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1 Introduction

Econometric models with possibly multi-dimensional non-separable errors are now routinely used in

applied work. Examples are the linear random coefficients model that is used to estimate average

treatment effects and the mixed logit model that generates more credible substitution patterns between

alternatives in discrete choice models. In general, assuming that parameters in an econometric model

are heterogenous results in a non-separable error model, and therefore non-separable errors are the

rule rather than the exception.

In non-separable error models a complication arises if the random errors and one or more of

the regressors are dependent. As shown by Hahn and Ridder (2011) even with valid instrumental

variables conditional moment restrictions do not recover the population parameters in non-separable

error models. An alternative that does identify the population parameters is to use an average moment

restriction that conditions on and averages over control variables (CV). These control variables are

estimated in a first stage as the residuals in a parametric or non-parametric relation between the

endogenous regressors and instruments. In a second step a conditional expectation with the original

regressors and the control variables is estimated either parametrically as in Rivers and Vuong (1988)

or non-parametrically as in Imbens and Newey (2009). In the latter case the estimated conditional

expectation is averaged over the control variable to obtain the average structural function (ASF) that

finally can be used as an input in the estimation of a parametric model.

We study aspects of inference for estimators defined by average moment restrictions where we

focus on inference for a finite-dimensional parameter vector or statistic. The estimation procedure

will consist of at least two steps some of which may involve non-parametric estimation. For instance

the Rivers and Vuong (1988) estimator has a parametric first and second step. Below we discuss

a semi-parametric control variable estimator that has three stages with the first (estimation of the

control variable) and the second (estimation of the ASF) being non-parametric.

We make five contributions. First, we show the usefulness of the path-derivative calculations

that were introduced in econometrics by Newey (1994) for multi-step semi-parametric inference with

control variables. We derive the asymptotic variance of a semi-parametric CV estimator with a non-

parametric first and second step. This variance is not available in the literature. Its derivation builds

on our earlier study of three-step semi-parametric estimators in Hahn and Ridder (2013). Their results

are however not directly applicable, because the first-stage in which the control variable is estimated is

not a conditional expectation (nor a density)1 and the averaging is over the estimated control variable

which leads to a particular V-statistic expression. A second contribution is that we derive the same

asymptotic variance by a stochastic expansion. As can be expected this is a major effort that serves

two purposes. First, it illustrates that the shortcut method that only involves elementary calculus

1This step requires a generalization of Newey’s two-step GMM to allow for a first stage that is a conditional empirical

cdf.
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actually works and, second it allows us to formulate (sufficient) regularity conditions under which the

derived asymptotic distribution is valid. For obvious reasons we do not repeat the stochastic expansion

for each estimator and statistic considered in this paper, instead using the path-derivative calculations

to obtain asymptotic distributions.

Our third contribution is that we consider just and over identification of non-separable error models

with endogenous regressors. Matzkin (2003) has shown that if the regressors are exogenous a relation

that involves multiple errors is observationally equivalent to a relation with a single error. We show

that if the relation between the endogenous regressor and the instrument is monotonic, a relation with

multiple errors is observationally equivalent to a relation with two errors. This observation allows us to

propose the as as we know first test for overidentifying restrictions in semi-parametric CV estimation.

The asymptotic distribution of the test statistic is derived using the path-derivative method.

The fourth contribution also derives from the construction of an observationally equivalent model

with two errors. We propose a test for the error dimension and in particular for the representation

with a single error as in Matzkin (2003).

The fifth and final contribution is that we consider a key regularity condition for path-derivative

calculations, i.e., the differentiability of the second stage conditional expectation. We find that non-

differentiability is associated with a breakdown of the asymptotic normality of the semi-parametric

estimator. We illustrate this for a case that is of independent interest, i.e., regression on a (constant)

propensity score as could occur in covariate corrections in randomized experiments.

2 Inference with an Estimated Control Variable

In this section, we provide tools for asymptotic inference when the control variable is estimated. We

begin by reviewing Imbens and Newey (2009), and describe the basic algorithm of identification of the

ASF. We then review Hahn and Ridder (2013), and argue that without modification and extension,

their result cannot be used for inference when the Imbens and Newey’s algorithm is adopted as a basis

of the estimation of finite dimensional parameters that are a functional of the ASF. We then proceed

to derive that extension.

Consider identification of a nonparametric and nonseparable triangular model, where the dependent

variable Y is related to the explanatory variable X through

Y = f (X, ε) (1)

X = g (Z, V ) (2)

The ε and V are unobserved error terms, and Z is an instrumental variable independent of (ε, V ). The

dimension of ε is finite but arbitrary, but V is scalar. Imbens and Newey (2009) note that under some

regularity conditions, (i) we can write V = F (X|Z) where F (x| z) denotes the conditional CDF of
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X given Z;2 (ii) given V , X and ε are independent of each other; and (iii) the ASF m (x) = E[g(x, ε)]

can be identified by the equality

m (x) = E [µ (x, V )] (3)

where

µ (x, v) = E [Y |X = x, V = v] . (4)

They define a control variable as any variable V for which (ii) holds.

The natural estimator of the ASF m(x) is

m̂(x) =
1

n

n∑
j=1

µ̂(x, V̂j)

with µ̂ a nonparametric regression estimator of Y on X and V̂ . In this section we will consider the

estimation of a functional of the ASF

β = E[h(X,m(X)] = E[h(X,EV (µ(X,V ))] (5)

with h a known function. The natural estimator is

β̂ =
1

n

n∑
i=1

h(Xi, m̂(Xi)) =
1

n

n∑
i=1

h

Xi,
1

n

n∑
j=1

µ̂(Xi, V̂j)

 (6)

This estimator has the structure of a two-sample V-statistic (see e.g. Serfling (1980)).

Hahn and Ridder (2013) consider inference for a related estimator that is also a functional of a

nonparametrically estimated conditional expectation. They consider estimators that are averages of

h(Xi, µ̂(Xi, V̂i)) with µ̂ the nonparametric regression estimator of Y on X, V̂ . This is a single not

a double sum as the estimator (6). Moreover Hahn and Ridder only consider the case that V̂ is

the residual of a parametric or nonparametric regression of X on Z, i.e., the first-stage model is a

regression model with a separable error.

In this section, we provide results that generalize the results we obtained before to double sums and

to a first stage with a nonseparable error, i.e., we consider the case that the control variable is obtained

from V = F (X|Z). As far as we know this has not be discussed in the semiparametric literature.

Newey (1994), for example, only considers the case that the first stage estimator is a nonparametric

regression.

2.1 Three-step Semi-parametric Control Variable Estimator with a Parametric

First Step

We first consider a parametric first stage where Vi = ϕ (Xi, Zi, α∗) is estimated by V̂i = ϕ (Xi, Zi, α̂)

and α̂ is a
√
n-consistent estimator of α∗. Our approach is the computation of the path derivative

2Note that this shows that the assumptions of a scalar V , g being non-decreasing in V and Z being independent of

V (that has a uniform [0, 1] distribution) do hold without loss of generality for the first stage in (2).
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of the estimator following the approach in Newey (1994). The path derivative is a total derivative in

which the contributions of the various sources of sampling variation enter additively.

If we focus on the contribution of the first-stage estimation, then for accounting purposes, it is

useful to adopt the notation in Hahn and Ridder (2013), and write

γ (x, v;α) = E [Y | X,ϕ (X,Z, α) = v]

γ
(
x, V̂j ; α̂

)
= γ (x, ϕ (X,Z, α̂) ; α̂)

This notation emphasizes the two roles of α in the conditional expectation: it enters the control

variable directly and it affects the conditional expectation because the distribution of the control

variable depends on α. It is the second role of α that is often forgotten in the derivation of the

influence function and asymptotic variance.

We will also define

G (x;α1, α2) = E [γ (x, ϕ (Xj , Zj ;α1) ;α2)]

Ĝ (x;α1, α2) =
1

n

n∑
j=1

γ̂ (x, ϕ (Xj , Zj ;α1) ;α2)

with γ̂ a nonparametric estimator of the conditional mean of Y given X, V̂ . An estimator of the ASF

is

m̂(x) =
1

n

n∑
j=1

γ̂
(
x, V̂j ; α̂

)
= Ĝ (x; α̂, α̂)

Note that the two roles of α are made explicit in G (x, α1, α2) that is obtained by substituting v =

ϕ(x, z, α1) in γ(x, v;α2). Note also that µ (x, v) = γ (x, v;α∗), where µ (x, v) = E [Y | X = x, ϕ (X,Z, α∗) = v].

The notation α1, α2 is just an expositional device, since α1 = α2 = α.3

Lemma 1 Let

β∗ = E [h (X,m (X))]

β̂ =
1

n

n∑
i=1

h (Xi, m̂ (Xi)) =
1

n

n∑
i=1

h
(
Xi, Ĝ (Xi; α̂, α̂)

)
3As in Hahn and Ridder (2013), all the results in this section are predicated on the assumption that (i) the deriva-

tive ∂γ (x, ϕ (x, z, α∗) ;α∗)/ ∂α2 exists, and (ii) we can interchange expectation and differentiation. We consider the

implication of non-differentiability later in the paper.
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We then have

√
n
(
β̂ − β∗

)
=

1√
n

n∑
i=1

(h (Xi,m (Xi))− E [h (X,m (X))])

+
1√
n

n∑
i=1

(EX [τ (X)µ (X,Vi)]− E [τ (X)m (X)])

+
1√
n

n∑
i=1

f (Xi) f (Vi)

f (Xi, Vi)
τ (Xi) (Yi − µ (Xi, Vi))

+


E
[
EX̃

[
τ
(
X̃
)
∂µ(X̃,V )

∂v

]
∂ϕ(X,Z;α∗)

∂α

]
+E

[
∂
∂v

(
f(X)f(V )
f(X,V )

)
τ (X) (Y − µ (X,V )) ∂ϕ(X,Z,α∗)∂α

]
−E

[
f(X)f(V )
f(X,V ) τ (X) ∂µ(X,V )

∂v
∂ϕ(X,Z,α∗)

∂α

]

√
n (α̂− α∗)

+ op (1)

with

τ (X) =
∂h

∂m(X)
(X,m (X)) .

Proof. In Appendix.

In the expression for the influence function the first two terms are pure variance terms that account

for the double sum. The third term accounts for variation due to the estimation of the conditional

mean as in all semi-parametric two-step estimators. The final three terms represent variability due

to the first stage estimation with the first accounting for the variation in the control variable and

the second and third for the variation in the conditional expectation. The penultimate term is 0 if

x = g(z, v) has a unique solution for z for all x, v. This holds if g is monotonic in z and z is scalar or

a one-dimensional index.

2.2 Two-step Control Variable Estimator with a Nonparametric CDF in First

Step

As an intermediate result we present an extension of Newey (1994, Proposition 4). In our notation,

Newey’s proposition is applicable when the parameter of interest is estimated by

β̂ =
1

n

n∑
i=1

h
(
Wi, V̂i

)
if V̂i is an estimate of the conditional expectation of X given Z evaluated at Zi. We extend his result

to the case where V̂i = F̂ (Xi|Zi) with F̂ (x| z) a nonparametric estimator of the conditional CDF

of X given Z = z. To our knowledge, this sort of result is not explicitly available in the literature,

so there is an independent interest in establishing this. The result is useful for parametric control
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variable estimation as in Rivers and Vuong (1988). Consider the binary logit model with independent

variables X and and the control variable V̂

Pr(Y = 1|X, V̂ ) =
eβX+γV̂

1 + eβX+γV̂
≡ p(X, V̂ )

The control variable estimator of β can be expressed as

β̂ − β =
1

n

n∑
i=1

(
V11Xi + V12V̂i

)
(Yi − p(Xi, V̂i)) + op(1)

with V11 and V12 components of the inverse of the information matrix corresponding to β, γ. The right

hand side is an average as above with W = (Y X Z)′.

Lemma 2 Let W = (Y X Z)′ and V = F (X|Z)

β∗ = E [h (W,V )]

V̂i = F̂ (Xi|Zi)

β̂ =
1

n

n∑
i=1

h
(
Wi, V̂i

)
We then have

√
n
(
β̂ − β∗

)
=

1√
n

n∑
i=1

(h (Wi, Vi)− E [h (W,V )])

+
1√
n

n∑
i=1

(
δ (Xi, Zi)− δ (Zi)

)
+ op (1)

where

δ (x, z) = E
[
∂h (W,V )

∂v
1 (x ≤ X)

∣∣∣∣Z = z

]
δ (z) = E

[
∂h (W,V )

∂v
F (X|Z)

∣∣∣∣Z = z

]
Proof. In Appendix.

2.3 Three-step Semi-parametric Control Variable Estimator with a Nonparamet-

ric CDF in the First Step

We now consider the estimator in (6) with V̂i = F̂ (Xi|Zi). Combining Lemmas 1 and 2 leads us to:

Lemma 3 Let W = (Y X Z)′ and m(x) = E[µ(x, V )], m̂(x) = 1
n

∑n
j=1 µ̂(x, V̂j) with V = F (X|Z)

and V̂i = F̂ (Xi|Zi) and

β∗ = E [h (X,m (X))]

β̂ =
1

n

n∑
i=1

h (Xi, m̂ (Xi))

7



We then have

√
n
(
β̂ − β∗

)
=

1√
n

n∑
i=1

(h (Xi,m (Xi))− E [h (X,m (X))])

+
1√
n

n∑
i=1

(EX [τ (X)µ (X,Vi)]− E [τ (X)m (X)])

+
1√
n

n∑
i=1

f (Xi) f (Vi)

f (Xi, Vi)
τ (Xi) (Yi − µ (Xi, Vi))

+
1√
n

n∑
i=1

(
δ (Xi, Zi)− δ (Zi)

)
+ op (1)

where

τ (X) =
∂h

∂m(X)
(X,m (X))

ξ (W ) = EX̃

τ (X̃) ∂µ
(
X̃, V

)
∂v

+
∂

∂v

(
f (X) f (V )

f (X,V )

)
τ (X) (Y − µ (X,V ))

− f (X) f (V )

f (X,V )
τ (X)

∂µ (X,V )

∂v

δ (x, z) = E [ξ (W ) 1 (x ≤ X)|Z = z]

δ (z) = E [ξ (W )F (X|Z)|Z = z]

Proof. In Appendix.

2.4 Average Derivatives

We now consider the extension of Lemmas 1 and 3 to two types of average derivatives. The first

average derivative is

β∗ = E
[
∂m

∂x
(X)

]
(7)

with estimator
1

n

n∑
i=1

∂m̂ (Xi)

∂x
=

1

n

n∑
i=1

∂Ĝ (Xi; α̂, α̂)

∂x

The Lemma below gives the asymptotically linear representation

Lemma 4 Let

β∗ = E
[
∂m

∂x
(X)

]
β̂ =

1

n

n∑
i=1

∂m̂ (Xi)

∂x
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with

m̂(x) =
1

n

n∑
j=1

µ̂(Xj , V̂j) µ(x, v) = E[Y |X = x, V = v]

then if V = ϕ(X,Z, α∗) and V̂i = ϕ(Xi, Zi, α̂) (parametric first stage) and the density of X is 0 at the

boundary of the support

√
n(β̂ − β∗) =

1√
n

n∑
i=1

(
∂m (Xi)

∂x
− E

[
∂m (X)

∂x

])

+
1√
n

n∑
i=1

(
EX
[
∂µ (X,Vi)

∂x

]
− E

[
∂m (X)

∂x

])

+
1√
n

n∑
i=1

∂f(Xi)
∂x f (Vi)

f (Xi, Vi)
(Yi − µ (Xi, Vi))

+


−E

[
EX̃

[
∂f(X̃)
∂x

f(X̃)
∂µ(X̃,V )

∂v

]
∂ϕ(X,Z;α∗)

∂α

]
−E

[
∂
∂v

(
∂f(X)
∂x

f(V )

f(X,V )

)
(Y − µ(X,V ))∂ϕ(X,Z,α∗)∂α

]
+ E

[
∂f(X)
∂x

f(V )

f(X,V )
∂µ(X,V )

∂v
∂ϕ(X,Z,α∗)

∂α

]

√
n(α̂− α∗)

+ op (1) .

