires that if computational mistakes were to be allowed,
it would be necessary that these actions are not just different from the actions used
by the strategies inM, but also separated from the actions used by the strategies in
M by a sufficient magnitude).

Therefore, games 2, 3, 9, 10, 11, 12, 14, 15, and 16 satisfy all these conditions, a total of
9 games. And therefore assumption 4.1 is satisfied for any R ≤ 5.

Finally, verifying assumption 4.2 requires establishing at least one game satisfies condition
4.2.1, among the games satisfying conditions 4.1.1, 4.1.2, and 4.1.4, or in other words in this
application among games 1, 2, 3, 9, 10, 11, 12, 13, 14, 15, and 16. But recall from above that
ρ = 0 since computational mistakes are ruled out in the empirical application. In that case,
note that logically either 4.2.1a or 4.2.1b must be true, since the singleton c1g(k) must either
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be a subset or disjoint from any given set. Therefore, assumption 4.2 is clearly satisfied, for
all games satisfying conditions 4.1.1, 4.1.2, and 4.1.4.

Note that even if computational mistakes were to be allowed, this assumption can be easily
verified as true for sufficiently small ρ (maximum magnitude of computational mistakes). For
example, consider game g = 2. Verifying assumption 4.2 holds for game g = 2 and sufficiently
small ρ requires simply verifying the following based on inspecting table 1:

(1) For k = 1anch and s = 0unanch: notice that c1g(1anch) = 150 is in the interior of
Σ0

1g = [100, 900] so clearly [c1g(1anch)− ρΩ1g, c1g(1anch) + ρΩ1g] is a subset of Σ0
1g for

small enough ρ.
(2) For k = 1anch and s = 1unanch: notice that c1g(1anch) = 150 is in the interior of

Σ1
1g = [100, 250] so clearly again [c1g(1anch) − ρΩ1g, c1g(1anch) + ρΩ1g] is a subset of

Σ1
1g for small enough ρ.

(3) For k = 2anch and s = 0unanch: notice that c1g(2anch) = 175 is in the interior of
Σ0

1g = [100, 900] so clearly [c1g(2anch)− ρΩ1g, c1g(2anch) + ρΩ1g] is a subset of Σ0
1g for

small enough ρ.
(4) For k = 2anch and s = 1unanch: notice that c1g(2anch) = 175 is in the interior of

Σ1
1g = [100, 250] so clearly again [c1g(2anch) − ρΩ1g, c1g(2anch) + ρΩ1g] is a subset of

Σ1
1g for small enough ρ.

(5) For k = NE and s = 0unanch: notice that c1g(NE) = 100 = αLg(1) is on the lower
bound of Σ0

1g = [100, 900] so clearly [c1g(NE), c1g(NE) + ρΩ1g] is a subset of Σ0
1g for

small enough ρ.
(6) For k = NE and s = 1unanch: notice that c1g(NE) = 100 = αLg(1) is on the lower

bound of Σ1
1g = [100, 250] so clearly again [c1g(NE), c1g(NE) + ρΩ1g] is a subset of

Σ1
1g for small enough ρ.

More generally, establishing assumptions 4.1 and 4.2 can be accomplished by a comput-
erized algorithm that takes as inputs the information in table 1, and replicates the steps of
verifying the assumptions just described.

Finally, note that verifying assumption 5.1 follows similar steps to verifying assumption
4.1, since the assumptions are similar. Assumption 5.2 is simply the assumption that rules
out the described “knife-edge” situations, and is directly assumed by the econometrician.

6.3.2. Model selection. Economic theory does not predict the number of strategic decision
making types (i.e., R). Therefore, R is part of the estimation problem. The selection of R is
based on comparing the likelihood of the models with different R adjusted by a measure of
model complexity, penalizing models that have more types (and therefore more parameters).
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A generic information criterion is−2 logLR(θ̂R)+h(R,N), where LR is the likelihood function
of the data for the model with R types, θ̂R is the estimate of the parameters of the model
with R types, and h penalizes model complexity as a function of the number of types and
sample size. Models with low values of the information criterion are preferred models.

R Bayesian ∆Bayesian Akaike ∆Akaike

1 12016.81 631.74 12007.38 662.72
2 11686.71 301.64 11666.72 322.06
3 11484.37 99.30 11455.44 110.78
4 11404.61 19.54 11368.71 24.06
5 11385.07 0.00 11344.66 0.00
6 11386.54 1.47 11344.69 0.04
7 11395.22 10.16 11355.90 11.24

Table 2. Model selection

There is not a uniquely “correct” information criterion, so this paper uses two specifications
of h that are commonly used in the general statistical literature. Suppose that S is the total
number of solution concepts potentially used by the subjects, per assumption 2.1. Then,
there are gS(R) = R(S)− 1 free parameters.24

The specification h(R,N) = gS(R) log(N) results in the Bayesian information criterion
(e.g., Schwarz (1978)). The specification h(R,N) = 2(gS(R)) + 2gS(R)(gS(R)+1)

N−gS(R)−1 results in the
corrected Akaike information criterion (e.g. Akaike (1974), Sugiura (1978), Hurvich and
Tsai (1989)). See Konishi and Kitagawa (2008) for details on information criteria. Since
the information criteria depend on the unknown parameters only through the likelihood,
identifiability of the model parameters is irrelevant. (Per theorems 4.1 and 5.1 the model
will not necessarily be point identified with R too large.)

The results of model selection are displayed in table 2, showing for each specification of R:
the values of the Bayesian and Akaike information criteria, and also the ∆ difference between
the information criterion for that R and the information criterion for the specification of R
with the smallest value of the information criterion. The R with a “∆” of zero is preferred
by the associated information criterion, since that corresponds to the specification of R
with smallest information criterion. The results suggest R = 5 and both criteria show
overwhelming support for more than one type, since ∆Bayesian and ∆Akaike for the model with
R = 1 are extremely large.

24There are R−1 free parameters in π(·), and S−1 free parameters per type from Λr(·). If computational
mistakes were allowed, there would be two more free parameters per type.
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Λ Probability
Anchored reasoning Unanchored reasoning of type

1 2 0 1 Nash
r Λr(1anch) Λr(2anch) Λr(0unanch) Λr(1unanch) Λr(NE) π(r)

1
0.10 0.04 0.49 0.31 0.07 0.44

(0.07, 0.12) (0.02, 0.06) (0.39, 0.57) (0.23, 0.41) (0.03, 0.10) (0.38, 0.56)

2
0.70 0.00 0.15 0.11 0.04 0.20

(0.52, 0.77) (0.00, 0.00) (0.10, 0.27) (0.06, 0.20) (0.02, 0.06) (0.14, 0.31)

3
0.19 0.42 0.11 0.24 0.04 0.15

(0.00, 0.35) (0.36, 0.77) (0.00, 0.20) (0.00, 0.43) (0.00, 0.06) (0.09, 0.25)

4
0.06 0.04 0.04 0.40 0.45 0.15

(0.03, 0.09) (0.00, 0.06) (0.00, 0.08) (0.31, 0.51) (0.40, 0.57) (0.04, 0.24)

5
0.08 0.90 0.00 0.02 0.00 0.06

(0.00, 0.15) (0.87, 1.00) (0.00, 0.00) (0.00, 0.03) (0.00, 0.00) (0.00, 0.10)

95% confidence intervals reported in parentheses, estimated according to the stan-
dard subsampling algorithm for maximum likelihood (e.g., Politis, Romano, and Wolf
(1999)) by re-sampling Ns = floor(2

388) = 58 people from the dataset, without re-
placement. Conventional asymptotic approximations and bootstraps are likely invalid
in this model (with this data), because many of the estimated probabilities are 0, which
suggests a “parameter on the boundary” problem.

