Geodesic causal inference
Daisuke Kurisu, Hans-Georg Mueller, Taisuke Otsu and Yidong Zhou
Published 1 July 2024
Adjusting for confounding and imbalance when establishing statistical relationships is an increasingly important task, and causal inference methods have emerged as the most popular tool to achieve this. Causal inference has been developed mainly for scalar outcomes and recently for distributional outcomes. We introduce here a general framework for causal inference when outcomes reside in general geodesic metric spaces, where we draw on a novel geodesic calculus that facilitates scalar multiplication for geodesics and the characterization of treatment effects through the concept of the geodesic average treatment effect. Using ideas from Fr ́echet regression, we develop estimation methods of the geodesic average treatment effect and derive consistency and rates of convergence for the proposed estimators. We also study uncertainty quantification and inference for the treatment effect. Our methodology is illustrated by a simulation study and real data examples for compositional outcomes of U.S. statewise energy source data to study the effect of coal mining, network data of New York taxi trips, where the effect of the COVID-19 pandemic is of interest, and brain functional connectivity network data to study the effect of Alzheimer’s disease.
Paper Number EM634:
Download PDF - Geodesic causal inference
JEL Classification: C14