If V = F (X|X) and V̂i = F̂ (Xi|Zi) (nonparametric first stage), the final term on the right-hand side

is (other terms are the same)

1√
n

n∑
i=1

(
δ (Xi, Zi)− δ (Zi)

)
with

δ (x, z) = E [ξ (W ) 1 (x ≤ X)|Z = z]

δ (z) = E [ξ (W )F (X|Z)|Z = z]

and

ξ(W ) = −EX̃

 ∂f(X̃)
∂x

f
(
X̃
) ∂µ

(
X̃, V

)
∂v

− ∂

∂v

(
∂f(X)
∂x f (V )

f (X,V )

)
(Y − µ (X,V )) +

∂f(X)
∂x f (V )

f (X,V )

∂µ (X,V )

∂v

Proof. In Appendix.

Imbens and Newey (2009) consider another average derivative for (1)

β∗ = E
[
∂f(X, ε)

∂x

]
This average derivative is identified by

β∗ = E
[
∂µ(X,V )

∂x

]
With a parametric first stage this is close to the the three-step estimators considered in Hahn and

Ridder (2013) but their result does not cover the nonparametric first stage.
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Lemma 5 Let

β∗ = E
[
∂µ(X,V )

∂x

]
β̂ =

1

n

n∑
i=1

∂µ̂(Xi, V̂i)

∂x

then if V = ϕ(X,Z, α∗) and V̂i = ϕ(Xi, Zi, α̂) (parametric first stage) and the density of X,Z and of

X,V is 0 at the boundary of the support for X for all values z and v in the support of Z and V

√
n(β̂ − β∗) =

1√
n

n∑
i=1

(
∂µ (Xi, Vi)

∂x
− E

[
∂µ (X,V )

∂x

])

− 1√
n

n∑
i=1

∂f(Xi,Zi)
∂x

f(Xi, Zi)
(Yi − µ(Xi, Vi))

−


E
[
∂f(X,Z)

∂x
f(X,Z)

∂µ(X,V )
∂v

∂ϕ(X,Z;α∗)
∂α

]
+ E

[
∂
∂v

(
∂f(X,V )

∂x
f(X,V )

)
(Y − µ(X,V ))∂ϕ(X,Z,α∗)∂α

]
−E

[
∂f(X,V )

∂x
f(X,V )

∂µ(X,V )
∂v

∂ϕ(X,Z,α∗)
∂α

]

√
n(α̂− α∗)

+ op (1) .

If V = F (X|X) and V̂i = F̂ (Xi|Zi) (nonparametric first stage), the final term on the right-hand side

is (other terms are the same)

1√
n

n∑
i=1

(
δ (Xi, Zi)− δ (Zi)

)
with

δ (x, z) = E [ξ (W ) 1 (x ≤ X)|Z = z]

δ (z) = E [ξ (W )F (X|Z)|Z = z]

and

ξ(W ) = −
∂f(X,Z)

∂x

f(X,Z)

∂µ(X,V )

∂v
− ∂

∂v

(
∂f(X,V )

∂x

f (X,V )

)
(Y − µ(X,V )) +

∂f(X,V )
∂x

f (X,V )

∂µ (X,V )

∂v

Proof. In Appendix.

3 Estimation of Parametric Models with Nonseparable Errors and

Continuous Endogenous Regressors

The identification method of Imbens and Newey (2009) identifies the Average Structural Function

(ASF) m(x) = E[f(x, ε)]. In this section we will consider the estimation of parametric models with

nonseparable errors, i.e.,

Y = f(X, ε;β)
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The independent variables are X = (X1 Z
′
1)
′ with X1 possibly correlated with ε, but Z1 independent

of ε. The instrument is denoted by Z = (Z ′1 Z2)
′. In this section we take X1 as scalar but the

extension to multivariate X1 if we have an instrument vector Z2 of the same dimension only involves

more complicated notation. The first stage is nonparametric

X1 = F−1(V |Z)

The assumption on the random errors ε, V is

Assumption 1 (Joint independence)

ε, V⊥Z

The assumption V⊥Z holds by construction.

If we allow that ε is multidimensional, then in general we will not be able to identify the joint

distribution of ε even if X is exogenous. However the ASF is still identified. The ASF can be considered

as the reduced form of the model. The proposed estimator minimizes the average difference between

the ASF and the parametric model. In the case that ε is scalar and f(x, ε;β) is monotonic in ε the

conditional distribution of Y given X = x is identified by the same method that identifies the ASF.

In that case the reduced form conditional CDF of Y given X = x can be compared to that implied by

the parametric model. In the sequel we only consider the case that f(x, ε;β) has a multidimensional

error and is not necessarily monotonic in ε.

As an example we consider a logit model with a single continuous endogenous regressor

Y ∗ = β′X − ε

where ε has a logistic distribution and X and ε are possibly correlated. We observe

Y = I(Y ∗ ≥ 0)

If X and ε are independent then

E[Y |X = x] =
eβ
′x

1 + eβ′x
≡ r(x;β) (8)

If in the spirit of Rivers and Vuong (1988) we are prepared to assume that

ε|X = x, V = v
d
= ε|V = v

d
= γk(v) + η

where η has a logistic distribution then

Pr(Y = 1|X = x, S = s, V = v) =
eβ
′x+γk(v)

1 + eβ′x+γk(v)
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and the parameters can be estimated by two-step MLE after estimating V̂i in the first step. Section 2.2

gives the result needed to compute the influence function and asymptotic variance of this estimator.

The support condition is not needed for this estimator.

In general the Average Structural Function (ASF)

m(x) = E[f(x, ε;β))]

is identified by

m (x) =

∫ 1

0
E [Y |X = x, V = v] dv

This requires that the support of V is [0, 1]. For some x the control variable V may take values in a

subset of [0, 1] and in the estimation these values of X will be excluded.4

Assumption 2 (Support) There is a subset of the support of X denoted by X such that V has

support [0, 1] for all x ∈ X . The parameters β are identified if the support of X is restricted to X .

The estimator of the ASF is

m̂ (x) =
1

n

n∑
j=1

µ̂
(
x, V̂j

)
with

Vj = F̂ (X1j |Zj)

and µ̂(x, v) the nonparametric series estimator of µ (x, v) = E [Y |X = x, V = v]

The estimator of the parametric model is the solution to

min
β

n∑
i=1

1X (Xi) (m̂ (Xi)− r (Xi;β))2

Under the assumptions of Lemma 2 in Hahn and Ridder (2014) this estimator is asymptotically

equivalent to (from now on we ignore the restriction of the observations to X

√
n(β̂ − β∗) =

(
E
[
∂r

∂β
(X;β∗)

∂r

∂β′
(X;β∗)

])−1 1√
n

n∑
i=1

(m̂(Xi)−m(Xi))
∂r

∂β
(Xi;β∗) + op(1) (9)

The asymptotic distribution of β̂ can be established with the help of Lemma 1 for the parametric

and Lemma 3 for the nonparametric first stage.

Lemma 6 Let5 W = (Y X ′ Z ′)′ and m(x) = E[µ(x, V )], m̂(x) = 1
n

∑n
j=1 µ̂(x, V̂j). If the estimator

β̂ satisfies (41), then if V = ϕ(X1, Z, α) and V̂i = ϕ(X1i, Zi, α̂) (parametric first stage) and A =

4Our inference results are also useful if β is interval identified. This is however beyond the scope of the present paper.
5Note that X and Z share the vector Z1. For instance, the joint density of X,Z is that of X1, Z1, Z2. This is left

implicit in the expressions.
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(
E
[
∂r
∂β (X;β∗)

∂r
∂β′ (X;β∗)

])−1
√
n(β̂ − β∗) =

1√
n

n∑
i=1

A

(
EX
[
µ(X,Vi)

∂r

∂β
(X;β∗)

]
− E

[
m(X)

∂r

∂β
(X;β∗)

])

+
1√
n

n∑
i=1

A
f(Xi)f(Vi)

f(Xi, Vi)
(Yi − µ(Xi, Vi))

∂r

∂β
(Xi;β∗)

+A


E
[
EX̃

[
∂r
∂β (X̃;β∗)

∂µ(X̃,V )
∂v

]
∂ϕ(X1,Z;α∗)

∂α′

]
+E

[
∂
∂v

(
f(X)f(V )
f(X,V )

)
∂r
∂β (X;β∗) (Y − µ (X,V )) ∂ϕ(X1,Z,α∗)

∂α′

]
−E

[
f(X)f(V )
f(X,V )

∂r
∂β (X;β∗)

∂µ(X,V )
∂v

∂ϕ(X1,Z,α∗)
∂α′

]

√
n(α̂− α∗) + op(1)

If V = F (X1|Z) and V̂i = F̂ (X1i|Zi) (non-parametric first stage) then the contribution of the first

stage nonparametric estimation is

1√
n

n∑
i=1

A(δ(X1i, Zi)− δ(Zi))

with for

ξ(W ) =EX̃

 ∂r
∂β

(X̃;β∗)
∂µ
(
X̃, V

)
∂v

+
∂

∂v

(
f (X) f (V )

f (X,V )

)
∂r

∂β
(X;β∗) (Y − µ (X,V ))

− f (X) f (V )

f (X,V )

∂r

∂β
(X;β∗)

∂µ (X,V )

∂v

we define

δ(x1, z) = E [ξ(W )1(x1 ≤ X1)|Z = z]

δ(z) = E [ξ(W )F (X1|Z)|Z = z]

The other terms of the influence function are equal to those in the parametric case.

Proof. In Appendix.

The expression that we obtain for the parametric first-stage is the same as that derived in Hahn and

Ridder (2014) using a stochastic expansion. That argument is much more complicated and the path

derivative calculation shows how we can obtain the influence function directly without having to go

through the derivation of the expansion. The stochastic expansion will provide regularity conditions,

e.g. restrictions on the order of the series estimator as a function of the number of observations.

4 Application - Test of Overidentification in Nonparametric and

Nonseparable Triangular Model

[JH: I shortened the material from the CMRX file. Perhaps too much.]
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Despite plethora of literature on identification of nonparametric and nonseparable triangular mod-

els, we find no literature on the basic issue of specification testing, i.e., the test of overidentification

in the linear model counterparts. In this section, we try to bridge the gap by presenting such a test.

The idea is based on a “construction” of pseudo-models under the assumption that there is certain

monotonicity in the first stage. We note that if there are two instruments available both satisfying

the monotonicty assumption, then the pseudo-ASF’s identified by both instruments should coincide

under correct specification.

4.1 Creation of a Nonparametric Triangular Simultaneous Equations Model

Suppose that we are given a joint population distribution of a triplet (Y,X,Z). If we define the random

variable ε by

ε = F (Y |X)

with F (Y |X) the conditional CDF of a scalar Y given X, then

Y = f (X, ε) ε ⊥ X

with f (X, ε) = F−1 (ε|X). Matzkin (2003) used this to identify a structural relation between Y and

X. If the structural error ε∗ is multidimensional, then we cannot recover the structural relation from

the inverse conditional CDF, but if X and ε∗ are independent we can recover the average structural

function (ASF) E [Y |X = x] = E [f∗ (x, ε∗)].

We present a similar argument, and argue that it is possible to ‘create’ a nonparametric triangular

system as discussed in e.g. Imbens (2006), Matzkin (2008), and Imbens and Newey (2009). The

triangular simultaneous equations model is given by the two equations

Y = f (X, ε)

X = g (Z, V )

where the instrument Z is independent of the vector (ε∗, V ).

We begin with the construction of the first stage, i.e., the relation between X and Z. The most

general model for the relation between a dependent variable X and a vector of independent variables

Z is

X = g (Z, V ) Z ⊥ V (10)

with g (z, v) monotone in v for (almost) all values of z. This model can be ‘constructed’ from the joint

distribution of X,Z by defining the random variable V as

V = G (X|Z) (11)

with G (X|Z) the conditional CDF of a scalar X given Z. Because

Pr(V ≤ v|Z = z) = Pr(G(X|Z) ≤ v|Z = z) = Pr(X ≤ G−1(v|z)|Z = z) = v (12)
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the error V has a uniform distribution that is independent of Z. Upon inversion we obtain (10).

Now, let H (y| z, v) = Pr (Y ≤ y|Z = z, V = v) be the conditional CDF of Y given (Z, V ), and

define U = H (Y |Z, V ). By the same argument as above we have that U has a uniform distribution

and is independent of (Z, V ). Hence if we define h (z, v, u) = H−1 (u| z, v), we have

Y = h (Z, V, U) U ⊥ Z, V (13)

Note that by construction g, h are increasing in their last argument and that Z,U, V are mutually

independent.

To construct a triangular simultaneous equations model we would like to invert (10) with respect

to Z and express Z as a function of (X,V ). The simplest case is that g (z, v) is strictly monotonic,

without loss of generality strictly increasing, in z for (almost all) v. This is equivalent to assuming

that the joint distribution of X,Z is such that if z > z′ then G (x| z) < G (x| z′) for all x in the union

of the supports of these distributions, i.e., the distribution of X given Z = z is increasing in z if we

order distributions according to first-order stochastic dominance. Because monotonicity is equivalent

to G (x| z) being decreasing in z for all x we can check whether this assumption holds.

If g (z, v) is strictly increasing in z for (almost all) v, then

Z = g−1 (X,V ) (14)

where g−1 is the inverse with respect to the first argument. Note that in (14) X and V are not

independent. Substitution in equation (13) gives

Y = h
(
g−1 (X,V ) , V, U

)
= f (X, ε) (15)

with ε the vector (U, V ). Hence we have constructed a triangular system (15) and (10) with errors

(ε, V ) that are independent of Z.6

Under monotonicity in Z we have that

Z ⊥ (ε, V ) ⇒ X ⊥ ε | V

Therefore for the constructed model

E [Y |X = x, V = v] = E [f (X, ε)|X = x, V = v]

= E
[
f (x, ε)|Z = g−1 (x, v) , V = v

]
= E [f (x, ε)|V = v]

Note that if the structural relation is

Y = f∗ (X, ε∗)

6The result in this paper used to be in the working paper version of Hahn and Ridder (2011), which was taken out in

the published version.
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and Z is a valid instrument, i.e., Z ⊥ (ε∗, V ), then under monotonicity the same argument applies, so

that

Eε∗ [f∗ (x, ε∗)|V = v] =

∫
E [Y |X = x, V = v] dv = Eε [f (x, ε)|V = v]

See Kasy (2013) for related discussion.