Table 3. Estimates

6.3.3. Parameter estimates. The results of estimating the model are displayed in table 3.
Each row of table 3 corresponds to one of the estimated types. The first five columns (not
counting the “r” column) show the probabilities that type uses the various solution concepts
described in section 2.5. The sixth column shows the fraction of the population of that
type. Also displayed are 95% confidence intervals. Types are listed in decreasing order of
the fraction of the population that are that type.

The most common type, 44% of the population, primarily uses zero steps of unanchored
strategic reasoning (49%), and also uses one step of unanchored strategic reasoning (31%).

The second most common type, 20% of the population, primarily uses one step of anchored
strategic reasoning (70%), and also uses zero steps of unanchored strategic reasoning (15%)
and one step of unanchored strategic reasoning (11%).
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The third most common type, 15% of the population, primarily uses two steps of anchored
strategic reasoning (42%), and also uses one step of anchored strategic reasoning (19%) and
one step of unanchored strategic reasoning (24%).

The fourth most common type, 15% of the population, primarily uses the Nash equilibrium
(45%), and also uses one step of unanchored strategic reasoning (40%).

Finally, the least common type, 6% of the population, primarily uses two steps of anchored
strategic reasoning (90%), and also uses one step of anchored strategic reasoning (8%).

So, all types involve within-individual heterogeneity, since no type involves the exclu-
sive use of just one solution concept. (The least common type does have perhaps “little”
within-individual heterogeneity.) This shows that allowing within-individual heterogeneity
is important. The estimated strategic decision making types generally have the sensible
feature that they emphasize the use of just one “mode” of strategic reasoning (anchored or
unanchored). Rules 1 and 4 predominantly use unanchored strategic reasoning, while rules
2 and 5 predominantly use anchored strategic reasoning. Rule 3 shows a slightly more even
“mix” of modes of strategic reasoning. This shows that allowing both modes of strategic
reasoning is important, and that different subjects use different modes of strategic reasoning.
The fact that the estimates are sensible in this way was not imposed by the model or the
estimation method.

6.4. Relationship to prior estimates. There is a logical relationship between these es-
timates (allowing within-individual heterogeneity) and the estimates of Costa-Gomes and
Crawford (2006) (not allowing within-individual heterogeneity). Costa-Gomes and Craw-
ford (2006) observe that roughly half of the subjects can be assigned their “type” (out of
the standard level-k model, and not allowing within-individual heterogeneity) based on type
being “apparent from guesses,” which means using the action associated with the type in at
least 7 out of the 16 games. (Recall that another contribution of the model in this paper
is including unanchored strategic reasoning, which is not included in this discussion, since
Costa-Gomes and Crawford (2006) focus on the level-k model.)

Costa-Gomes and Crawford (2006) find that 20 subjects (22.7%) are the type to use one
step of anchored strategic reasoning. This is consistent with the current estimates, because
type 2 (20% of the population) uses one step of anchored strategic reasoning with proba-
bility 70% (but not 100%, reflecting within-individual heterogeneity). Using the Binomial
distribution, such subjects will almost surely use one step of anchored strategic reasoning
in at least 7 out of 16 games, and therefore will appear to be the type that uses one step
of anchored strategic reasoning, explaining the concordance between the estimates of 22.7%
and 20%. (Other types use one step of anchored strategic reasoning so rarely that such
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subjects are extremely unlikely to use it in 7 out of 16 games, and thus will not appear to
be that type.) Costa-Gomes and Crawford (2006) also find that 12 subjects (13.6%) are
the type to use two steps of anchored strategic reasoning. This is also consistent with the
current estimates. Type 5 (6% of the population) uses two steps of anchored strategic rea-
soning with probability 90%. Such subjects will almost certainly use two steps of anchored
strategic reasoning in at least 7 out of 16 games. Moreover, using the Binomial distribution,
roughly 54% of type 3 subjects (a type comprising 15% of the population) will use two steps
of anchored strategic reasoning in at least 7 out of 16 games. Thus, roughly, based on these
estimates there will be 6% + 54% × 15% ≈ 14.1% of subjects that will use two steps of
anchored strategic reasoning in at least 7 out of 16 games, hence the concordance between
the estimates of 13.6% and 14.1%. Finally, Costa-Gomes and Crawford (2006) find that 8
subjects (9.1%) are the type to use Nash equilibrium. This is also consistent with these
current estimates, because type 4 (15% of the population) uses Nash with probability 45%.
Using the Binomial distribution, approximately 63% of such subjects will use Nash in at
least 7 out of 16 games, hence the concordance between the estimates of 9.1% and 9.5% =
63% × 15%. (Other types use Nash so rarely that such subjects are extremely unlikely to
use it in 7 out of 16 games.)

Costa-Gomes and Crawford (2006) also estimate a formal structural model that assigns
the subjects to a type, the one that “fits” (in a maximum likelihood sense) as a best approx-
imation to their underlying within-individual heterogeneity.

7. Conclusion

This paper proposes a structural model of non-equilibrium behavior in games with con-
tinuous action spaces, in order to learn about the solution concepts that individuals use to
generate their actions. The model allows two different modes of strategic reasoning (anchored
and unanchored), and computational mistakes. And, the model allows both across-individual
and within-individual heterogeneity. The paper proposes the model, and provides sufficient
conditions for point identification. The point identification result can be interpreted as a
result on experimental design, informing the sorts of experiments that should be run to learn
about the solution concepts that individuals use. Then, the model is estimated on data from
an experiment involving two-player guessing games. The empirical application both illus-
trates the empirical relevance of the features of the model, and provides empirical results of
independent interest. The estimation results indicate both across-individual heterogeneity
and within-individual heterogeneity, and that both modes of strategic reasoning are used.
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Appendix A. Supplemental results

A.1. Appendix: model likelihood. Use the notation that y is the entire dataset, yi is the
data of subject i, and yig is the data of subject i in game g. Also, τ(i) is the strategic decision
making rule used by subject i. Suppose that γig is the intended solution concept for subject
i in game g. Neither τ(i) nor γig are observed by the econometrician. Then the likelihood is
as follows, for observing subjects i = 1, 2 . . . , N take actions in games g = 1, 2, . . . , G:
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logL(y|θ) =
N∑
i=1

logL(yi|θ)

=
N∑
i=1

log
(

R∑
r=1

(
P (yi|τ(i) = r, θ)P (τ(i) = r|θ)

))

=
N∑
i=1

log
 R∑
r=1

 G∏
g=1

P (yig|τ(i) = r, θ)
 π(r)


=

N∑
i=1

log
 R∑
r=1

 G∏
g=1

(∑
k

(
P (yig|τ(i) = r, γig = k, θ)P (γig = k|τ(i) = r, θ)

)) π(r)


=
N∑
i=1

log
 R∑
r=1

 G∏
g=1

(∑
k

(
P (yig|τ(i) = r, γig = k, θ)Λr(k)

)) π(r)


where θ collects all of the parameters of the model. The sum over k corresponds to the sum
over the solution concepts that subjects might use, per assumption 2.1. It remains to derive
the form of P (yig|τ(i) = r, γig = k, θ) from the model specification.

