Regression discontinuity design with potentially many covariates
Yoichi Arai, Taisuke Otsu and Myung Hwan Seo
Published 31 October 2022
This paper studies the case of possibly high-dimensional covariates in the regression discontinuity design (RDD) analysis. In particular, we propose estimation and inference methods for the RDD models with covariate selection which perform stably regardless of the number of covariates. The proposed methods combine the local approach using kernel weights with l1-penalization to handle high-dimensional covariates, and the combination is new in the literature. We provide theoretical and numerical results which illustrate the usefulness of the proposed methods. Theoretically, we present risk and coverage properties for our point estimation and inference methods, respectively. Numerically, our simulation experiments and empirical example show the robust behaviors of the proposed methods to the number of covariates in terms of bias and variance for point estimation and coverage probability and interval length for inference.
Paper Number EM626:
Download PDF - Regression discontinuity design with potentially many covariates
JEL Classification: C13; C14