4.2 Intuition

To understand the intuition behind our construction we first consider the construction of a linear

triangular simultaneous equations model. In this model the inversion of conditional CDF’s is replaced

by linear projections. Also because the errors are additively separable we do not have to deal with

multidimensional random errors.

Suppose that we are given a joint population distribution of a triplet (Y,X,Z). Let

X = αXZ + V

be the population linear projection of X on Z, and let

Y = αY Z + ρV + U

be the population linear projection of Y on Z and V . By construction, we have E [ZV ] = 0, E [ZU ] =

0, and E [V U ] = 0. In other words, Z, V , and U are uncorrelated.

Assume that αX 6= 0, which is testable. We may then write

Z =
1

αX
X − 1

αX
V

If we substitute this into the equation for Y , we obtain

Y =
αY
αX

X − αY
αX

V + ρV + U

If we define β = αY
αX

and ε = −αY
αX
V + ρV + U , we obtain a linear ‘model’

Y = βX + ε

where the error ε is such that E [Xε] =
(
ρ− αY

αX

)
σ2V 6= 0 and E [Zε] = 0.

4.3 Test of Overidentification

Our construction provides a basis of specification test when two or more instruments are available. If

we have two valid instruments Z1 and Z2 available, and if the first stages constructed with Z1 and Z2

are both monotonic, then we can construct the second-stage equations from these two different first
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stages. If there is a structural relation Y = f∗ (X, ε∗) then for values of x where both first-stage errors

V1 and V2 have support [0, 1] we can recover the ASF of the structural model by

M1 (x) =

∫ 1

0
E [Y |X = x, V1 = v1] dv1

or by

M2 (x) =

∫ 1

0
E [Y |X = x, V2 = v2] dv2

Equality of these ASF’s holds if the relation f∗ is structural. Therefore our construction suggests a

nonparametric overidentification test.

One possibility is to test whether ∂M1(x)
∂x = ∂M2(x)

∂x on the average, i.e., we may want to test

H0 : E
[
∂M1 (X)

∂x
− ∂M2 (X)

∂x

]
= 0

Although one may prefer a test along the line of H0 : E
[
(M1 (X)−M2 (X))2

]
= 0, the derivative based

approach may seem preferable because of its natural interpretability in view of the linear model; in the

linear simultaneous equations model with two instruments, a test of overidentification is equivalent

to testing whether the two IV estimators of the slope coefficients (i.e., the derivative of the ASF) are

equal to each other. In particular, we can let

M̂1 (x) =
1

n

n∑
j=1

µ̂
(
x, V̂1,j

)
M̂2 (x) =

1

n

n∑
j=1

µ̂
(
x, V̂2,j

)
where V̂1 = F̂ (X|Z1) and V̂2 = F̂ (X|Z1), and use the test statistic

1

n

n∑
i=1

∂M̂1 (Xi)

∂x
− 1

n

n∑
i=1

∂M̂2 (Xi)

∂x

(Extension of) Lemma 4 provides a natural way of assessing the asymptotic variance of the test statistic

under the null.

5 Cautionary Tale

As in Hahn and Ridder (2013), all the results in Section 2 this section are predicated on the assumption

that (i) the derivative ∂γ (x, ϕ (x, z, α∗) ;α∗)/ ∂α2 exists, and (ii) we can interchange expectation and

differentiation. Hahn and Ridder (2013) state “Analysis of the case that the derivative does not exist,

which may render
√
n-consistency or asymptotic normality infeasible, is beyond the scope of this

paper.” In this section, we consider an implication of the non-differentiability. We do this by reporting

and discussing an anomaly in one of the most popular estimators of the Average Treatment Effect
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(ATE). The estimator under consideration estimates the ATE based on a non-parametric regressions

E [y|D = 1, ϕ (x)], E [y|D = 0, ϕ (x)], where the vector x contains covariates that are not affected by

the intervention, and ϕ (x) = Pr(D = 1|x) denotes the probability of selection or propensity score.

This estimator was suggested and analyzed by Heckman, Ichimura, and Todd (HIT) (1998). Hahn and

Ridder (2013) argued that under certain regularity conditions, it has the same asymptotic distribution

as the estimators proposed by Hahn (1998) and Hirano, Imbens and Ridder (2003). In this paper, we

note that a regularity condition in Hahn and Ridder (2013) is violated when the propensity score is

constant, and we discuss the implication of this violation for the HIT estimator. Our conclusion is

that the HIT estimator is not asymptotically normal in this case.

In the remainder of this paper, the y0, y1 denote the control and treated outcome, respectively.

The treatment indicator is D and y = Dy1 + (1 −D)y0 is the observed outcome. The parameter of

interest is β = E[y1 − y0]. We omit the i subscript when obvious. The result in this paper may be of

more than just theoretical interest. If we consider a randomized experiment with ϕ (x) = .5, i.e., half

of the experimental units is assigned at random to treatment and half to control, then, if covariates x

unaffected by treatment are available, the best possible variance of an ATE estimator is

Vcov = 2E[V (y1|x)] + 2E[V (y0|x)] + V (E[y1 − y0|x])

The variance of the estimator that does not use the covariates is

Vnocov = 2V (y1) + 2V (y0)

The variance of the estimator that does not use the covariates is larger and the difference is equal to

V (E[y1 − y0|x]). This is 0 if y0, y1 are not mean dependent on x. In finite samples the variance with

covariates may be larger than that without if the relation between the outcomes and the covariates

is sufficiently weak, but in large samples the former is always smaller than the latter.7 Given that

estimators that use the covariates are more accurate, one could be tempted to use the HIT estimator

to obtain a more precise estimate of the ATE. This note shows that it would be a bad choice. The

HIT estimator is not asymptotically normal if the propensity score is constant and therefore inference

based on asymptotic normality based, such as the normal confidence interval is fragile.

5.1 Constant Propensity Score

We assume that

y0 = β0 + x′γ0 + ε0,

y1 = β1 + x′γ1 + ε1,

7Duflo, Glennerster, and Kremer (2008) discuss the use of covariates to reduce the variance of an ATE estimate.
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where x is a K-dimensional covariate. We assume that x ∼ N (µ, IK), ε0 ∼ N (0, 1), and ε1 ∼ N (0, 1)

are mutually independent.8 In order to simplify the analysis, we will assume that our parameter of

interest is the mean outcome for the controls

E [y0] = β0 + µ′γ0.

We estimate the “propensity score” Λ (ζ + x′α) by logit MLE. As in HIT we will use regression on the

propensity score, i.e., the estimator is based on

E(y0) = E
[
E
[
y0|Λ(ζ + x′α)

]]
= E

[
E
[
y0|x′α

]]
(16)

We assume that α∗ = 0, i.e., the population propensity score is constant.

The constant propensity assumption leads to non-differentiability. For this purpose, we note by

exploiting normality that

E
[
y0|x′α

]
= β0 + µ′γ0 +

Cov (x′α, y0)

Var (x′α)
(x− µ)′ α

= β0 + µ′γ0 +
α′γ0
α′α

(x− µ)′ α if α 6= 0,

and

E
[
y0|x′α

]
= E [y0] = β0 + µ′γ0 if α = 0.

This conditional expectation is non-differentiable at α = α∗ = 0, which follows immediately from the

fact that it is not even continuous at this point. For example, consider a path α = t · α̃ for some scalar

t, then we can see that
α′γ0
α′α

(x− µ)′ α =
α̃′γ0
α̃′α̃

(x− µ)′ α̃

which implies that

lim
t→0

E
[
y0|x′α

]
= β0 + µ′γ0 +

α̃′γ0
α̃′α̃

(x− µ)′ α̃ 6= E
[
y0|x′α∗

]
in general. This implies that an important regularity condition in Hahn and Ridder (2013) does not

hold.

5.2 Non-differentiability and Non-normality

We next discuss the consequences of the non-differentiability. The HIT estimator uses a nonparametric

estimator of E [y0|Λ(ζ + x′α)], but we exploit the built-in linearity (guaranteed by normality) and

estimate E [y0|x′α] (16 shows that that is equivalent) by

y0 ≈ θ0 +
(
x′α̂
)
δ0

8The functional form and distributional assumptions simplify the argument but are not necessary for non-

differentiability.
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by OLS over the subsample D = 0. Because we are interested in E [y0], the parametric version of the

HIT estimator would estimate this mean by

1

n

n∑
i=1

(
θ̂0
(
x′iα̂
)
δ̂0

)
= θ̂0 +

(
x′α̂
)
δ̂0

If we average over the subsample D = 0, then by a well-known algebraic property of OLS we have

θ̂0 +
(
x′0α̂

)
δ̂0 = y0

where x′0, and y0 denote the sample means of x and y over the subsample D = 0. Therefore, the

estimator of E [y0] is equal to

Ê [y0] =
1

n

n∑
i=1

(
θ̂0 +

(
x′iα̂
)
δ̂0

)
= θ̂0 +

(
x′α̂
)
δ̂0

= θ̂0 +
(
x′0α̂

)
δ̂0 +

(
(x− x0)′ α̂

)
δ̂0

= y0 +
(
(x− x0)′ α̂

)
δ̂0 (17)

Lemma 7
√
n
(
(x− x0)′ α̂

)
δ̂0

d→ (Z′1Z2)(γ′0Z1)
Z′1Z1

.

The estimator E [y0] is equal to

y0 +
(
(x− x0)′ α̂

)
δ̂0

by (17). Noting that
√
n (y0 − E [y0])

d→ Y0 for some Y0 ∼ N (0,Var (y0)), we can see that Lemma 7

above implies that the estimator cannot be asymptotically normal. More formally, we have

√
n
(
Ê [y0]− E [y0]

)
→ Y0 +

(Z ′1Z2) (γ′0Z1)

Z ′1Z1
,

which establishes that the estimator in large samples has a mixture of normals rather than a normal

distribution.
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Appendix

A Proof of Lemma 1

We are interested in the asymptotics of

β̂ =
1

n

n∑
i=1

h (Xi, m̂ (Xi)) =
1

n

n∑
i=1

h
(
Xi, Ĝ (Xi; α̂, α̂)

)
We use the Newey (1994) path-derivative method. Let W denote the vector of observed variables.

The corresponding parametric submodel is indexed by the scalar parameter θ and so is the conditional

mean of Y given X = x, V = v denoted by µ(x, v; θ). The parameter of interest is

β = E [h (X,m (X))] = E [h (X,EV [µ (X,V )])] =

∫
h

(
x,

(∫
µ (x, v) f (v) dv

))
f (x) dx (18)

where f is generic notation for a PDF. [We can express (18) further as

β =

∫
h

(
x,

(∫
µ (x, ϕ(x̃, z̃;α∗)) f (x̃, z̃) dx̃dz̃

))
f (x) dx

For the path-derivative we consider the parameter of interest for a path in the distribution of W

indexed by θ and the control variable indexed by α1, α2 (with the distinction made for accounting

purposes)

β(θ, α1, α2) =

∫
h

(
x,

(∫ ∫
γ (x, ϕ(x̃, z̃;α1);α2, θ)) f (x̃, z̃; θ) dx̃dz̃

))
f (x; θ) dx (19)

Because we calculate total derivatives so that we deal with θ and α separately, we also define β(θ) =

β(θ, α∗, α∗). The path derivative is a total derivative with respect to θ, α1, α2 where we distinguish the

two roles of α. In the total derivative we consider e.g. first de derivative with respect to θ in f(x; θ)

and evaluate this derivative at θ = 0 which gives the population densities. This implies that we can

initially set α1 = α2 = α∗ and consider the path derivative for (19) and deal with the derivatives with

respect to α1, α2 where we set θ = 0. This term by term approach corresponds to the usual procedure

in stochastic expansions. In the first part of the derivation the observed variables in W are Y,X, V .

The influence function of the estimator is the function k(w) that satisfies

∂β

∂θ
(0) = E[s(W )k(W )]

with s(w) = ∂ ln f
∂θ (w; θ)

∣∣∣
θ=0

. Therefore we we start by totally differentiating β(θ) and evaluating the

derivative for θ = 0

∂β

∂θ
(0) =

∫
f (x) s (x)h

(
x,

(∫
f (v)µ (x, v) dv

))
dx

+

∫
f (x)

∂h (x,m (x))

∂m(x)

(∫
f (v) s (v)µ (x, v) dv

)
dx

+

∫
f (x)

∂h (x,m (x))

∂m(x)

(∫
f (v)

∂µ (x, v; 0)

∂θ
dv

)
dx (20)
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where s is the generic notation for the scores of the corresponding densities.

The first term in (20) is equal to∫
f (x) s (x)h (x,m (x)) dx =

∫
f (w) (s (w)− s (w|x))h (x,m (x)) dw

=

∫
f (w) s (w)h (x,m (x)) dw

−
∫ ∫ ∫

f (x) f (y, v|x) s (y, z|x)h (x,m (x)) dxdydv

=

∫
f (w) s (w)h (x,m (x)) dw

= E [s(W ) · h (X,m (X))]

The third equality is based on the observation∫ ∫ ∫
f (x) f (y, v|x) s (y, v|x)h (x,m (x)) dxdydz

=

∫
f (x)h (x,m (x))

(∫
f (y, z|x) s (y, z|x) dydz

)
dx = 0

by the mean zero property of the score. The same argument can be used in general to write an integral

of a function that depends on s subvector of w with respect to the density times the score of that

subvector as an integral with respect to the product of the density times score of the distribution of

W .

By Newey (1994, Theorem 2.1), we conclude that the contribution of the first term to the influence

function is

h (Xi,M (Xi))− E [h (X,M (X))] (21)

The second term in (20) is equal to∫
f (x) τ (x)

(∫
f (v) s (v)µ (x, v) dv

)
dx =

∫
f (v) s (v)

(∫
f (x) τ (x)µ (x, v) dx

)
dv

where we write the derivative of h with respect to its argument m(x) as

τ (x) =
∂h (x,m (x))

∂m(x)

to simplify the notation. Using the same argument as for the first term∫
f (v) s (v)

(∫
f (x) τ (x)µ (x, v) dx

)
dv =

∫
f (w) s (w)

(∫
f (x) τ (x)µ (x, v) dx

)
dw

= E [s(W ) · EX [τ (X)µ (X,V )]]

and by Newey (1994, Theorem 2.1) the contribution is

EX [τ (X)µ (X,Vi)]− E [τ (X)m (X)] (22)
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The third term in (20) is equal to∫
f (x) τ (x)

(∫
f (v)

∂µ (x, v; θ)

∂θ
dv

)
dx =

∫ ∫
f (x, v)

f (x) f (v)

f (x, v)
τ (x)

∂µ (x, v; θ)

∂θ
dvdx

= E
{
s(W ) · f (X) f (V )

f (X,V )
τ (X) (Y − µ (X,V ))

}
by Newey (1994, p. 1361) with δ(x, v) = f(x)f(v)

f(x,v) τ (x). This contributes

f (Xi) f (Vi)

f (Xi, Vi)
τ (Xi) (Yi − µ (Xi, Vi)) (23)

to the asymptotically linear representation.