For k = sunanch, for some s:

P (yig ≤ t|τ(i) = r, γig = sunanch, θ) = Fgsunanch
(t),

where Fgsunanch
(·) is the cumulative distribution function of a uniformly distributed random

variable on Σs
1g.

For k ∈M corresponding to any solution concept subject to computational mistakes (i.e.,
for k = sanch for some s or k = NE), and letting mig be a binary variable to indicate whether
subject i incorrectly computes the action associated with solution concept k in game g, which
is not observed by the econometrician:

P (yig ≤ t|τ(i) = r, γig = k, θ) = P (yig ≤ t|τ(i) = r, γig = k,mig = 1, θ)× P (mig = 1|τ(i) = r, γig = k, θ)

+ P (yig ≤ t|τ(i) = r, γig = k,mig = 0, θ)× P (mig = 0|τ(i) = c, γig = k, θ)

= Frgk(t)∆r + 1[t ≥ c1g(k)](1−∆r),

where Frgk(·) is the cumulative distribution function of computational mistakes on [αLg(1), αUg(1)]∩
[c1g(k)− Pr (αUg(1)− αLg(1)) , c1g(k) + Pr (αUg(1)− αLg(1))], per section 2.6.

A.2. Appendix: proof of point identification. Use the notation thatM(r) is the r-th
smallest element of M (with Nash equilibrium the largest element by convention), U(r)
is the r-th smallest element of U , Ug(s) = U1g(s), Rg(s, s′, ε) = R1g(s, s′, ε) and Ωg =
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αUg(1)− αLg(1). And,

Mg(k, ε,Pr) =


∫ c1g(k)+εΩg

c1g(k)−εΩg
ω1g,c1g(k),Pr(a)da if Pr > 0

1 if Pr = 0.

Let the set of non-zero unique values of {Pr1[∆r > 0]1[∑k∈M Λr(k) > 0]1[π(r) > 0]}Rr=1

together with ρ be {P̃w}Ww=1, and without loss of generality assume that 0 ≤ P̃1 < P̃2 <

· · · < P̃W , and that 1 ≤ W ≤ R + 1. By assumption 2.2, P̃W = ρ.
For any solution concept k ∈ M, let Cg(k, ε) be the event that a subject takes an action

weakly within εΩg of the action predicted by solution concept k in game g, but excluding the
action exactly predicted by solution concept k in game g. For any solution concept k ∈M,
let the event that a subject takes the action exactly predicted by solution concept k in game
g be Cg(k). (Note that Cg(k) 6= Cg(k, 0).)

Use the generic notation that Pθ refers to the distribution of observables based on strategic
decision making rule θ, and that Pg,θ refers to the distribution of observables based on
strategic decision making rule θ in game g. By some abuse of notation, let Pg,θ be the
(|M|+ |U|+W |M|)× 1 vector:

(1) the first |M| rows are (Pg,θ(Cg(M(1))), . . . , Pg,θ(Cg(M(|M|))));
(2) the next |U| rows are (Pg,θ(Ug(U(1))), . . . , Pg,θ(Ug(U(|U|))));
(3) the finalW |M| rows are

(
Pg,θ(Cg(M(1), P̃1)), . . . , Pg,θ(Cg(M(1), P̃W )), Pg,θ(Cg(M(2), P̃1)), . . .

)
.

Use the notation that ⊗n b = b⊗ b⊗ · · · ⊗ b︸ ︷︷ ︸
n times

, for n ∈ N.

Lemma A.1. The following claims are true:

A.1.1 For a game g that satisfies condition 4.1.1, and for ρi > 0, the density ωjg,c,ρi
(a) has

discontinuities at, and only at, min{αUg(j), c+ρi (αUg(j)− αLg(j))} and max{αLg(j), c−
ρi (αUg(j)− αLg(j))}.

A.1.2 For a game g that satisfies the conditions of assumption 4.2, and for Pr > 0, for any
k ∈M, and 0 < ε < ρ, Mg(k, ε,Pr) has a kink at, and only at, ε = Pr.

A.1.3 For a game g that satisfies conditions 4.1.1 and 4.1.4, for any k ∈M, Mg(k, ε,Pr) =
Mg(k,Pr,Pr) if ε ≥ Pr and Mg(k, ε1,Pr) < Mg(k, ε2,Pr) if 0 ≤ ε1 < ε2 ≤ Pr.

Proof of Lemma A.1. Because the game g satisfies condition 4.1.1, and ρi > 0, the density
ωjg,c,ρi

(a) does not involve dividing by zero, and therefore is well-defined.
For A.1.1: Because ξ(·) is continuous on [−1, 1], discontinuities in ωjg,c,ρi

(a) can occur
only at a such that the argument of ξ(·) in the definition of ωjg,c,ρi

(a) is either −1 or 1.
Therefore, discontinuities can occur only at a = min{αUg(j), c + ρi (αUg(j)− αLg(j))} and
a = max{αLg(j), c − ρi (αUg(j)− αLg(j))}. Moreover, by assumption, ξ is bounded away
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from zero on [−1, 1], but equals zero off [−1, 1], and therefore indeed ωjg,c,ρi
(a) does have

discontinuities at the claimed points.
For A.1.2: By part A.1.1, the integrand in Mg(k, ε,Pr) =

∫ c1g(k)+εΩg

c1g(k)−εΩg
ω1g,c1g(k),Pr(a)da has

discontinuities at, and only at, min{αUg(1), c1g(k)+Pr (αUg(1)− αLg(1))} and max{αLg(1), c1g(k)−
Pr (αUg(1)− αLg(1))}. Because the game g satisfies the conditions of assumption 4.2, 0 <
PrΩg < ρΩg < αUg(1) − c1g(k) or 0 < PrΩg < ρΩg < c1g(k) − αLg(1) by condition
4.1.4. Therefore, either min{αUg(1), c1g(k) + Pr (αUg(1)− αLg(1))} = c1g(k) + PrΩg or
max{αLg(1), c1g(k) − Pr (αUg(1)− αLg(1))} = c1g(k) − PrΩg. Therefore, Mg(k, ε,Pr) has
a kink at ε = Pr. Moreover, there can be no other kinks in Mg(k, ε,Pr) for any k ∈ M
and 0 < ε < ρ, by condition 4.2.1. That follows because any other kink would be located
at ε = c1g(k)−αLg(1)

Ωg
or ε = αUg(1)−c1g(k)

Ωg
. But by condition 4.2.1 evaluated at s = 0, such ε

would either equal 0 or 1 under conditions 4.2.1c or 4.2.1d, or would be weakly greater than
ρ under condition 4.2.1a. However, 0 < ε < ρ and by assumption 4.1.4, ρ < 1.

For A.1.3: Note that Mg(k, ε,Pr) =
∫ c1g(k)+εΩg

c1g(k)−εΩg
ω1g,c1g(k),Pr(a)da, where the integrand

is 0 for a > min{αUg(1), c1g(k) + PrΩg} and a < max{αLg(1), c1g(k) − PrΩg}. There-
fore, Mg(k, ε,Pr) =

∫min{c1g(k)+εΩg ,min{αUg(1),c1g(k)+PrΩg}}
max{c1g(k)−εΩg ,max{αLg(1),c1g(k)−PrΩg}} ω1g,c1g(k),Pr(a)da. Therefore, since

the bounds of integration are [max{αLg(1), c1g(k) − PrΩg},min{αUg(1), c1g(k) + PrΩg}] for
ε ≥ Pr, it follows thatMg(k, ε,Pr) = Mg(k,Pr,Pr) if ε ≥ Pr. Since the bounds of integration
are [max{αLg(1), c1g(k) − εΩg},min{αUg(1), c1g(k) + εΩg}] for ε ≤ Pr, and the integrand is
positive over that range for all ε ≤ Pr, and by assumption 4.1.4, either the lower bound
equals c1g(k)− εΩg or the upper bound equals c1g(k) + εΩg, which both depend non-trivially
on ε by assumption 4.1.1, it follows thatMg(k, ε1,Pr) < Mg(k, ε2,Pr) if 0 ≤ ε1 < ε2 ≤ Pr. �

Lemma A.2. Let R ∈ N and m ∈ N satisfy m ≥ R − 1. Let C(m,n) = ∑m
p=0 n

p. Let
γp,n(·) : Rn → Rnp be defined by γp,n(z) = ⊗p z. Let Γm,n(·) : Rn → RC(m,n) be defined
by Γm,n(z) = (1, γ1,n(z), . . . , γm,n(z)). Thus, Γm,n(z) gives all monomials of the argument
vector z, of order between 0 and m, in ascending order (i.e., the order 0 monomial in the first
row, then order 1 monomials in the next rows, etc.). Suppose b1, . . . , bR ∈ Rn are distinct.
Let B∗ = (Γm,n(b1) Γm,n(b2) · · ·Γm,n(bR)) ∈ RC(m,n)×R. Then, there is a C(m,n)× C(m,n)
non-singular matrix T such that TB∗ has full column rank.

Proof of Lemma A.2. The following argument establishes that since bk 6= bl for k 6= l, there
exists a t ∈ Rn

++ such that t′bk 6= t′bl for all k 6= l. Let D(t) = {(k, l) : t′bk = t′bl, k 6= l}.
Let t0 ∈ Rn

++. If |D(t0)| = 0, then the claim is established. Otherwise, for some k∗ and l∗

such that k∗ 6= l∗, t′0bk∗ = t′0bl∗ . By slightly perturbing t0 in the element of t0 corresponding
to the element where bk∗ and bl∗ are not equal (which must exist since bk∗ 6= bl∗), there
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exists t1 ∈ Rn
++ such that t′1bk∗ 6= t′1bl∗ . If the perturbation is sufficiently small, then

t′1(bk−bl) ≈ t′0(bk−bl) uniformly for all k and l. Therefore, for any (k, l) such that t0bk 6= t0bl,
also t1bk 6= t1bl. Therefore, |D(t1)| < |D(t0)|. Similarly, it is possible to perturb t1 to
construct t2 such that |D(t2)| < |D(t1)| if |D(t1)| > 0. Necessarily, this process terminates
at t ∈ Rn

++ such that t′bk 6= t′bl for all k 6= l.
The matrix T is defined constructively, using the notation that z ∈ Rn is a free variable.

For each integer p ∈ {0, 1, . . . ,m}, row C(p, n) of T has C(p − 1, n) leading zeros, then is
equal to ⊗p t′, and then has trailing zeros. Therefore, row C(p, n) of TΓm,n(z) is (t′z)p, since
(t′z)p = ⊗p(t′z) = ⊗p t′

⊗p z. In particular, for p = 0, use the convention that (t′z)p = 1.
So, since the first element of Γm,n(z) is 1, the first row of T has a 1 along the diagonal and
is equal to zero everywhere else. Since t′z is the sum of n terms, there are np terms in the
series expansion of (t′z)p. Therefore, the last non-zero term in row C(p, n) is in column
C(p − 1, n) + np = C(p, n). All other rows are zeros except for a 1 along the diagonal. In
particular, note that T is a lower triangular matrix, with non-zero entries along the diagonal
(since t ∈ Rn

++). Therefore, T is non-singular.
By construction of T , the element of TB∗ in row C(p, n) and column c is (t′bc)p. Therefore,

one submatrix of TB∗ is a Vandermonde matrix of dimension (m + 1)× R, in terms of the
powers of (t′bc) for c = 1, . . . , R. Since m + 1 ≥ R, in particular one submatrix of T is the
Vandermonde matrix of dimension R × R. Since t′bc 6= t′bc′ for c 6= c′ by choice of t, these
Vandermonde matrices are based on distinct “parameters,” which implies that the square
Vandermonde matrix is non-singular. So, TB∗ contains an R × R non-singular submatrix.
Since TB∗ is C(m,n)×R, this implies that TB∗ has full column rank. �

Lemma A.3. Let P̃ = {P̃w}Ww=1 be a set of possible magnitudes of computational mistakes
with P̃1 < P̃2 < · · · < P̃W . Based on P̃, define vector-valued mappings η1, η2 and η3 of the
strategic decision making rules Θ = (Λ,∆,P):

(1) η1(Θ) = ((1−∆)Λ(M(1)), . . . , (1−∆)Λ(M(|M|))). So, η1 gives the vector of (1−
∆)Λ(k) for solution concepts k ∈M.

(2) η2(Θ) = (Λ(U(1)), . . . ,Λ(U(|U|))). So, η2 gives the vector of Λ(k) for solution con-
cepts k ∈ U .

(3) η3(Θ) =
(
∆Λ(M(1))1[P = P̃1], . . . ,∆Λ(M(1))1[P = P̃W ],∆Λ(M(2))1[P = P̃1], . . .

)
.

So, η3 gives ∆Λ(k)1[P = P̃w] for solution concepts k ∈M and w = 1, 2, . . . ,W .

Let η∗(Θ) = (η1(Θ), η2(Θ), η3(Θ)) and η∗∗(Θ) = (η1(Θ), η2(Θ)).
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Suppose Θ1 and Θ2 are two strategic decision making rules such that P1 ∈ P̃ and P2 ∈ P̃.
If η∗(Θ1) = η∗(Θ2), then Λ1 = Λ2, ∆11[∑k∈M Λ1(k) > 0] = ∆21[∑k∈M Λ2(k) > 0], and
P11[∆1 > 0]1[∑k∈M Λ1(k) > 0] = P21[∆2 > 0]1[∑k∈M Λ2(k) > 0].
Suppose Θ1 and Θ2 are two strategic decision making rules. If η∗∗(Θ1) = η∗∗(Θ2), then

Λ1 = Λ2, and ∆11[∑k∈M Λ1(k) > 0] = ∆21[∑k∈M Λ2(k) > 0].