Finally we consider the derivative with respect to α (or α1 and α2 to get the total derivative) of

E
[
h
(
X̃,EX,Z

[
γ
(
X̃, ϕ (X,Z;α1) ;α2

)])]
where X̃ denotes a random variable that is independent of but has the same distribution as X. This

is

E

∂h
(
X̃,m

(
X̃
))

∂m(X̃)
EX,Z

∂γ
(
X̃, ϕ (X,Z;α∗) ;α∗

)
∂α1


+ E

∂h
(
X̃,m

(
X̃
))

∂m(X̃)
EX,Z

∂γ
(
X̃, ϕ (X,Z;α∗) ;α∗

)
∂α2


= E

τ (X̃)EX,Z
∂µ

(
X̃, ϕ (X,Z;α∗)

)
∂v

∂ϕ (X,Z;α∗)

∂α


+ E

τ (X̃)EV
∂γ

(
X̃, V ;α∗

)
∂α2


To summarize, our objective is to analyze the derivative

E

τ (X̃)EX,Z
∂µ

(
X̃, ϕ (X,Z;α∗)

)
∂v

∂ϕ (X,Z;α∗)

∂α

+ E
[
f (X) f (V )

f (X,V )
τ (X)

∂γ (X,V ;α∗)

∂α2

]
. (24)

The first term gives the usual linear approximation coefficient. The second term is accounts for the

effect of α on the conditional expectation. It can be handled as in Hahn and Ridder (2013). Because

γ(x, ϕ(x, z, α);α) is the solution to the projection

min
p

E
[
(Y − p (X,ϕ (X,Z, α) ;α))2

]
we have that for all α,

E [t (X,ϕ (X,Z, α)) (Y − γ (X,ϕ (X,Z, α) ;α))] = 0
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for all possible functions t of X,ϕ(X,Z, α). In particular, we have that for all α

0 = E
[
f (X) f (ϕ (X,Z, α))

f (X,ϕ (X,Z, α))
τ (X) (Y − γ(X,ϕ(X,Z, α);α))

]
Differentiating with respect to α and evaluating the result at α = α∗, we find

0 = E
[
∂

∂v

(
f (X) f (V )

f (X,V )

)
∂ϕ (X,Z, α∗)

∂α
τ (X) (Y − µ (X,V ))

]
− E

[
f (X) f (V )

f (X,V )
τ (X)

∂µ (X,V )

∂v

∂ϕ (X,Z, α∗)

∂α

]
− E

[
f (X) f (V )

f (X,V )
τ (X)

∂γ (X,V ;α∗)

∂α2

]
with V = ϕ(X,Z, α∗) from which we obtain

E
[
f (X) f (V )

f (X,V )
τ (X)

∂γ (X,V ;α∗)

∂α2

]
= E

[
∂

∂v

(
f (X) f (V )

f (X,V )

)
τ (X) (Y − µ (X,V ))

∂ϕ (X,Z, α∗)

∂α

]
− E

[
f (X) f (V )

f (X,V )
τ (X)

∂µ (X,V )

∂v

∂ϕ (X,Z, α∗)

∂α

]
(25)

Combining (24) and (25), we obtain the adjustment equal to

E

EX̃
τ (X̃) ∂µ

(
X̃, V

)
∂v

 ∂ϕ (X,Z;α∗)

∂α


+ E

[
∂

∂v

(
f (X) f (V )

f (X,V )

)
τ (X) (Y − µ (X,V ))

∂ϕ (X,Z, α∗)

∂α

]
− E

[
f (X) f (V )

f (X,V )
τ (X)

∂µ (X,V )

∂v

∂ϕ (X,Z, α∗)

∂α

]
(26)

times
√
n(α̂−α∗). In this expression the expectation is with respect to the joint distribution of Y,X,Z.

B Proof of Lemma 2

Let ϕ (x, z) = F (x| z) and note that

ϕ (x, z) =

∫
1 (x̃ ≤ x) f ( x̃| z) dx̃

where f (x| z) denotes the conditional density of X given Z = z. We would like to find an analog of

Newey (1994, equation 3.9), i.e., we would like to find k (W ) such that

∂

∂θ
E [h (W,ϕ (X,Z))] = E [k (W ) s(W )]

The parameter of interest is

β = E [h(W,ϕ(X,Z))]
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so that we consider

β(θ) =

∫
h (w,ϕ(x, z; θ)) f(w; θ)dw

The total derivative evaluated for θ = 0 is

∂β

∂θ
(0) =

∫
h(w,ϕ(x, z))s(w)f(w)dw +

∫
∂h

∂v
(w,ϕ(x, z))

∂ϕ(x, z)

∂θ
f(w)dw

where s(W ) denotes the score of the distribution of W . For the second term on the right hand side

we define

τ(x, z) = E
[
∂h

∂v
(W,ϕ(X,Z))

∣∣∣∣X = x, Z = z

]
so that the second term is ∫ ∫

τ(x, z)
∂ϕ(x, z)

∂θ
f(x, z)dxdz

The path for the control variable is

ϕ(x, z; θ) =

∫
1 (x̃ ≤ x) f ( x̃| z; θ) dx̃

so that9

∂ϕ(x, z; 0)

∂θ
=

∫ ∫
1 (x̃ ≤ x) s(x̃|z)f(x̃|z)dx̃

Substitution and changing the order of integration gives∫ ∫
τ(x, z)

∂ϕ(x, z)

∂θ
f(x, z)dxdz =

∫ ∫ (∫
τ (x, z) 1 (x̃ ≤ x) f (x| z) dx

)
s ( x̃| z) f ( x̃| z) f (z) dx̃dz

Define

δ (x̃, z) =

(∫
τ (x, z) 1 (x̃ ≤ x) f (x| z) dx

)
= E [τ (X,Z) 1 (x̃ ≤ X)|Z = z] (27)

so that (replace x̃ by x)

E
[
∂h (W,ϕ(X,Z))

∂v

∂ϕ (X,Z)

∂θ

]
=

∫ ∫
δ (x, z) s (x| z) f (x| z) f (z) dxdz

so that because s(x|z) = s(x, z)− s(z)

E
[
∂h (W,ϕ(X,Z))

∂v

∂ϕ (X,Z)

∂θ

]
=

∫ ∫
δ(x, z)s(x, z)f(x, z)dxdz −

∫ [∫
δ(x, z)f(x|z)dx

]
s(z)f(z)dz

We conclude that if we define

δ(z) = E [δ(X,Z)|Z = z]

we have

E
[
∂h (W,ϕ(X,Z))

∂v

∂ϕ (X,Z)

∂θ

]
= E[(δ(X,Z)− δ(Z))s(W )]

9If we alternatively define the path as f(x|z; θ) = f(x,z;θ)
f(z;θ)

the total derivative is
∫

1(x̃ ≤

x)
(

1
f(x̃,z)

∂f
∂θ

(x̃, z)− f(x̃|z)
f(z)

∂f
∂θ

(z)
)
dx̃. The expression between parentheses is equal to (s(x̃, z) − s(z))f(x̃|z) so

that because s(x̃, z)− s(z) = s(x̃|z) we find the same result.

25



where we use that X,Z are components of the random vector W . Therefore

k(w) = h(w,ϕ(x, z)) + δ(x, z)− δ(z)

with

δ(x, z) = E
[
∂h (W,F (X|Z))

∂v
1 (x ≤ X)

∣∣∣∣Z = z

]
and

δ(z) = E
[
∂h (W,F (X|Z))

∂v
F (X|Z)

∣∣∣∣Z = z

]

C Proof of Lemma 3

The result follows from (26) that defines ξ(W ) as the function of W such that (26) is equal to

E
[
ξ(W )∂ϕ(X,Z)∂θ

]
where we replace α by θ in the nonparametric first stage. In Lemma 2 we then

replace ∂h(W,F (X|Z))
∂v by ξ(W ).

C.1 Alternate Proof of Lemma 3

We use the path-derivative method. The parameter of interest is

β = E [h (X,m (X))] = E [h (X,EV [µ (X,V )])] =

∫
h

(
x,

(∫
µ (x, v) f (v) dv

))
f (x) dx

=

∫
h

(
x̃,

(∫ ∫
µ (x̃, ϕ (x, z)) f (x, z) dxdz

))
f (x̃) dx̃

where

v = ϕ (x, z) =

∫
1 (x̃ ≤ x) f ( x̃| z) dx̃

For the path-derivative we consider the parameter of interest for a path in the distribution of W

indexed by θ:

β (θ) =

∫
h

(
x̃,

(∫ ∫
µ (x̃, ϕ (x, z; θ) ; θ) f (x, z; θ) dxdz

))
f (x̃; θ) dx̃

Note that

∂β

∂θ
(0) =

∫
f (x̃) s (x̃)h

(
x̃,

(∫
f (v)µ (x̃, v) dv

))
dx̃

+

∫
f (x̃)

∂h (x̃,m (x̃))

∂m(x̃)

(∫
f (v) s (v)µ (x̃, v) dv

)
dx̃

+

∫
f (x̃)

∂h (x̃,m (x̃))

∂m(x̃)

(∫ ∫
f (x, z)

∂µ (x̃, ϕ (x, z; 0) ; 0)

∂θ
dxdz

)
dx̃

+

∫
f (x̃)

∂h (x̃,m (x̃))

∂m(x̃)

(∫ ∫
f (x, z)

∂µ (x̃, v)

∂v

∂ϕ (x, z; 0)

∂θ
dxdz

)
dx̃

where s is the generic notation for the scores of the corresponding densities.
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As in the proof of Lemma 1, the first and second terms are∫
f (x̃) s (x̃)h

(
x̃,

(∫
f (v)µ (x̃, v) dv

))
dx̃ =

∫
f (x) s (x)h (x,m (x)) dx

= E [s(W ) · h (X,m (X))] (28)

and∫
f (x̃)

∂h (x̃,m (x̃))

∂m(x̃)

(∫
f (v) s (v)µ (x̃, v) dv

)
dx̃ =

∫
f (x) τ (x)

(∫
f (v) s (v)µ (x, v) dv

)
dx

= E [s(W ) · EX [τ (X)µ (X,V )]] (29)

The third term ∫
f (x̃)

∂h (x̃,m (x̃))

∂m(x̃)

(∫ ∫
f (x, z)

∂µ (x̃, ϕ (x, z; 0) ; 0)

∂θ
dxdz

)
dx̃

=

∫
f (x̃) τ (x̃)

(∫
f (v)

∂µ (x̃, v; 0)

∂θ
dv

)
dx̃

=

∫ ∫
f (x, v)

f (x) f (v)

f (x, v)
τ (x)

∂µ (x, v; 0)

∂θ
dvdx

= E
[
f (X) f (V )

f (X,V )
τ (X)

∂µ (X,V ; 0)

∂θ

]
is a little tricky, because the path that we take it is not totally arbitrary; it should only go through

the conditional CDF. For a given ρ (x, ϕ (x, z; θ)), we have

0 =

∫ ∫
ρ (x, ϕ (x, z; θ)) (y − µ (x, ϕ (x, z; θ) ; θ)) f (w; θ) dxdz

Differentiating with respect to θ, we obtain

0 =

∫
∂ρ (x, ϕ (x, z; 0))

∂v

∂ϕ (x, z; 0)

∂θ
(y − µ (x, ϕ (x, z; 0) ; 0)) f (w) dw

−
∫
ρ (x, ϕ (x, z; 0))

∂µ (x, ϕ (x, z; 0) ; 0)

∂v

∂ϕ (x, z; 0)

∂θ
f (w) dw

−
∫
ρ (x, ϕ (x, z; 0))

∂µ (x, ϕ (x, z; 0) ; 0)

∂θ
f (w) dw

+

∫
ρ (x, ϕ (x, z; 0)) (y − µ (x, ϕ (x, z; 0))) s (w) f (w) dw

Letting

ρ (x, v) =
f (x) f (v)

f (x, v)
τ (x)
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we have the third term equal to

E
[
f (X) f (V )

f (X,V )
τ (X)

∂µ (X,V ; 0)

∂θ

]
=

∫
∂

∂v

(
f (x) f (v)

f (x, v)

)
τ (x) (y − µ (x, v))

∂ϕ (x, z; 0)

∂θ
f (w) dw

−
∫
f (x) f (v)

f (x, v)
τ (x)

∂µ (x, v)

∂v

∂ϕ (x, z; 0)

∂θ
f (w) dw

+

∫
f (x) f (v)

f (x, v)
τ (x) (y − µ (x, v)) s (w) f (w) dw

Because the fourth term is equal to∫
f (x̃)

∂h (x̃,m (x̃))

∂m(x̃)

(∫ ∫
f (x, z)

∂µ (x̃, v)

∂v

∂ϕ (x, z; 0)

∂θ
dxdz

)
dx̃

=

∫
f (x̃) τ (x̃)

(∫ ∫
f (x, z)

∂µ (x̃, v)

∂v

∂ϕ (x, z; 0)

∂θ
dxdz

)
dx̃

we can write the sum of the third and fourth term as∫
f (x) f (v)

f (x, v)
τ (x) (y − µ (x, v)) s (w) f (w) dw +

∫
ξ (w)

∂ϕ (x, z; 0)

∂θ
f (w) dw

= E
[
s(W ) · f (X) f (V )

f (X,V )
τ (X) (Y − µ (X,V ))

]
+

∫
ξ (w)

∂ϕ (x, z; 0)

∂θ
f (w) dw (30)

where

ξ (w) =

∫
f (x̃) τ (x̃)

∂µ (x̃, v)

∂v
dx̃+

∂

∂v

(
f (x) f (v)

f (x, v)

)
τ (x) (y − µ (x, v))

− f (x) f (v)

f (x, v)
τ (x)

∂µ (x, v)

∂v

= EX̃

τ (X̃) ∂µ
(
X̃, v

)
∂v

+
∂

∂v

(
f (x) f (v)

f (x, v)

)
τ (x) (y − µ (x, v))

− f (x) f (v)

f (x, v)
τ (x)

∂µ (x, v)

∂v

Using
∂ϕ(x, z; 0)

∂θ
=

∫
1 (x̃ ≤ x) s(x̃|z)f(x̃|z)dx̃
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which was established in the proof of Lemma 2, we can write∫
ξ (w)

∂ϕ (x, z; 0)

∂θ
f (w) dw =

∫ ∫
τ (x, z)

∂ϕ (x, z; 0)

∂θ
f (x, z) dxdz

=

∫ ∫ (∫
τ (x, z) 1 (x̃ ≤ x) f (x| z) dx

)
s ( x̃| z) f ( x̃| z) f (z) dx̃dz

=

∫ ∫
δ (x, z) s (x| z) f (x| z) f (z) dxdz

=

∫ ∫
δ(x, z)s(x, z)f(x, z)dxdz −

∫ [∫
δ(x, z)f(x|z)dx

]
s(z)f(z)dz

=

∫ ∫ (
δ(x, z)− δ (z)

)
s(x, z)f(x, z)dxdz

= E
[
s(W ) ·

(
δ(X,Z)− δ (Z)

)]
where

τ (X,Z) = E [ξ (W )|X,Z]

δ (x̃, z) =

∫
τ (x, z) 1 (x̃ ≤ x) f (x| z) dx = E [τ (X,Z) 1 (x̃ ≤ X)|Z = z]

= E [ξ (W ) 1 (x̃ ≤ X)|Z = z]

δ (z) =

∫
δ(x̃, z)f(x̃|z)dx̃ =

∫ ∫
τ (x, z) 1 (x̃ ≤ x) f(x̃|z)f (x| z) dx̃dx

=

∫
τ (x, z)F (x| z) f (x| z) dx̃dx = E [τ (X,Z)F (X|Z)|Z = z]

= E [ξ (W )F (X|Z)|Z = z]

It follows that the sum of the third and fourth terms is we can write the sum of the third and fourth

term as

E
[
s(W ) · f (X) f (V )

f (X,V )
τ (X) (Y − µ (X,V ))

]
+ E

[
s(W ) ·

(
δ(X,Z)− δ (Z)

)]
(31)

Combining (28), (29), and (31), we obtain the conclusion.