Proof of Lemma A.3. Suppose that η∗∗(Θ1) = η∗∗(Θ2). It is immediate from the definition of
η1 that (1−∆1)Λ1(k) = (1−∆2)Λ2(k) for any solution concept k ∈M. Also, it is immediate
from the definition of η2 that Λ1(k) = Λ2(k) for any solution concept k ∈ U . Necessarily, 1 =∑
k Λ(k) = ∑

k∈M Λ(k) +∑
k∈U Λ(k). Therefore, it must be that ∑k∈M Λ1(k) = ∑

k∈M Λ2(k)
since∑k∈U Λ1(k) = ∑

k∈U Λ2(k). Therefore, since∑k∈M(1−∆1)Λ1(k) = ∑
k∈M(1−∆2)Λ2(k),

it must be that ∆11[∑k∈M Λ1(k) > 0] = ∆21[∑k∈M Λ2(k) > 0]. Suppose that for all k ∈M
it holds that Λ1(k) = 0. Then, since ∆2 < 1, it must be that Λ2(k) = 0 for all k ∈ M by
definition of η1. So, in that case, Λ1(k) = Λ2(k) for all k ∈M. If there is k∗ ∈M such that
Λ1(k∗) > 0, then since ∆1 < 0 it must be that Λ2(k∗) > 0 by definition of η1. In that case,
it must indeed be that ∆1 = ∆2 since 1[∑k∈M Λ1(k) > 0] = 1[∑k∈M Λ2(k) > 0] = 1. So,
then, by definition of η1 it must be that Λ1(k) = Λ2(k) for all k ∈ M. So, again, in that
case, Λ1(k) = Λ2(k) for all k ∈M.

Now suppose in addition that η∗(Θ1) = η∗(Θ2). If ∆1 = ∆2 > 0 and ∑
k∈M Λ1(k) =∑

k∈M Λ2(k) > 0, note that ∆1
∑
k∈M Λ1(k)1[P1 = P̃w] (or, respectively, ∆2

∑
k∈M Λ2(k)1[P2 =

P̃w]) is non-zero if and only if P1 = P̃w (or P2 = P̃w). Therefore, by definition of η3, it must
be that P11[∆1 > 0]1[∑k∈M Λ1(k) > 0] = P21[∆2 > 0]1[∑k∈M Λ2(k) > 0]. �

Lemma A.4. The following claims are true:

A.4.1 Suppose that k ∈M. In a game g that satisfies conditions 4.1.2 and 4.1.3, or a game
g that satisfies conditions 5.1.2 and 5.1.3, it holds that

Prg(Cg(k)) = (1−∆r)Λr(k).

A.4.2 Suppose that k ∈M. Suppose that 0 < ε. In a game g that satisfies condition 4.1.1,
or equivalently a game g that satisfies condition 5.1.1, it holds that

Prg(Cg(k, ε)) =
∑
k′ 6=k

Prg(Cg(k, ε)|γg = k′)Λr(k′) + ∆rMg(k, ε,Pr)Λr(k)

A.4.3 Suppose that k ∈ M. Suppose that 0 < ε ≤ ρ, where ρ arises from assumption 4.1.
In a game g that satisfies conditions 4.1.1 and 4.1.2, it holds that

Prg(Cg(k, ε)) =
∑
s∈U

Prg(Cg(k, ε)|γg = sunanch)Λr(sunanch) + ∆rMg(k, ε,Pr)Λr(k)
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A.4.4 Suppose that s ∈ U . It holds that

Prg(Ug(s)) =
∑

0≤s′≤s,s′∈U
Rg(s, s′, ρ)Λr(s′unanch)

Proof of Lemma A.4. For A.4.1: By the law of total probability,

Prg(Cg(k)) =
∑
k′
Prg(Cg(k)|γg = k′)Prg(γg = k′).

Under conditions 4.1.2 and 4.1.3, or conditions 5.1.2 and 5.1.3, there are no solution concepts
k′ 6= k that take the action associated with solution concept k with positive probability, so
Prg(Cg(k)) = Prg(Cg(k)|γg = k)Λr(k). And, a subject that uses rule r and solution concept
k will actually take the action predicted by solution concept k with probability 1 − ∆r,
since with probability ∆r it makes a computational mistake and takes an action according
to the density on a non-degenerate interval since Pr > 0 by assumption when ∆r > 0. So,
Prg(Cg(k)|γg = k) = 1−∆r.

For A.4.2: A subject that uses rule r and intends to use solution concept k in game g and
that makes a computational mistake will take an action that is distributed according to ξ(·)
translated to the interval with radius Pr(αUg(1) − αLg(1)) centered at the action predicted
by solution concept k, and intersected with the action space. Therefore:

Prg(Cg(k, ε)) =
∑
k′

Prg(Cg(k, ε)|γg = k′)Prg(γg = k′)

=
∑
k′ 6=k

Prg(Cg(k, ε)|γg = k′)Λr(k′) + ∆rMg(k, ε,Pr)Λr(k)

By condition 4.1.1, αLg(1) < αUg(1), so as long as Pr > 0, this last expression does not
involve dividing by zero in the definition of ω1g,c1g(k),Pr(·) that appears as the integrand in
Mg(k, ε,Pr). The condition that Pr > 0 is assumed in section 2.6 when ∆r > 0. Otherwise,
if Pr = 0 then ∆r = 0 and the expression is still correct.

For A.4.3: Since g is a game that additionally satisfies condition 4.1.2 and ε ≤ ρ,
Prg(Cg(k, ε)|γg = k′) = 0 for any solution concept k′ ∈M.

For A.4.4: By construction, the only time Ug(s) happens (with positive probability) is
from subjects that use s′ steps of unanchored strategic reasoning for some 0 ≤ s′ ≤ s with
s′ ∈ U , so it follows that:

Prg(Ug(s)) =
∑
k′
Prg(Ug(s)|γg = k′)Prg(γg = k′)

=
∑

0≤s′≤s,s′∈U
Rg(s, s′, ρ)Λr(s′unanch) �
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Lemma A.5. Suppose assumptions 2.2 and 4.1. Suppose that the econometrician allows
the possibility of computational mistakes. Suppose that g is a game that satisfies conditions
4.1.1, 4.1.2, 4.1.4, and 4.2.1. Then, {P̃w}W−1

w=1 is identified by the locations of the kinks in
{Pg(Cg(k, ε))}k∈M as a function of ε, for 0 < ε < ρ.

Proof of Lemma A.5. Suppose that k ∈ M. For 0 < ε ≤ ρ, the probability of the event
Cg(k, ε) in game g is, using the result of lemma A.4.2 and condition 4.1.1,

Pg(Cg(k, ε)) =
R∑
r=1

Prg(Cg(k, ε))π(r) =
R∑
r=1

∑
k′ 6=k

Prg(Cg(k, ε)|γg = k′)Λr(k′)
 π(r)

+
R∑
r=1

(∆rMg(k, ε,Pr)Λr(k))π(r)

Since g is a game that satisfies condition 4.1.2, it follows that Prg(Cg(k, ε)|γg = k′) = 0
for all such solution concepts k′ ∈M with k′ 6= k, since ε ≤ ρ. So:

Pg(Cg(k, ε)) =
R∑
r=1

(∑
s∈U

Prg(Cg(k, ε)|γg = sunanch)Λr(sunanch)
)
π(r)

+
R∑
r=1

(∆rMg(k, ε,Pr)Λr(k))π(r)

Since g satisfies condition 4.2.1, for any s ∈ U , Prg(Cg(k, ε)|γg = sunanch) is a differentiable
function of ε, for all 0 < ε < ρ. Under conditions 4.2.1a, 4.2.1c, or 4.2.1d, Prg(Cg(k, ε)|γg =
sunanch) is linear in ε. Under condition 4.2.1b, Prg(Cg(k, ε)|γg = sunanch) = 0 for all 0 < ε < ρ.

Suppose that r is such that π(r) > 0 and ∆r > 0. Suppose that r uses at least one
k∗r ∈ M with positive probability. So, it holds that ∆rΛr(k∗r)π(r) > 0. Therefore, there
is a kink in Pg(Cg(k∗r , ε)) at ε = Pr since there is a kink in Mg(k∗r , ε,Pr) at ε = Pr by
lemma A.1.2. This uses the fact that Pr < ρ for all r by assumption 2.2, whereas the above
expression for Pg(Cg(k, ε)) is valid for all ε ≤ ρ, so that the location of all relevant kinks are
indeed identified. Moreover, there can be no other kinks in Mg(k, ε,Pr) for any k ∈ M and
0 < ε < ρ, by lemma A.1.2. Consequently, the list of non-zero unique values corresponding
to {Pr1[∆r > 0]1[∑k∈M Λr(k) > 0]1[π(r) > 0]}r is identified by the list of the locations of
the kinks in {Pg(Cg(k, ε))}k∈M as a function of ε, for 0 < ε < ρ. �

Lemma A.6. For each game g, define the following:

(1) Let Q2g be the |U| × |U| matrix that has element in row r and column c that equals
Rg(U(r),U(c), ρ).
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(2) Let Q3g be the (W |M|)×|U| matrix that has element in row r and column c that equals
the probability in game g of the event Cg

(
M

(⌈
r
W

⌉)
, P̃mod(r−1,W )+1

)
according to the

distribution of actions used by subjects that use U(c) steps of unanchored strategic
reasoning.

(3) For each k ∈M, let Q4gk be the W ×W matrix that has element in row r and column
c that equals Mg

(
k, P̃r, P̃c

)
. Then, let Q4g be the (W |M|)× (W |M|) matrix that has

(Q4gM(1), . . . , Q4gM(|M|)) along the diagonal.

Then, let

Qg =


I|M|×|M| 0 0

0 Q2g 0
0 Q3g Q4g

 .
For any game g satisfying conditions 4.1.1, 4.1.2, 4.1.3, 4.1.4, and 4.1.5, Pg,θ = Qgη

∗(θ)
and Qg is non-singular.

For any game g satisfying condition 4.1.5, or equivalently any game g satisfying condition
5.1.4, Q2g is non-singular.

For any game g satisfying conditions 4.1.2 and 4.1.3, or any game g satisfying conditions
5.1.2 and 5.1.3, the first |M| rows of Pg,θ are equal to the first |M| rows of Qgη

∗(θ).
For any game g, rows |M|+ 1 through |M|+ |U| of Pg,θ are equal to rows |M|+ 1 through
|M|+ |U| of Qgη

∗(θ).
For any game g satisfying conditions 4.1.1 and 4.1.2, the last block of |W |M rows of Pg,θ

are equal to the last block of W |M| rows of Qgη
∗(θ).

Proof of Lemma A.6. Since Rg(s, s′, ρ) = 0 for s′ > s by construction, it follows that Q2g is
lower triangular. Since g is a game that satisfies condition 4.1.5, the diagonal elements are
non-zero, implying that Q2g is non-singular.

By the following arguments, for a game g that satisfies conditions 4.1.1 and 4.1.4, Q4gk

is non-singular for each k ∈ M. First, consider the case that the econometrician allows the
possibility of computational mistakes. Apply repeated elementary row operations: for rows
r ≥ 2 (if indeed W ≥ 2), starting with row W and then moving to the next higher row,
subtract row r − 1 from row r and substitute the result into row r. The resulting matrix
˜̃Q4gk has element in row r ≥ 2 and column c that equals Mg(k, P̃r, P̃c) −Mg(k, P̃r−1, P̃c).
For a game g that satisfies conditions 4.1.1 and 4.1.4, by lemma A.1.3, this difference is 0 if
r − 1 ≥ c and is strictly positive if r ≤ c. Therefore, row r ≥ 2 has r − 1 leading zeros and
then positive elements. In row 1 and column c, the element is Mg(k, P̃1, P̃c) > 0. Therefore,
for a game g that satisfies conditions 4.1.1 and 4.1.4, ˜̃Q4gk is an upper-diagonal matrix with
non-zero elements along the diagonal, so is non-singular. Therefore, Q4gk is non-singular for
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a game g that satisfies conditions 4.1.1 and 4.1.4. And therefore the matrix Q4g has full rank
if g satisfies conditions 4.1.1 and 4.1.4. Second, consider the case that the econometrician
does not allow computational mistakes. In that case, W = 1, and P̃1 = 0, so Q4gk = 1 has
full rank.

Then, Qg is non-singular since all of the diagonal matrices are non-singular.
The first block of |M| rows of η∗(θ) gives the vector of ((1 − ∆)Λ(M(1)), . . . , (1 −

∆)Λ(M(|M|))). Therefore, since g is a game that satisfies condition 4.1.2 and 4.1.3, the first
block ofM rows of Qgη

∗(θ) is indeed the first block ofM rows of Pg,θ by lemma A.4.1. (And
similarly the same would be true if g were a game satisfying conditions 5.1.2 and 5.1.3.) The
second block of |U| rows of η∗(θ) gives the vector of (Λ(U(1)), . . . ,Λ(U(|U|))). Therefore, by
lemma A.4.4, by definition, it follows that the second block of |U| rows ofQgη

∗(θ) is indeed the
second block of |U| rows of Pg,θ. Finally, the last block ofW |M| rows of η∗(θ) gives the vector
of (∆Λ(M(1))1[P = P̃1], . . . ,∆Λ(M(1))1[P = P̃W ],∆Λ(M(2))1[P = P̃1], . . .). Also, the last
block ofW |M| rows of Pg,θ is (Pg,θ(Cg(M(1), P̃1)), . . . , Pg,θ(Cg(M(1), P̃W )), Pg,θ(Cg(M(2), P̃1)), . . .).
Therefore, it follows from lemma A.4.3, and the fact that g is a game that satisfies conditions
4.1.1 and 4.1.2 and the definition of Q3g, that indeed the last block ofW |M| rows of Qgη

∗(θ)
is indeed the last block of |W |M rows of Pg,θ. �

Proof of Theorem 4.1. Using the game g that satisfies the conditions of assumption 4.2, and
lemma A.5, it is possible to identify {P̃w}Ww=1.