D Proof of Lemma 4

This proof follows the method in the proof of Lemma 1. Note that

E
[
∂M (X)

∂x

]
=

∫
f (x)

∂

∂x

(∫
f (v)µ (x, v) dv

)
dx

=

∫
f (x)

(∫
f (v)

∂µ (x, v)

∂x
dv

)
dx

=

∫ ∫
f (v) f (x)

∂µ (x, v)

∂x
dxdv
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and define

β (θ, α1, α2) =

∫
f (x̃; θ)

(∫ ∫
f (x, z; θ)

∂γ (x̃, ϕ(x, z, α1);α2, θ)

∂x
dxdz

)
dx̃;

As before we define β(θ) = β(θ, α∗, α∗) with

β(θ) =

∫
f (x̃; θ)

(∫ ∫
f (x, z; θ)

∂µ (x̃, ϕ(x, z, α∗); θ)

∂x
dxdz

)
dx̃

The total derivative of β(θ) at 0 is, if we replace x̃ by x and ϕ(x, z, α∗) by v,

∂β (0)

∂θ
=

∫
f (x) s (x)

(∫
f (v)

∂µ (x, v)

∂x
dv

)
dx

+

∫
f (x)

(∫
f (v) s (v)

∂µ (x, v)

∂x
dv

)
dx

−
∫ ∫

f (v)
∂f (x)

∂x

∂µ (x, v)

∂θ
dvdx (32)

where we used for the third term on the right-hand side that by partial integration∫ ∫
f (v) f (x)

∂µ (x, v)

∂x
dxdv = −

∫ ∫
f (v)

∂f (x)

∂x
µ (x, v) dxdv

if the density of X is 0 at the integration limits, i.e., the boundary of the support. Using the same

argument as before we can replace s(x)f(x) by s(w)f(w) so that for the first term∫
f (x) s (x)

∂m (x)

∂x
dx =

∫
f (w) s (w)

∂m (x)

∂x
dw

= E
[
s(W ) · ∂m (X)

∂x

]
and the contribution to the influence function is

∂m (Xi)

∂x
− E

[
∂m (X)

∂x

]
(33)

The second term in (32) is equal to∫
f (v) s (v)

(∫
f (x)

∂µ (x, v)

∂x
dx

)
dv =

∫
f (w) s (w)

(∫
f (x)

∂µ (x, v)

∂x
dx

)
dw

= E
[
s(W ) · EX

[
∂µ (X,V )

∂x

]]
where it is understood that the expectation EX is with respect to the marginal distribution of X. This

term contributes

EX
[
∂µ (X,Vi)

∂x

]
− E

[
∂m (X)

∂x

]
(34)

to the influence function. The third term in (32) is equal to∫ ∫
f (x, v)

∂f(x)
∂x f (v)

f (x, v)

∂µ (x, v; θ)

∂θ
dvdx
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so that by Newey (1994), Proposition 4, the contribution to the influence function is

∂f(Xi)
∂x f (Vi)

f (Xi, Vi)
(Yi − µ (Xi, Vi)) (35)

To find the contribution of the first stage we consider

β (0, α1, α2) =

∫ ∫
f (x, z)

(∫
f (x̃)

∂γ (x̃, ϕ(x, z, α1);α2, 0)

∂x
dx̃

)
dxdz

= −
∫ ∫

f (x, z)

(∫
∂f (x̃)

∂x
γ (x̃, ϕ(x, z, α1);α2, 0) dx̃

)
dxdz

= −EX,Z

E
X̃

 ∂f(X̃)
∂x

f(X̃)
γ
(
X̃, ϕ(X,Z, α1);α2, 0

)
by partial integration. Hence the total derivative is (we use α instead of α1)

−EX,Z

E
X̃

 ∂f(X̃)
∂x

f
(
X̃
) ∂µ

(
X̃, ϕ (X,Z;α∗)

)
∂v

∂ϕ (X,Z;α∗)

∂α

−EX,Z
E

X̃

 ∂f(X̃)
∂x

f(X̃)

∂γ
(
X̃, ϕ(X,Z, α∗);α∗, 0

)
∂α2

 .
(36)

The second term is equal to

−EV

E
X̃

 ∂f(X̃)
∂x

f(X̃)

∂γ
(
X̃, V ;α∗, 0

)
∂α2

 = −EX,V

[
∂f(X)
∂x f(V )

f(X,V )

∂γ (X,V ;α∗, 0)

∂α2

]

Because γ(x, ϕ(x, z, α);α) is the solution to

min
p

E
[
(Y − p (X,ϕ (X,Z, α) ;α))2

]
we have that for all α,

E [t (X,ϕ (X,Z, α) ;α) (Y − γ (X,ϕ (X,Z, α) ;α))] = 0

for all functions t (X,ϕ (X,Z, α)). In particular, we have

0 = E

[
∂f(X)
∂x f (ϕ (X,Z, α))

f (X,ϕ (X,Z, α))
(Y − γ(X,ϕ(X,Z, α);α))

]
Differentiating with respect to α and evaluating the result at α = α∗, we find

0 = E

[
∂

∂v

(
∂f(X)
∂x f (V )

f (X,V )

)
∂ϕ (X,Z, α∗)

∂α
(Y − µ (X,V ))

]

− E

[
∂f(X)
∂x f (V )

f (X,V )

∂µ (X,V )

∂v

∂ϕ (X,Z, α∗)

∂α

]

− E

[
∂f(X)
∂x f (V )

f (X,V )

∂γ (X,V ;α∗)

∂α2

]

31



from which we obtain

E

[
∂f(X)
∂x f (V )

f (X,V )

∂γ (X,V ;α∗)

∂α2

]
= E

[
∂

∂v

(
∂f(X)
∂x f (V )

f (X,V )

)
(Y − µ (X,V ))

∂ϕ (X,Z, α∗)

∂α

]

− E

[
∂f(X)
∂x f (V )

f (X,V )

∂µ (X,V )

∂v

∂ϕ (X,Z, α∗)

∂α

]
(37)

Combining (36) and (37), we obtain the adjustment equal to

− E

EX̃
 ∂f(X̃)

∂x

f
(
X̃
) ∂µ

(
X̃, V

)
∂v

 ∂ϕ (X,Z;α∗)

∂α

− E

[
∂

∂v

(
∂f(X)
∂x f (V )

f (X,V )

)
(Y − µ (X,V ))

∂ϕ (X,Z, α∗)

∂α

]
+

+ E

[
∂f(X)
∂x f (V )

f (X,V )

∂µ (X,V )

∂v

∂ϕ (X,Z, α∗)

∂α

]
(38)

times
√
n(α̂− α∗).

For the non-parametric first stage we follow the same proof as in Lemma 3

E Proof of Lemma 5

The parameter for a path indexed by θ, α1, α2 is

β(θ, α1, α2) =

∫ ∫
f(x, z; θ)

∂γ

∂x
(x, ϕ(x, z, α1);α2, θ)dxdz

and as before β(θ) = β(θ, α∗, α∗). Then

β(θ, α∗, α∗) =

∫ ∫
f (x, v; θ)

∂µ(x, v; θ)

∂x
dxdv

and therefore,

∂β

∂θ
(0) =

∫ ∫
f(x, v)s(x, v)

∂µ

∂x
(x, v)dxdv +

∫ ∫
f(x, v)

∂

∂θ

(
∂µ(x, v)

∂x

)
dxdv

=

∫
f(w)s(w)

∂µ

∂x
(x, v)dv −

∫ ∫ ∂f(x,v)
∂x

f(x, v)

∂µ(x, v)

∂θ
f(x, v)dxdv

where in the second term we have used partial integration and the assumption on the density at the

boundary of the support. Therefore

∂β

∂θ
(0) = E

[
s(W )

∂µ

∂x
(X,V )

]
− E

[
∂f(X,V )

∂x

f(X,V )

∂µ(X,V )

∂θ

]

so that the contribution to the influence function is, using Proposition 4 in Newey (1994)

∂µ

∂x
(Xi, Vi)−

∂f(Xi,Vi)
∂x

f(Xi, Vi)
(Yi − µ(Xi, Vi))
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Next we consider β(0, α1, α2) and take the total derivative using

β(0, α1, α∗) =

∫ ∫
f(x, z)

∂µ

∂x
(x, ϕ(x, z, α1))dxdz = −

∫ ∫
∂f

∂x
(x, z)µ(x, ϕ(x, z, α1))dxdz

so that
∂β

∂α1
(0, α∗, α∗) = −E

[
∂f
∂x (X,Z)

f(X,Z)

∂µ

∂v
(X,V )

∂ϕ(X,Z, α∗)

∂α

]
Also using partial integration

β(0, α∗, α2) = E
[
∂γ

∂x
(X,V ;α2)

]
= −E

[
∂f
∂x (X,V )

f(X,V )
γ(X,V ;α2)

]

so that
∂β

∂α2
(0, α∗, α∗) = −E

[
∂f
∂x (X,V )

f(X,V )

∂γ(X,V ;α∗)

∂α2

]
An analogous projection argument as in Lemma 4 but with

t(x, ϕ(x, z, α);α) =
∂f
∂x (x, ϕ(x, z, α))

f(x, ϕ(x, z, α))

so that for all α

E

[
∂f
∂x (X,ϕ(X,Z, α))

f(X,ϕ(X,Z, α))
(Y − γ(X,ϕ(X,Z, α);α)

]
= 0

Taking the derivative with respect to α we find

E

[
∂f
∂x (X,V )

f(X,V )

∂γ(X,V ;α∗)

∂α2

]
= E

[
∂

∂v

(
∂f
∂x (X,V )

f(X,V )

)
(Y − µ(X,V ))

∂ϕ(X,V, α∗)

∂α

]
−

E

[
∂f
∂x (X,V )

f(X,V )

∂µ

∂v
(X,V )

∂ϕ(X,V, α∗)

∂α

]
The contribution of the first stage is therefore

−E

[
∂f
∂x (X,Z)

f(X,Z)

∂µ

∂v
(X,V )

∂ϕ(X,Z, α∗)

∂α

]
− E

[
∂

∂v

(
∂f
∂x (X,V )

f(X,V )

)
(Y − µ(X,V ))

∂ϕ(X,V, α∗)

∂α

]

+E

[
∂f
∂x (X,V )

f(X,V )

∂µ

∂v
(X,V )

∂ϕ(X,V, α∗)

∂α

]
times

√
n(α̂− α∗).

The nonparametric first stage is dealt with as in the proof of Lemma 3.
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F Proof of Lemma 6

Define

A =

(
E
[
∂r

∂β
(X;β∗)

∂r

∂β′
(X;β∗)

])−1
and consider

1√
n

n∑
i=1

(m̂(Xi)−m(Xi))
∂r

∂β
(Xi;β∗)

We apply Lemma 1 with

h(X, m̂(X)) = (m̂(X)−m(X))
∂r

∂β
(X;β∗)

so that

τ(X) =
∂r

∂β
(X;β∗)

The first term in the influence function of Lemma 1 is 0 and the second term is

EX
[
µ(X,Vi)

∂r

∂β
(X;β∗)

]
− E

[
m(X)

∂r

∂β
(X;β∗)

]
The third term is

f(Xi)f(Vi)

f(Xi, Vi)
(Yi − µ(Xi, Vi))

∂r

∂β
(Xi;β∗)

and the contribution of the first-stage estimation error
E
[
EX̃

[
∂r
∂β (X̃;β∗)

∂µ(X̃,V )
∂v

]
∂ϕ(X,Z;α∗)

∂α′

]
+E

[
∂
∂v

(
f(X)f(V )
f(X,V )

)
∂r
∂β (X;β∗) (Y − µ (X,V )) ∂ϕ(X,Z,α∗)∂α′

]
−E

[
f(X)f(V )
f(X,V )

∂r
∂β (X;β∗)

∂µ(X,V )
∂v

∂ϕ(X,Z,α∗)
∂α′

]

√
n(α̂− α∗)

The derivation of the influence function for the nonparametric first stage is as in Lemma 3.

G Proof of Lemma 7

Lemma 8 Let p = E [Di].We have( √
nα̂

√
n(x− x0)

)
d→

(
p−

1
2X1 − (1− p)−

1
2 X0

√
pX1 − p√

1−pX0

)
≡

(
Z1

Z2

)

with X0,X1 independent standard normal random vectors of dimension K.

Proof. We have

p = lim
n→∞

n1
n

where n1 denotes the size of the subsample such that Di = 1. By logit MLE and α∗ = 0, we have

√
n

[
ζ̂ − ζ∗
α̂

]
=

(
p (1− p)

[
1 µ′

µ µµ′ + IK

])−1
1√
n

n∑
i=1

(Di − p)

[
1

xi

]
+ op (1)
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with under the distributional assumptions above Iα(0) = p(1− p)IK , which implies that

√
nα̂ =

1

p (1− p)
1√
n

n∑
i=1

(Di − p) (xi − µ) + op (1)

Therefore

√
nα̂ =

1

p(1− p)
√
n

(n1(1− p) (x1 − µ)− n0p (x0 − µ)) + op (1)

= p−
1
2
√
n1 (x1 − µ)− (1− p)−

1
2
√
n0 (x0 − µ)

Also note that

x− x0 =
1

n0 + n1

∑
Di=0

xi +
∑
Di=1

xi

− 1

n0

∑
Di=0

xi

=
n1

n0 + n1
(x1 − x0)

=
n1

n0 + n1
((x1 − µ)− (x0 − µ)) ,

and therefore
n1

n0 + n1

√
n

√
n0

√
n0 (x1 − µ)

√
n (x− x0) =

√
p
√
n1 (x1 − µ)− p√

1− p
√
n0 (x0 − µ) + op (1) .

Stacking the expressions and applying the Central Limit Theorem gives the desired result.

Proof of Lemma 7. Note that with x̃i = xi − x0
√
n
(
(x− x0)′ α̂

)
δ̂0 =

(
(x− x0)′ α̂

) ∑Di=0 (x̃′iα̂) yi∑
Di=0 (x̃′iα̂)2

=
√
nα̂′ (x− x0)

(
1
n0

∑
Di=0 (x̃′iα̂) yi

)
1
n0

∑
Di=0 (x̃′iα̂)2

=

√
nα̂′
√
n (x− x0)

(
1
n0

∑
Di=0 y0ix̃i

)′√
nα̂

√
nα̂′

(
1
n0

∑
Di=0 x̃ix̃

′
i

)√
nα̂

(39)

Now
1

n0

∑
Di=0

y0ix̃i =
1

n0

∑
Di=0

x̃i(β0 + x′iγ0 + ε0i) = γ0 + op(1)

Therefore
√
n
(
(x− x0)′ α̂

)
δ̂0 =

(
√
nα̂)

′
(
√
n (x− x0)) γ′ (

√
nα̂)

(
√
nα̂)

′
(
√
nα̂)

+ op (1)

and by Lemma 1 and the continuous-mapping theorem

√
n
(
(x− x0)′ α̂

)
δ̂0 =

(Z ′1Z2) (γ′0Z1)

Z ′1Z1
+ op (1)
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Derivation of the distribution of the semi-parametric CV estimator
by stochastic expansion

H Motivating example

This appendix derives the asymptotic distribution of the control variable estimator by asymptotic

expansion. Although the derivation is general, it is helpful to consider as an example a logit model

with a single continuous endogenous regressor

Y ∗ = τX − ε

where ε has a logistic distribution and X and ε are correlated. If X̃ and ε are independent then

E[Y |X̃ = x] =
eτx

1 + eτx
≡ R(x; τ) (40)

We observe

Y = I(Y ∗ ≥ 0)

Let Z be an instrument.The general first stage is

X = F−1 (V |Z)

which is more general than a linear first-stage

X = γ0 + γ1Z + V

We assume

Z ⊥ V, ε

This assumption is not automatically satisfied in the linear first stage.

The Average Structural Function (ASF) is

L (x) =

∫ 1

0
E [Y |X = x, V = v] dv

This requires that V has [0, 1] support, i.e., in

V = F (x|Z)

V takes all values in [0, 1]. For some x the control variable V may take values in a subset of [0, 1], but

we rule out such a possibility.

The estimator of the ASF is

L̂ (x) =
1

n

n∑
j=1

µ̂
(
x, V̂j

)
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with V̂j denoting our estimator of F (Xj |Zj), and µ̂(x, v) the nonparametric series estimator of

µ (x, v) = E [Y |X = x, V = v].

The estimator of the logit model is

min
τ

n∑
i=1

(
L̂ (Xi)−R (Xi; τ)

)2
The estimator of τ satisfies

1

n

n∑
i=1

(
L̂(Xi)−R(Xi; τ̂)

) ∂R
∂τ

(Xi; τ̂) = 0 (41)

The equation (41) that defines the estimator is generic and is the starting point of our analysis.

I The first stage

For a matrix A we define the matrix norm10 ||A|| =
√

tr(A′A) =
√∑

k

∑
l a

2
kl. We use |a| for the

Euclidean norm in the case that a is a vector or a scalar. We assume that for the control variable

Assumption 3

1

n

n∑
j=1

(
V̂j − Vj

)2
= O

(
n−2δ

)
Remark 1 We discuss sufficient conditions for Assumption 3 in Sections K.2. We find that 0 < δ < 1

2

and that the fastest rate depends on the smoothness of F (x|z) and related functions as defined in

Assumption 11.

.

J The asymptotic distribution of the control variable estimator

J.1 Consistency and linearization

Because L(X) = R(X; τ0) with L(x) =
∫ 1
0 µ(x, v)dv, (41) can be rewritten as

1√
n

n∑
i=1

(
L̂(Xi)− L(Xi)

) ∂R
∂τ

(Xi; τ̂)− 1√
n

n∑
i=1

(R(Xi; τ̂)−R(Xi; τ0))
∂R

∂τ
(Xi; τ̂) = 0 (42)

If α is an l vector we define κ as an l vector of nonnegative integers with |κ| =
∑l

j=1 κj and ακ =∏l
j=1 α

κj
j .

10If A and B are such that AB is well-defined, then ||AB|| ≤ ||A||||B||. A smaller upper bound is ||AB|| ≤√
λmax(A′A)||B||.
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Assumption 4 (Structural model) The structural model has for exogenous X̃ that E[Y |X̃ = x] =

R(x; τ0). We assume that for all ξ > 0, there is an ζ > 0 such that

inf
τ∈T,|τ−τ0|>ξ

E
[
(R(X; τ)−R(X; τ0))

2
]
> ζ

with T the parameter space of τ . Also for d = 0, 1, 2 and κ a vector of nonnegative integers of the

same dimension as τ

sup
τ∈T

max
|κ|=d

∣∣∣∣∂dR∂τκ (X; τ)

∣∣∣∣ ≤ Nd(X)

with E[Nd(X)2] <∞ for d = 0, 1 , E[N2(X)] <∞ and the matrix

E
[
∂R

∂τ
(X; τ0)

∂R

∂τ ′
(X; τ0)

]
is nonsingular. R(x; τ) is r times continuously differentiable in x.

The next lemma gives conditions for weak consistency and an intermediate linearization result

Lemma 9 If Assumption 4 holds and supx∈X |L̂(x)− L(x)| = op(1) with X the support of the distri-

bution of X, then τ̂ defined in (41) is weakly consistent for τ0 and

√
n(τ̂ − τ0) =

(
E
[
∂R

∂τ
(X; τ0)

∂R

∂τ ′
(X; τ0)

])−1 1√
n

n∑
i=1

(
L̂(Xi)− L(Xi)

) ∂R
∂τ

(Xi; τ0) + op(1) (43)

Proof. We have

1

n

n∑
i=1

(
L̂(Xi)−R(Xi; τ)

)2
=

1

n

n∑
i=1

(
L̂(Xi)− L(Xi)

)2
+

1

n

n∑
i=1

(R(Xi; τ)−R(Xi; τ0))
2−

2

n

n∑
i=1

(L̂(Xi)− L(Xi)) (R(Xi; τ)−R(Xi; τ0))

The final term of this equation is bounded uniformly in τ by

sup
x∈X
|L̂(x)− L(x)| 4

n

n∑
i=1

N0(Xi) = op(1)

because by Assumption 4 E(N0(X)) <∞. Because supx∈X |L̂(x)− L(x)| = op(1)

1

n

n∑
i=1

(
L̂(Xi)− L(Xi)

)2
= op(1)

Finally because by Assumption 4 supτ∈T |R(X; τ)| ≤ N0(X) with E[N0(X)2] < ∞, we have by the

uniform weak law of large numbers

1

n

n∑
i=1

(R(Xi; τ)−R(Xi; τ0))
2 p→ E

[
(R(X; τ)−R(X; τ0)

2
]
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uniformly in τ . Combining these results we find

1

n

n∑
i=1

(
L̂(Xi)−R(Xi; τ)

)2 p→ E
[
(R(X; τ)−R(X; τ0)

2
]

uniformly in τ . By Assumption 4 the conditions in e.g. Van der Vaart (1998), Theorem 5.7 hold, so

that τ̂ is weakly consistent for τ0.

For the linearization first-order Taylor series expansions with τ̃ and τ intermediate points in (42)

result in(
1

n

n∑
i=1

∂R

∂τ
(Xi; τ̂)

∂R

∂τ ′
(Xi; τ̃)− 1

n

n∑
i=1

(
L̂(Xi)− L(Xi)

) ∂2R

∂τ∂τ ′
(Xi; τ)

)
√
n(τ̂ − τ0) =

1√
n

n∑
i=1

(
L̂(Xi)− L(Xi)

) ∂R
∂τ

(Xi; τ0)

By Assumption 4 and E(N1(X)2) <∞

1

n

n∑
i=1

∂R

∂τ
(Xi; τ)

∂R

∂τ ′
(Xi; τ)

p→ E
[
∂R

∂τ
(X; τ)

∂R

∂τ ′
(X; τ)

]
uniformly for τ ∈ T . Finally because E(N2(X)) <∞

sup
τ∈T

∣∣∣∣∣ 1n
n∑
i=1

(
L̂(Xi)− L(Xi)

) ∂2R

∂τ∂τ ′
(Xi; τ)

∣∣∣∣∣ ≤ sup
x∈X

∣∣∣L̂(x)− L(x)
∣∣∣ 1

n

n∑
i=1

N2(Xi) = op (1)

so that (43) follows.

Sufficient conditions for supx∈X |L̂(x)− L(x)| = op(1) will be discussed after Lemma 13 is proved.

J.2 Asymptotically linear representation

J.2.1 Decomposition and assumptions

For the rest of the derivation we take, without loss of generality, τ as scalar. We rewrite the sum in

(43) as

1√
n

n∑
i=1

(
L̂(Xi)− L(Xi)

) ∂R
∂τ

(Xi; τ0) =

1

n
√
n

n∑
i=1

n∑
j=1

(
µ̂K(Xi, V̂j)− µ̃K(Xi, Vj)

) ∂R
∂τ

(Xi; τ0)+ (44)

1

n
√
n

n∑
i=1

n∑
j=1

(µ̃K(Xi, Vj)− µ(Xi, Vj))
∂R

∂τ
(Xi; τ0)+ (45)

1

n
√
n

n∑
i=1

n∑
j=1

µ(Xi, Vj)
∂R

∂τ
(Xi; τ0)−

1√
n

n∑
i=1

L(Xi)
∂R

∂τ
(Xi; τ0) (46)
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We write the three expressions (44), (45) and (46) as normalized sample averages. The three expres-

sions each have a contribution to the influence function of our estimator. The contribution of (44)

accounts for the estimation of the residuals in the first stage, the contribution of (45) accounts for the

variability of the nonparametric regression estimator, and (46) is the pure variance term.

Equation (44) involves the feasible nonparametric regression estimator µ̂K of Y on X and V̂ , and

the infeasible nonparametric regression estimator µ̃ of Y on X and V . To simplify the discussion we

define W = (X V )′ and Ŵ = (X V̂ )′. We use a series estimator. As the basis functions we take a

power series and K is the number of basis functions in the series. To include all powers of x and v up

to order L, we need to include K = 1
2(L+ 1)(L+ 2) terms. The resulting basis functions are denoted

by the vector Q∗K(w) = (xλ1vλ2 , λ1 + λ2 ≤ L). We order the basis function by λ1 + λ2. We make an

assumption on the support of the joint distribution of X,V .

Assumption 5 (Support) The support of X,V is W = X ×V = [xL, xU ]× [0, 1]. The joint density

of X,V is bounded away from 0 on W and is r times continuously differentiable on its support. Also

E
[
f(X)2f(V )2

f(X,V )2

]
<∞.

By Newey (1995, Lemma A.15), this assumption implies that for all K there is a nonsingular matrix

AK such that if we define Q̃K(w) = AKQ
∗
K(w), the smallest eigenvalue of ΩK = E[Q̃K(W )Q̃K(W )′]

satisfies λmin(ΩK) ≥ C > 0 for all K. To simplify some of the argument we choose QK(w) =

Ω
−1/2
K Q̃K(w) so that E[QK(W )QK(W )′] = IK .

Define

ζd (K) = max
|λ|≤d

sup
w∈W

∥∥∥∥∂dQK∂wλ
(w)

∥∥∥∥ .
By Newey (1995, Lemma A.15), we have

ζd (K) = O
(
K2d+1

)
.

Assumption 6 (Regression function) The conditional mean of Y given X,V , µ(x, v), is twice

continuously differentiable as a function of v. There is a vector γK such that for constants CD, aD > 0

max
0≤d≤D

sup
w∈W

∣∣∣∣∂dµ∂vd
(w)− ∂dQK

∂vd
(w)′γK

∣∣∣∣ ≤ CDK−aD
and for f(X)f(V )

f(X,V )
∂R
∂τ (X, τ0) there is a vector δK such that for CD, aD > 0

max
0≤d≤D

sup
w∈W

∣∣∣∣ ∂d∂vd
(
f(x)f(v)

f(x, v)

∂R

∂τ
(x; τ0)

)
− ∂dQK

∂vd
(w)′δK

∣∣∣∣ ≤ CDK−aD
If the population regression function µ(w) is s times continuously differentiable on W we have by

Lorentz (1986) that a0 = s/2 (with 2 the dimension of w) for µ. For f(x)f(v)
f(x,v)

∂R
∂τ (x; τ0) we have by

Assumptions 4 and 5 that a0 = r/2 . In the sequel we need approximations up to the second derivative

of µ and up to the first derivative of f(x)f(v)
f(x,v)

∂R
∂τ (x; τ0), i.e., D = 2.
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J.2.2 Basic properties of the series estimator

The first step in our proof is to derive some basic properties of the feasible and infeasible nonparametric

regression estimators. For that purpose define the K ×K matrices

Ω̂K =
1

n

n∑
j=1

QK(Xj , V̂j)QK(Xj , V̂j)
′

and

Ω̃K =
1

n

n∑
j=1

QK(Xj , Vj)QK(Xj , Vj)
′

Lemma 10 If Assumption 5 holds then∥∥∥Ω̃K − IK
∥∥∥ = Op

(
ζ0 (K)K1/2n−1/2

)
= Op

(
K3/2n−1/2

)
,∥∥∥Ω̂K − Ω̃K

∥∥∥ = Op

(
ζ1 (K)n−δ

)
= Op

(
K3n−δ

)
,

if K3n−δ → 0. If that limit holds also∥∥∥Ω̂K − IK
∥∥∥ = Op

(
K3n−δ

)
.

Further

|λmax(Ω̃)− 1| = Op

(
K3/2n−1/2

)
, |λmin(Ω̃)− 1| = Op

(
K3/2n−1/2

)
,

and

|λmax(Ω̂K)− 1| = Op

(
K3n−δ

)
, |λmin(Ω̂K)− 1| = Op

(
K3n−δ

)
.

Proof. First, we note that by the argument in Newey (1997, proof of Theorem 1)∥∥∥Ω̃K − Ik
∥∥∥ = Op

(
ζ0 (K)K1/2n−1/2

)
= Op

(
K3/2n−1/2

)
For a square symmetric K ×K matrix A we have that for k = 1, . . . ,K

λk(A)2 = λk(A
2) ≤

K∑
k=1

λk(A
2) = tr(A2) = tr(A′A) = ‖A‖2

so that for k = 1, . . . ,K

|λk(A)| ≤ ‖A‖

and in particular λmin(A) ≤ ‖A‖ and λmax(A) ≤ ‖A‖. Also for any square matrix B, the eigenvalues

of B − I are equal to those of B minus 1. Therefore by choosing A = Ω̃K − IK we have∣∣∣λmax(Ω̃K)− 1
∣∣∣ ≤ ∥∥∥Ω̃K − IK

∥∥∥ = Op

(
K3/2n−1/2

)
and the same bound holds for |λmin(Ω̃K)− 1|.
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By Assumption 3, we have n−1
∑n

i=1

(
V̂i − Vi

)2
= Op

(
n−2δ

)
. By the mean value theorem, we

have using the uniform bound on the derivative of QK(w)

∥∥∥Q̂K −QK∥∥∥/n1/2 =

√√√√n−1
n∑
i=1

∣∣∣QK (Ŵi

)
−QK (Wi)

∣∣∣2

=

√√√√n−1
n∑
i=1

∣∣∣∣∂QK∂v (
W i

)
(V̂i − Vi)

∣∣∣∣2

≤

√√√√ζ1 (K)2 n−1
n∑
i=1

(
V̂i − Vi

)2
= Op

(
ζ1 (K)n−δ

)
,

where QK = [QK (W1) , . . . , QK (Wn)]′ and Q̂K =
[
QK

(
Ŵ1

)
, . . . , QK

(
Ŵn

)]′
are n × K matrices.

Note that QK(w) is a K vector of basis functions while QK is the n×K matrix of observed values of

these basis functions. We have∥∥∥Ω̂K − Ω̃K

∥∥∥ =
∥∥∥Q̂′KQ̂K/n− Q′KQK

/
n
∥∥∥

=

∥∥∥∥(Q̂K −QK)′ (Q̂K −QK)/n+ Q′K

(
Q̂K −QK

)/
n+

(
Q̂K −QK

)′
QK

/
n

∥∥∥∥
≤
∥∥∥Q̂K −QK∥∥∥2/n+ 2

∥∥∥Q′K (Q̂K −QK)/n∥∥∥
For a constant C > 1 define

1PSD,n = 1
(
λmax(Ω̃K) < C

)
,

where we note that if K3/2n−1/2 → 0, then

1PSD,n
p→ 1.