Let G be a subset of {1, 2, . . . , G} with |G| ≥ 2R − 1 games that satisfy the conditions of
assumption 4.1. Let G(p) be the p-th smallest element of G. Let Gp = {G(1), . . . ,G(p)}. Let
Q

(0)
G = 1, and Q(p)

G = QG(1)⊗· · ·⊗QG(p). Let QG be the block diagonal matrix with the blocks
along the diagonal equal to Q(0)

G , . . . , Q
(|G|)
G . QG is non-singular as long as each diagonal block

is non-singular. So, since QG(p) is non-singular for all p by lemma A.6, which implies that
Q

(p)
G is non-singular by the algebra of the Kronecker product, QG is non-singular.
Let PG,θ,p ≡ PG(1),θ ⊗ · · · ⊗ PG(p),θ. Since actions are independent across games, PG,θ,p

gives the joint distribution of the events C(·), U(·), and C(·, ·) across games Gp. Let PG,θ =
(1, PG,θ,1, . . . , PG,θ,|G|). Let η∗(θ)(0) = 1 and η∗(θ)(p) = η∗(θ) ⊗ · · · ⊗ η∗(θ) be the p-times
Kronecker product. Let η∗(θ) = (1, η∗(θ)(1), . . . , η∗(θ)(|G|)).

Then, using the results of lemma A.6, it follows from the algebra of the Kronecker product
that PG,θ,p ≡ PG(1),θ ⊗ · · · ⊗ PG(p),θ = (QG(1)η

∗(θ)) ⊗ · · · ⊗ (QG(p)η
∗(θ)) = (QG(1) ⊗ · · · ⊗

QG(p))(η∗(θ)⊗ · · · ⊗ η∗(θ)) = Q
(p)
G η

∗(θ)(p). Also, PG,θ = QGη
∗(θ).

Let the true parameters of the data generating process be Θ01, . . . ,Θ0R̃0
and π0(1), . . . , π0(R̃0),

where R̃0 ≤ R is the number of strategic decision making rules that are used in the popula-
tion and Θ0r is not observationally equivalent to Θ0r′ for all r 6= r′ per definition 1. So, by
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construction, π0(·) > 0. Then, by the above, it follows that PG,Θ0r = QGη
∗(Θ0r) for each r.

Let Υ∗0 =
(
η∗(Θ01) · · · η∗(Θ0R̃0

)
)
. Since no pair of strategic decision making rules are obser-

vationally equivalent, by lemma A.3 the columns of Υ∗0 are distinct. Then, PG,0 = QGΥ∗0π0,
where PG,0 is the observed joint distribution of actions in games G.

Suppose that there were an observationally equivalent specification of the parameters Θ1·

and π1(·), with corresponding Υ∗1, such that PG,0 = QGΥ∗1π1, where again by construction no
columns of Υ∗1 correspond to a rule r such that π1(r) = 0 and no pair of strategic decision
making rules are observationally equivalent. Let Υ∗ collect the unique columns of (Υ∗0 Υ∗1).
Similarly, let π be the corresponding differences between π0 and π1. If column c of Υ∗ exists
in both Υ∗0 and Υ∗1, as columns c0 and c1 respectively, then set πc = π0(c0)−π1(c1). If column
c of Υ∗ exists only in Υ∗0 as column c0, then set πc = π0(c0). And if column c of Υ∗ exists
only in Υ∗1 as column c1, then set πc = −π1(c1). Then, 0 = QGΥ

∗
π. By lemma A.2, since

the number of columns of Υ∗ is at most 2R, and |G| ≥ 2R− 1, 0 = QGT
−1TΥ∗π where T is

non-singular and TΥ∗ has full column rank. Therefore, QGT−1TΥ∗ has full column rank, so
π = 0. Therefore, any strategic decision making rules that appear in specifications 0 and 1
are used with equal probability, and there are no strategic decision making rules used only
in specifications 0 and 1, since no elements of π0 and π1 are equal to zero by construction.

Therefore, Υ∗0 and Υ∗1 contain exactly the same columns, up to permuting the order of
the columns. And, the probabilities of the corresponding strategic decision making rules are
also equal across specifications. Note, in particular, this implies that the set of η∗(Θ0r) for
r = 1, 2, . . . , R̃ and the set of η∗(Θ1r) for r = 1, 2, . . . , R̃ are equal up to permutations of
the labels. Since η∗ is “injective” in the sense of lemma A.3, the two specifications of the
parameters are the same up to observational equivalence in definition 1 (up to permutations
of the labels), so the parameters are point identified in the sense of definition 2. �

Proof of Theorem 5.1. Let GM be a subset of {1, 2, . . . , G} with at least |GM| ≥ 2R − 1
games that satisfy the first set of conditions of assumption 5.1. Let GM(p) be the p-th
smallest element of GM. Let Gp,M = {GM(1), . . . ,GM(p)}. Let Q(0)

GM = 1, and Q
(p)
GM =

I|M|×|M| ⊗ · · · ⊗ I|M|×|M| be the p-times Kronecker product of I|M|×|M|. Let QGM be the
block diagonal matrix with the blocks along the diagonal equal to Q(0)

GM , . . . , Q
(|GM|)
GM . QGM is

non-singular as long as each diagonal block is non-singular. So, since Q(p)
GM is non-singular

by the algebra of the Kronecker product, QGM is non-singular.
Let GU be a subset of {1, 2, . . . , G} with at least |GU | ≥ 2R − 1 games that satisfy the

second set of conditions of assumption 5.1. Let GU(p) be the p-th smallest element of GU .
Let Gp,U = {GU(1), . . . ,GU(p)}. Let Q(0)

GU = 1, and Q(p)
GU = Q2GU (1) ⊗ · · · ⊗ Q2GU (p). Let QGU

be the block diagonal matrix with the blocks along the diagonal equal to Q(0)
GU , . . . , Q

(|GU |)
GU .
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QGU is non-singular as long as each diagonal block is non-singular. So, since Q2GU (p) is non-
singular for all p by lemma A.6, which implies that Q(p)

GU is non-singular by the algebra of the
Kronecker product, QGU is non-singular.

Let PGM(p),θ,M be the first |M| rows of PGM(p),θ. Let PGM,θ,p,M ≡ PGM(1),θ,M ⊗ · · · ⊗
PGM(p),θ,M. Since the actions in the games are independent across games, PGM,θ,p,M gives the
joint distribution of the events C(·) across games Gp,M. Let PGM,θ,M = (1, PGM,θ,1,M, . . . , PGM,θ,|GM|,M).
Let η∗M(θ) be the first |M| rows of η∗(θ). Let η∗(θ)(0) = 1 and η∗M(θ)(p) = η∗M(θ)⊗· · ·⊗η∗M(θ)
be the p-times Kronecker product. Let η∗M(θ) = (1, η∗M(θ)(1), . . . , η∗M(θ)(|GM|)).

Let PGU (p),θ,U be rows |M|+1 through |M|+|U| of PGU (p),θ. Let PGU ,θ,p,U ≡ PGU (1),θ,U⊗· · ·⊗
PGU (p),θ,U . Since the actions in the games are independent across games, PGU ,θ,p,U gives the
joint distribution of the events U(·) across games Gp,U . Let PGU ,θ,U = (1, PGU ,θ,1,U , . . . , PGU ,θ,|GU |,U).
Let η∗U(θ) be rows |M| + 1 through |M| + |U| of η∗(θ). Let η∗(θ)(0) = 1 and η∗U(θ)(p) =
η∗U(θ)⊗· · ·⊗η∗U(θ) be the p-times Kronecker product. Let η∗U(θ) = (1, η∗U(θ)(1), . . . , η∗U(θ)(|GU |)).