Now ∥∥∥Q′K (Q̂K −QK)/n∥∥∥2 =
1

n2
tr
(

(Q̂K −QK)′QKQ
′
K(Q̂K −QK)

)
and

1

n2
tr
(

(Q̂K −QK)′QKCΩ̃−1K Q′K(Q̂K −QK)
)
− 1

n2
tr
(

(Q̂K −QK)′QKQ
′
K(Q̂K −QK)

)
=

1

n2
tr
(

(Q̂K −QK)′QK(CΩ̃−1K − IK)Q′K(Q̂K −QK)
)

≥ 1

n2

(
C

λmax(Ω̃K)
− 1

)
tr
(

(Q̂K −QK)′QKQ
′
K(Q̂K −QK)

)
,

and the right-hand side is nonnegative if λmax(Ω̃K) < C. Therefore

1PSD,n
1

n2
tr
(

(Q̂K −QK)′QKQ
′
K(Q̂K −QK)

)
≤ 1PSD,n

1

n2
tr
(

(Q̂K −QK)′QKCΩ̃−1K Q′K(Q̂K −QK)
)
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and we have because QKΩ̃−1K Q′K = nQK(Q′KQK)−1Q′K with the matrix QK(Q′KQK)−1Q′K a projec-

tion matrix so that its eigenvalues are 0 or 1, that

1PSD,n

∥∥∥Q′K (Q̂K −QK)/n∥∥∥2 ≤ 1PSD,n
C

n
tr
(

(Q̂K −QK)′(Q̂K −QK)
)

or

1PSD,n

∥∥∥Q′K (Q̂K −QK)/n∥∥∥ ≤ 1PSD,n

√
C√
n
‖Q̂K −QK‖,

Therefore if K3/2n−1/2 → 0 ∥∥∥Q′K (Q̂K −QK)/n∥∥∥ = Op

(
ζ1 (K)n−δ

)
.

We conclude that if K3/2n−1/2 → 0∥∥∥Ω̂K − Ω̃K

∥∥∥ = Op

(
ζ1 (K)2 n−2δ

)
+Op

(
ζ1 (K)n−δ

)
,

which is bounded by Op
(
ζ1 (K)n−δ

)
if ζ1 (K)n−δ → 0. The bound on ‖Ω̂K − IK‖ follows from the

triangle inequality. The bounds on |λmax(Ω̂K)− 1| and |λmin(Ω̂K)− 1| are obtained in the same way

as for the largest and smallest eigenvalue of Ω̃K .

We make the following assumption on the conditional variance of Y given W = w

Assumption 7 (Variance)

sup
w∈W

Var(Y |W = w) ≤ σ2 <∞

Define

Uj = Yj − µ(Xj , Vj)

By assumption 7

sup
w∈W

Var(U |W = w) ≤ σ2 <∞

Lemma 11 If Assumptions 3, 5 and 7 hold then∣∣∣∣∣∣ 1n
n∑
j=1

QK(Wj)Uj

∣∣∣∣∣∣ = Op

(
K1/2n−1/2

)
and ∣∣∣∣∣∣ 1n

n∑
j=1

QK(Ŵj)Uj

∣∣∣∣∣∣ = Op

(
K3n−δ

)
Proof. We have by first-order Taylor series expansions∣∣∣∣∣∣ 1n

n∑
j=1

QK(Xj , V̂j)Uj

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣ 1n

n∑
j=1

QK(Xj , Vj)Uj

∣∣∣∣∣∣+

∣∣∣∣∣∣ 1n
n∑
j=1

∂QK
∂v

(Xj , V j)
(
V̂j − Vj

)
Uj

∣∣∣∣∣∣
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Now by Assumption 7

E

∣∣∣∣∣∣ 1n
n∑
j=1

QK(Wj)Uj

∣∣∣∣∣∣
2 =

1

n
E
[
U2QK(W )′QK(W )

]
=

1

n
E
[
Var(Y |W )QK(W )′QK(W )

]
≤ 1

n
σ2tr

(
E
[
QK(W )QK(W )′

])
= σ2

K

n

so that ∣∣∣∣∣∣ 1n
n∑
j=1

QK(Xj , Vj)Uj

∣∣∣∣∣∣ = Op(K
1/2n−1/2).

Further if B is the matrix with columns ∂QK
∂v (Xj , V j)Uj and V̂ , V the vectors with components V̂j , Vj ,

then ∣∣∣∣∣∣ 1n
n∑
j=1

∂QK
∂v

(Xj , V j)
(
V̂j − Vj

)
Uj

∣∣∣∣∣∣ =

∣∣∣∣ 1nB(V̂ − V )

∣∣∣∣
≤ 1

n
||B|| · |V̂ − V |

=

√√√√ 1

n

n∑
j=1

∣∣∣∣∂QK∂v (Xj , V j)Uj

∣∣∣∣2
√√√√ 1

n

n∑
j=1

(
V̂j − Vj

)2

Because by Assumption 7

E

[∣∣∣∣∂QK∂v (Xj , V j)Uj

∣∣∣∣2
]

= E
[
∂QK
∂v

(Xj , V j)
′∂QK
∂v

(Xj , V j)U
2
j

]
≤ σ2 sup

w∈W

∣∣∣∣∂QK∂v (w)

∣∣∣∣2
so that with Assumption 3∣∣∣∣∣∣ 1n

n∑
j=1

∂QK
∂v

(Xj , V j)
(
V̂j − Vj

)
Uj

∣∣∣∣∣∣ = Op (ζ1 (K))Op

(
n−δ

)
,

we conclude ∣∣∣∣∣∣ 1n
n∑
j=1

QK(Ŵj)Uj

∣∣∣∣∣∣ = Op

(
K1/2n−1/2

)
+Op

(
K3n−δ

)
= Op

(
K3n−δ

)
.

Define 1n = 1
(
λmin

(
Ω̂K

)
≥ 1/2

)
with 1(.) the indicator of the event between parentheses. By

Lemma 10 if K3n−δ → 0 then 1n
p→ 1. The coefficients in the series estimator of µ(w) are

γ̂K = 1n

 n∑
j=1

QK(Ŵj)QK(Ŵj)
′

−1 n∑
j=1

QK(Ŵj)Yj
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We also consider the infeasible OLS estimator of the coefficients in the regression of Y on QK(W )

γ̃K = 1̃n

 n∑
j=1

QK(Wj)QK(Wj)
′

−1 n∑
j=1

Qk(Wj)Yj

with 1̃n = 1
(
λmin

(
Ω̃K

)
≥ 1/2

)
where by Lemma 10 if K3/2n−1/2 → 0 then 1̃n

p→ 1.

In the proof of Lemma 13 we will need a bound on max1≤j≤n |Uj | and to obtain this bound we

make the following assumption

Assumption 8 (Finite absolute moments) For some m ≥ 3

E (|Uj |m) <∞

We have the following bound on max1≤j≤n |Uj |

Lemma 12 If Assumption 8 holds, then

max
1≤j≤n

|Uj | = Op

(
n1/m

)
Proof. Because (

max
1≤j≤n

|Uj |
)m

= max
1≤j≤n

|Uj |m ≤
n∑
j=1

|Uj |m

we have for any C > 0

Pr

((
max
1≤j≤n

|Uj |
)m
≥ nCm

)
Pr

(
max
1≤j≤n

|Uj |m ≥ nCm
)
≤ Pr

 1

n

n∑
j=1

|Uj |m ≥ nCm
 ≤ E (|Uj |m)

Cm

Therefore
max1≤j≤n |Uj |

n1/m is bounded in probability and the conclusion follows.

Lemma 13 If Assumptions 3, 5, 6, 7 and 8 hold, then if K3/2n−1/2 → 0

1̃n |γ̃K − γK | = Op

(
K1/2n−1/2

)
+Op

(
K1−aD

)
and if in addition K3n−δ → 0,

1n |γ̂K − γK | = Op

(
K3n−δ

)
+Op

(
K1−aD

)
and under the same assumptions∣∣∣∣∣∣γ̂K − γ̃K −

 1
n

∑n
j=1

∂QK
∂v (Wj)Uj(V̂j − Vj)

− 1
n

∑n
j=1QK(Wj)

∂µ
∂v (Wj)

(
V̂j − Vj

) ∣∣∣∣∣∣
= Op

(
K6n−2δ

)
+Op

(
K5n

1
m
−2δ
)

+Op
(
K1−aD

)
45



For µ̂K(w) = QK(w)′γ̂K and ∂µ̂K
∂v (w) = ∂QK

∂v (w)′γ̂K

sup
w∈W

|µ̂K(w)− µ(w)| = Op

(
K4n−δ

)
+Op

(
K2−aD

)
and

sup
w∈W

∣∣∣∣∂µ̂K∂v (w)− ∂µ

∂v
(w)

∣∣∣∣ = Op

(
K6n−δ

)
+Op

(
K4−aD

)
and for µ̃K(w) = QK(w)′γ̃K and ∂µ̃K

∂v (w) = ∂QK
∂v (w)′γ̃K

sup
w∈W

|µ̃K(w)− µ(w)| = Op

(
K3/2n−1/2

)
+Op

(
K2−aD

)
and

sup
w∈W

∣∣∣∣∂µ̃K∂v (w)− ∂µ

∂v
(w)

∣∣∣∣ = Op

(
K7/2n−1/2

)
+Op

(
K4−aD

)
Proof. We have

1̃n(γ̃K − γK) = 1̃nΩ̃−1K
1

n

n∑
j=1

QK(Wj)(Yj − µ(Wj)) + 1̃nΩ̃−1K
1

n

n∑
j=1

QK(Wj)(µ(Wj)−QK(Wj)
′γK)

Define U = (U1, . . . , Un)′ and Ũ = (µ(W1) − QK(W1)
′γK , . . . , µ(Wn) − QK(Wn)′γK)′. Consider the

matrix 4IK − (Ω̃−1K )2. This is positive semi-definite if its smallest eigenvalue is nonnegative

4− 1

λmin(Ω̃K)2
≥ 0

and this holds if 1̃n = 1. Then if K3/2n−1/2 → 0∣∣∣∣∣∣1̃nΩ̃−1K
1

n

n∑
j=1

QK(Wj)(Yj − µ(Wj))

∣∣∣∣∣∣
2

= 1̃n
1

n2
U ′QK

(
Ω̃−1K

)2
Q′KU

≤ 1̃n
4

n2
∣∣Q′KU ∣∣2 = Op

(
Kn−1

)
.

by Lemma 11. By an analogous argument if Assumption 6 holds and K3/2n−1/2 → 0∣∣∣∣∣∣1̃nΩ̃−1K
1

n

n∑
j=1

QK(Wj)(µ(Wj)−QK(Wj)
′γK)

∣∣∣∣∣∣
2

≤ 1̃n
4

n2

∣∣∣Q′KŨ ∣∣∣2 ≤ 1̃n
4

n2
||QK ||2|Ũ |2 =

41̃n

 1

n

n∑
j=1

|QK(Wj)|2
 1

n

n∑
j=1

(µ(Wj)−QK(Wj)
′γK)2

 = Op
(
ζ0(K)2K−2aD

)
Therefore if K3/2n−1/2 → 0

1̃n |γ̃K − γK | = Op

(
K1/2n−1/2

)
+Op

(
K1−aD

)
.
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Next

1n(γ̂K − γK) = 1nΩ̂−1K
1

n

n∑
j=1

QK(Ŵj)Uj + 1nΩ̂−1K
1

n

n∑
j=1

QK(Ŵj)(µ(Wj)−QK(Ŵj)
′γK) =

1nΩ̂−1K
1

n

n∑
j=1

QK(Ŵj)Uj+1nΩ̂−1K
1

n

n∑
j=1

QK(Ŵj)(µ(Wj)−µ(Ŵj))+1nΩ̂−1K
1

n

n∑
j=1

QK(Ŵj)(µ(Ŵj)−QK(Ŵj)
′γK)

(47)

We use (47) to derive two results: the rate of convergence of γ̂K − γK and the rate of convergence of

the difference γ̂K − γ̃K . Using a similar argument as above and Lemma 11 we have if K3n−δ → 0∣∣∣∣∣∣1nΩ̂−1K
1

n

n∑
j=1

QK(Ŵj)Uj

∣∣∣∣∣∣ ≤ 2 · 1n

∣∣∣∣∣∣ 1n
n∑
j=1

QK(Ŵj)Uj

∣∣∣∣∣∣ = Op

(
K3n−δ

)

By Lemma 10 1n
p→ 1 if K3n−δ → 0, so that if this limit holds 1n can be omitted and we do so in the

rest of this proof (and we also omit 1̃n with the understanding that K3/2n−1/2 → 0). By a first-order

Taylor series expansion the absolute value of the second term can be expressed as∣∣∣∣∣∣Ω̂−1K 1

n

n∑
j=1

QK(Ŵj)
∂µ

∂v
(W j)

(
V̂j − Vj

)∣∣∣∣∣∣
which is bounded, using a the same argument as above, by∣∣∣∣∣∣ 2n

n∑
j=1

QK(Ŵj)
∂µ

∂v
(W j)

(
V̂j − Vj

)∣∣∣∣∣∣ =
2

n
|B(V̂ − V )| ≤ 2

n
||B|||V̂ − V |

with B the matrix with columns QK(Ŵj)
∂µ
∂v (W j). The last expression is equal to

2

√√√√ 1

n

n∑
j=1

|QK(Ŵj)|2
∣∣∣∣∂µ∂v (W j)

∣∣∣∣2
√√√√ 1

n

n∑
j=1

∣∣∣V̂j − Vj∣∣∣2 = ζ0 (K)Op

(
n−δ

)
= Op

(
Kn−δ

)
by Assumption 3, the uniform bound on the basis functions and Assumption 6 by which µ(w) is

continuously differentiable. The third term in (47) is, after increasing the bound as above to eliminate

Ω̂−1K , bounded in the norm by

2 sup
w∈W

|QK(w)| sup
w∈W

∣∣µ(w)−QK(w)′γK
∣∣ = ζ0 (K)Op

(
K−aD

)
= Op

(
K1−aD

)
Therefore if K3n−δ → 0

1n |γ̂K − γK | = Op

(
K3n−δ

)
+Op

(
K1−aD

)
Next we consider γ̂K − γ̃K . We are particularly interested in terms that depend on V̂j − Vj and

for that reason we will consider second-order Taylor series expansions for the first and second term of
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(47). A second-order Taylor series expansion gives for the first term of (47)

Ω̂−1K
1

n

n∑
j=1

QK(Ŵj)Uj =Ω̂−1K
1

n

n∑
j=1

QK(Wj)Uj + Ω̂−1K
1

n

n∑
j=1

∂QK
∂v

(Wj)Uj(V̂j − Vj)+

1

2
Ω̂−1K

1

n

n∑
j=1

∂2QK
∂v2

(Xj , V j)Uj(V̂j − Vj)2

=Ω̃−1K
1

n

n∑
j=1

QK(Wj)Uj + Ω̃−1K (Ω̃K − Ω̂K)Ω̂−1K
1

n

n∑
j=1

QK(Wj)Uj+

Ω̂−1K
1

n

n∑
j=1

∂QK
∂v

(Wj)Uj(V̂j − Vj) +
1

2
Ω̂−1K

1

n

n∑
j=1

∂2QK
∂v2

(Xj , V j)Uj(V̂j − Vj)2

=Ω̃−1K
1

n

n∑
j=1

QK(Wj)
(
Uj + (µ(Wj)−QK(Wj)