Then, using the results of lemma A.6, it follows from the algebra of the Kronecker product
that PGM,θ,p,M ≡ PGM(1),θ,M⊗ · · · ⊗PGM(p),θ,M = (I|M|×|M|η∗M(θ))⊗ · · · ⊗ (I|M|×|M|η∗M(θ)) =
(I|M|×|M|⊗· · ·⊗I|M|×|M|)(η∗M(θ)⊗· · ·⊗η∗M(θ)) = Q

(p)
GMη

∗
M(θ)(p). Also, PGM,θ,M = QGMη

∗
M(θ).

Similarly, using the results of lemma A.6, it follows from the algebra of the Kronecker
product that PGU ,θ,p,U ≡ PGU (1),θ,U ⊗ · · · ⊗PGU (p),θ,U = (Q2GU (1)η

∗
U(θ))⊗ · · · ⊗ (Q2GU (p)η

∗
U(θ)) =

(Q2GU (1) ⊗ · · · ⊗Q2GU (p))(η∗U(θ)⊗ · · · ⊗ η∗U(θ)) = Q
(p)
GUη

∗
U(θ)(p). Also, PGU ,θ,U = QGUη

∗
U(θ).

Then, let P̃GM,GU ,θ = (PGM,θ,M, PGU ,θ,U). Let η∗M,U(θ) = (η∗M(θ), η∗U(θ)). And let QGM,GU

be the partioned matrix with (QGM , QGU ) along the diagonal.
Let the true parameters of the data generating process be Θ01, . . . ,Θ0R̃0

and π0(1), . . . , π0(R̃0),
where R̃0 ≤ R is the number of strategic decision making rules that are used in the pop-
ulation and Θ0r is not observationally equivalent ignoring the magnitude of computational
mistakes to Θ0r′ for all r 6= r′ per definition 3. So, by construction, π0(·) > 0. Then,
by the above, it follows that PGM,Θ0r,M = QGMη

∗
M(Θ0r) and PGU ,Θ0r,U = QGUη

∗
U(Θ0r).

Let Υ∗0,M =
(
η∗M(Θ01) · · · η∗M(Θ0R̃0

)
)
and Υ∗0,U =

(
η∗U(Θ01) · · · η∗U(Θ0R̃0

)
)
. By assump-

tion 5.2, the columns of Υ∗0,M are distinct and the columns of Υ∗0,U are distinct. Then,
PGM,0,M = QGMΥ∗0,Mπ0, where PGM,0,M is the observed joint distribution of actions in games
GM. And, PGU ,0,U = QGUΥ∗0,Uπ0, where PGU ,0,U is the observed joint distribution of actions in
games GU .

Suppose that there were an observationally equivalent specification of the parameters Θ1·

and π1(·), with corresponding Υ∗1,M and Υ∗1,U , such that PGM,0,M = QGMΥ∗1,Mπ1 and PGU ,0,U =
QGUΥ∗1,Uπ1, where again by construction the columns of Υ∗1,M and the columns of Υ∗1,U are
distinct, and no columns correspond to a rule r such that π1(r) = 0. By the same arguments
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as finishes the proof of theorem 4.1, since |GM| ≥ 2R − 1 and |GU | ≥ 2R − 1, (π(r), (1 −
∆r)Λr(M(1)), . . . , (1−∆r)Λr(M(|M|))) and (π(r),Λr(M(1)), . . . ,Λr(M(|M|))) are point
identified up to permutations of the labels in the sense that the values of those two quantities
must be equal across specifications of the parameters, up to permutations of the labels. And
then, since π(r) and π(r′) are distinct for r′ 6= r by assumption 5.2, it is possible to point
identify (π(r), (1 − ∆r)Λr(M(1)), . . . , (1 − ∆r)Λr(M(|M|)),Λr(M(1)), . . . ,Λr(M(|M|))),
in the sense that that quantity must be equal across specifications of the parameters, up
to permutations of the labels, by “piecing together” the two point identification results on
(π(r), (1−∆r)Λr(M(1)), . . . , (1−∆r)Λr(M(|M|))) and (π(r),Λr(M(1)), . . . ,Λr(M(|M|))).

Note, in particular, this implies that the set of η∗∗(Θ0r) for r = 1, 2, . . . , R̃ and the set
of η∗∗(Θ1r) for r = 1, 2, . . . , R̃ are equal up to permutations of the labels. Since η∗∗ is
“injective” in the sense of lemma A.3, the two specifications of the parameters are the same
up to observational equivalence in definition 3 (up to permutations of the labels), so the
parameters are point identified in the sense of definition 4. �

A.3. Appendix: other games. The following are empirical cumulative distribution func-
tions of actions taken by subjects in games 2 through 16, as in section 6.2.
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A.4. Appendix: results of the model allowing computational mistakes. Table 4
reports estimates of the model allowing uniformly distributed computational mistakes. It is
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assumed that Pr = 2.5
200 for all rules r.25 The results are almost identical to the model not

allowing computational mistakes, and estimates of ∆r are close to zero for all r.
Λ Probability of...

Anchored reasoning Unanchored reasoning type mistake
1 2 0 1 Nash

r Λr(1anch) Λr(2anch) Λr(0unanch) Λr(1unanch) Λr(NE) π(r) ∆r

1
0.10 0.04 0.49 0.31 0.07 0.44 0.00

(0.08, 0.12) (0.03, 0.06) (0.40, 0.54) (0.25, 0.40) (0.04, 0.10) (0.39, 0.55) (0.00, 0.00)

2
0.70 0.00 0.15 0.11 0.04 0.20 0.00

(0.59, 0.78) (0.00, 0.00) (0.09, 0.25) (0.06, 0.18) (0.02, 0.06) (0.14, 0.28) (0.00, 0.00)

3
0.21 0.44 0.10 0.20 0.05 0.15 0.07

(0.00, 0.31) (0.40, 0.79) (0.00, 0.19) (0.00, 0.32) (0.00, 0.09) (0.10, 0.24) (0.00, 0.12)

4
0.05 0.04 0.05 0.40 0.46 0.14 0.00

(0.01, 0.08) (0.00, 0.07) (0.00, 0.08) (0.32, 0.50) (0.42, 0.60) (0.08, 0.20) (0.00, 0.00)

5
0.09 0.89 0.00 0.02 0.00 0.06 0.00

(0.00, 0.16) (0.86, 1.00) (0.00, 0.00) (0.00, 0.04) (0.00, 0.00) (0.00, 0.08) (0.00, 0.00)

See notes to table 3.

Table 4. Estimates

25Theorem 4.1 establishes that the magnitude of the computational mistakes Pr is identified if ∆r > 0.
That is required because if ∆r = 0 for some rule r, then that rule does not make computational mistakes,
so Pr has no observable implications. This is not a concern based on theorem 5.1, which applies when Pr

are known by the econometrician. The estimates of ∆r’s are very close to 0, which makes identification and
estimation of the corresponding Pr’s very tenuous. Indeed, precisely because of the small values of the ∆r’s,
the Pr’s are essentially irrelevant.
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