′γK)
)

− Ω̃−1K
1

n

n∑
j=1

QK(Wj)(µ(Wj)−QK(Wj)
′γK) + Ω̃−1K (Ω̃K − Ω̂K)Ω̂−1K

1

n

n∑
j=1

QK(Wj)Uj

(48)

+ Ω̂−1K
1

n

n∑
j=1

∂QK
∂v

(Wj)Uj(V̂j − Vj) +
1

2
Ω̂−1K

1

n

n∑
j=1

∂2QK
∂v2

(Xj , V j)Uj(V̂j − Vj)2

The first term on the right-hand side is equal to γ̃K −γK . For the second term of (48) we found above

that if K3/2n−1/2 → 0∣∣∣∣∣∣Ω̃−1K 1

n

n∑
j=1

QK(Wj)(µ(Wj)−QK(Wj)
′γK)

∣∣∣∣∣∣ = Op
(
K1−aD

)
By an argument that we have used several times above to remove Ω̃−1K and Ω̂−1K (as before we omit

the indicators that the relevant matrices are positive definite) the third term on the right-hand side

of (48) is bounded by (if K3/2n−1/2 → 0)∣∣∣∣∣∣Ω̃−1K (Ω̃K − Ω̂K)Ω̂−1K
1

n

n∑
j=1

QK(Wj)Uj

∣∣∣∣∣∣ ≤ 2

∣∣∣∣(Ω̃K − Ω̂K)Ω̂−1K
1

n
Q′KU

∣∣∣∣ ≤ 2‖Ω̃K − Ω̂K‖
∣∣∣∣Ω̂−1K 1

n
Q′KU

∣∣∣∣
≤ 4‖Ω̃K − Ω̂K‖

∣∣∣∣ 1nQ′KU
∣∣∣∣ = Op

(
K3n−δ

)
Op

(
K1/2n−1/2

)
= Op

(
K7/2n−δ−1/2

)
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by Lemma 10 and 11. Also for the fifth term on the right-hand side of (48), removing Ω̂−1K by increasing

the bound as before (and if K3n−δ → 0)∣∣∣∣∣∣12Ω̂−1K
1

n

n∑
j=1

∂2QK
∂v2

(Xj , V j)Uj(V̂j − Vj)2
∣∣∣∣∣∣ ≤

∣∣∣∣∣∣ 1n
n∑
j=1

∂2QK
∂v2

(Xj , V j)Uj(V̂j − Vj)2
∣∣∣∣∣∣

≤ sup
w∈W

∣∣∣∣∂2QK∂v2
(w)

∣∣∣∣ max
1≤j≤n

|Uj |
1

n

n∑
j=1

(V̂j − Vj)2

= ζ2(K)Op(n
1/m)Op(n

−2δ) = Op

(
K5n

1
m
−2δ
)

by Assumptions 3 and 8. Combining these results we have that the first term of (47) is (we keep the

first and fourth terms, then (if K3n−δ → 0 so that also K3/2n−1/2 → 0)

Ω̂−1K
1

n

n∑
j=1

QK(Ŵj)Uj = (γ̃K − γK) + Ω̂−1K
1

n

n∑
j=1

∂QK
∂v

(Wj)Uj(V̂j − Vj)

+Op

(
K7/2n−δ−1/2

)
+Op

(
K5n

1
m
−2δ
)

+Op(K
1−aD)

We have
K7/2n−δ−1/2

K5n
1
m
−2δ

=
nδ−

1
2
− 1
m

K
3
2

→ 0,

and we may ignore the Op
(
K7/2n−δ−1/2

)
term. Note that

Ω̂−1K
1

n

n∑
j=1

∂QK
∂v

(Wj)Uj(V̂j − Vj) =

1

n

n∑
j=1

∂QK
∂v

(Wj)Uj(V̂j − Vj) + Ω̂−1K (IK − Ω̂K)
1

n

n∑
j=1

∂QK
∂v

(Wj)Uj(V̂j − Vj)

and if Assumptions 3 and 7 hold and K3n−δ → 0 then by the argument that we have used before to

remove Ω̂−1K∣∣∣∣∣∣Ω̂−1K (IK − Ω̂K)
1

n

n∑
j=1

∂QK
∂v

(Wj)Uj(V̂j − Vj)

∣∣∣∣∣∣ ≤ 2

∣∣∣∣∣∣(IK − Ω̂K)
1

n

n∑
j=1

∂QK
∂v

(Wj)Uj(V̂j − Vj)

∣∣∣∣∣∣
≤2‖IK − Ω̂K‖

√√√√ 1

n

n∑
j=1

∣∣∣∣∂QK∂v (Wj)Uj

∣∣∣∣2
√√√√ 1

n

n∑
j=1

(V̂j − Vj)2

=Op

(
K3n−δ

)
ζ1(K)Op

(
n−δ

)
= Op(K

6n−2δ).

where we also use Lemma 10. Therefore if K3n−δ → 0 the first term of (47) is

Ω̂−1K
1

n

n∑
j=1

QK(Ŵj)Uj = (γ̃K−γK)+
1

n

n∑
j=1

∂QK
∂v

(Wj)Uj(V̂j−Vj)+Op(K6n−2δ)+Op

(
K5n

1
m
−2δ
)

+Op(K
1−aD)

49



The second term in (47) is by a second-order Taylor series expansion and using Assumption 3 and 6

to bound the second term below

Ω̂−1K
1

n

n∑
j=1

QK(Ŵj)(µ(Wj)− µ(Ŵj)) = −Ω̂−1K
1

n

n∑
j=1

QK(Ŵj)
∂µ

∂v
(Wj)

(
V̂j − Vj

)
− 1

2
Ω̂−1K

1

n

n∑
j=1

QK(Ŵj)
∂2µ

∂v2
(Xj , V j)

(
V̂j − Vj

)2
= −Ω̂−1K

1

n

n∑
j=1

QK(Ŵj)
∂µ

∂v
(Wj)

(
V̂j − Vj

)
+Op(ζ0(K)n−2δ)

and

−Ω̂−1K
1

n

n∑
j=1

QK(Ŵj)
∂µ

∂v
(Wj)

(
V̂j − Vj

)
= − 1

n

n∑
j=1

QK(Wj)
∂µ

∂v
(Wj)

(
V̂j − Vj

)
− Ω̂−1K (IK − Ω̂K)

1

n

n∑
j=1

QK(Wj)
∂µ

∂v
(Wj)

(
V̂j − Vj

)
− Ω̂−1K

1

n

n∑
j=1

∂QK
∂v

(Xj , V j)
∂µ

∂v
(Wj)

(
V̂j − Vj

)2
= − 1

n

n∑
j=1

QK(Wj)
∂µ

∂v
(Wj)

(
V̂j − Vj

)
+Op

(
K3n−δ

)
ζ0(K)Op

(
n−δ

)
+Op(ζ1(K)n−2δ)

= − 1

n

n∑
j=1

QK(Wj)
∂µ

∂v
(Wj)

(
V̂j − Vj

)
+Op(K

4n−2δ)

Finally, we already showed that the third term in (47) is Op
(
K1−aD

)
. Collecting results we conclude

that, if if K3n−δ → 0 (so that also K3/2n−1/2 → 0), then

γ̂K − γK = (γ̃K − γK)

+
1

n

n∑
j=1

∂QK
∂v

(Wj)Uj(V̂j − Vj)

− 1

n

n∑
j=1

QK(Wj)
∂µ

∂v
(Wj)

(
V̂j − Vj

)
+Op

(
K6n−2δ

)
+Op

(
K5n

1
m
−2δ
)

+Op
(
K1−aD

)
Next

sup
w∈W

|µ̂K(w)−µ(w)| ≤ sup
w∈W

|QK(w)′(γ̂K−γK)|+ sup
w∈W

∣∣QK(w)′γK − µ(w)
∣∣ ≤ ζ0 (K) |γ̂K − γK |+O

(
K−aD

)
and

sup
w∈W

∣∣∣∣∂µ̂K∂v (w)− ∂µ

∂v
(w)

∣∣∣∣ ≤
50



sup
w∈W

∣∣∣∣∂QK∂v (w)′(γ̂K − γK)

∣∣∣∣+ sup
w∈W

∣∣∣∣∂QK∂v (w)′γK −
∂µ

∂v
(w)

∣∣∣∣ ≤
ζ1 (K) |γ̂K − γK |+O

(
K−aD

)
Finally

sup
w∈W

|µ̃K(w)− µK(w)| ≤ sup
w∈W

|QK(w)′(γ̃K − γK)|+ sup
w∈W

|QK(w)′γK − µ(w)| ≤

sup
w∈W

|QK(w)||γ̃K − γK |+ sup
w∈W

|QK(w)′γK − µ(w)| ≤

ζ0(K)|γ̃K − γK |+O
(
K−aD

)
and

sup
w∈W

∣∣∣∣∂µ̃K∂v (w)− ∂µ

∂v
(w)

∣∣∣∣ ≤
sup
w∈W

∣∣∣∣∂QK∂v (w)′(γ̃K − γK)

∣∣∣∣+ sup
w∈W

∣∣∣∣∂QK∂v (w)′γK −
∂µ

∂v
(w)

∣∣∣∣ ≤
ζ1(K)|γ̃K − γK |+O

(
K−aD

)

Corollary 1 Under the assumptions of Lemma 13 and if aD > 2 and K4n−δ → 0, we have for

L̂(x) = 1
n

∑n
j=1 µ̂K(x, V̂j) and L(x) = E[µ(x, V )]

sup
x∈X

∣∣∣L̂(x)− L(x)
∣∣∣ = Op

(
K4n−δ

)
+Op

(
K2−aD

)
= op(1)

Proof.

sup
x∈X

∣∣∣L̂(x)− L(x)
∣∣∣ = sup

x∈X

∣∣∣∣∣∣ 1n
n∑
j=1

(µ̂K(x, V̂j)− µ(x, V̂j))

∣∣∣∣∣∣+ sup
x∈X

∣∣∣∣∣∣ 1n
n∑
j=1

(µ(x, V̂j)− µ(x, Vj))

∣∣∣∣∣∣+

sup
x∈X

∣∣∣∣∣∣ 1n
n∑
j=1

(µ(x, Vj)− E[µ(x, V )])

∣∣∣∣∣∣
By Lemma 13

sup
x∈X

∣∣∣∣∣∣ 1n
n∑
j=1

(µ̂K(x, V̂j)− µ(x, V̂j))

∣∣∣∣∣∣ ≤ sup
w∈W

|µ̂K(w)− µ(w)|

= Op

(
K4n−δ

)
+Op

(
k2−aD

)
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By a first-order Taylor expansion and Assumptions 3 and 6

sup
x∈X

∣∣∣∣∣∣ 1n
n∑
j=1

(µ(x, V̂j)− µ(x, Vj))

∣∣∣∣∣∣ ≤ sup
x∈X

√√√√ 1

n

n∑
j=1

∣∣∣∣∂µK∂v (x, V j)

∣∣∣∣2
√√√√ 1

n

n∑
j=1

(V̂j − Vj)2

≤ sup
w∈W

∣∣∣∣∂µK∂v (w)

∣∣∣∣
√√√√ 1

n

n∑
j=1

(V̂j − Vj)2 = Op(n
−δ)

and finally by Assumption 6 and the uniform law of large numbers

sup
x∈X

∣∣∣∣∣∣ 1n
n∑
j=1

(µ(x, Vj)− E[µ(x, V )])

∣∣∣∣∣∣ = op(1)

The next step is to consider (44), (45 ) and (46) and express these as sample averages.

J.3 Expressing (44) as a sample average

We express (44) as

1

n
√
n

n∑
i=1

n∑
j=1

(
µ̂K(Xi, V̂j)− µ̃K(Xi, Vj)

) ∂R
∂τ

(Xi; τ0) =

1

n
√
n

n∑
i=1

n∑
j=1

∂R

∂τ
(Xi; τ0)γ̂

′
k(QK(Xi, V̂j)−QK(Xi, Vj))+ (49)

1

n
√
n

n∑
i=1

n∑
j=1

∂R

∂τ
(Xi; τ0)(γ̂K − γ̃K)′QK(Xi, Vj) (50)

Expressing (50) as a sample average will be the main challenge. This will involve use of the V-statistic

projection theorem and in addition the transfer of coefficients in a projection from one factor in the

expansion to another. The latter is the key step in obtaining the influence function of our estimator.

Before dealing with (50) we first express (49) as a linear expression in V̂j −Vj in Lemma 14 and 15

Lemma 14 If Assumptions 3, 4, 5, 6, 7 hold, and K3n−δ → 0, then (49) is equal to

1

n
√
n

n∑
i=1

n∑
j=1

∂R

∂τ
(Xi; τ0)γ̂

′
K(QK(Xi, V̂j)−QK(Xi, Vj))

=
1

n
√
n

n∑
i=1

n∑
j=1

∂R

∂τ
(Xi; τ0)

∂µ

∂v
(Xi, Vj)

(
V̂j − Vj

)
+Op

(
K6n1/2−2δ

)
+Op

(
K4−aDn1/2−δ

)
+Op(n

1/2−2δ)
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Proof. For (49) by a second order Taylor expansion with respect to V̂j

1

n
√
n

n∑
i=1

n∑
j=1

∂R

∂τ
(Xi; τ0)γ̂

′
K(QK(Xi, V̂j)−QK(Xi, Vj))

=
1

n
√
n

n∑
i=1

n∑
j=1

∂R

∂τ
(Xi; τ0)γ

′
K

∂QK
∂v

(Xi, Vj)
(
V̂j − Vj

)
(51)

+
1

n
√
n

n∑
i=1

n∑
j=1

∂R

∂τ
(Xi; τ0)(γ̂K − γK)′

∂QK
∂v

(Xi, Vj)
(
V̂j − Vj

)
(52)

+
1

2n
√
n

n∑
i=1

n∑
j=1

∂R

∂τ
(Xi; τ0)(γ̂K − γK)′

∂2QK
∂v2

(Xi, V j)
(
V̂j − Vj

)2
(53)

+
1

2n
√
n

n∑
i=1

n∑
j=1

∂R

∂τ
(Xi; τ0)

(
γ′K

∂2QK
∂v2

(Xi, V j)−
∂2µ

∂v2
(Xi, V j)

)(
V̂j − Vj

)2
(54)

+
1

2n
√
n

n∑
i=1

n∑
j=1

∂R

∂τ
(Xi; τ0)

∂2µ

∂v2
(Xi, V j)

(
V̂j − Vj

)2
(55)

Now for (52) by the triangle inequality, Assumption 3 and 4, and Lemma 13∣∣∣∣∣∣ 1

n
√
n

n∑
i=1

n∑
j=1

∂R

∂τ
(Xi; τ0)(γ̂K − γK)′

∂QK
∂v

(Xi, Vj)
(
V̂j − Vj

)∣∣∣∣∣∣ ≤
√
n sup
w∈W

∣∣∣∣∂QK∂v (w)

∣∣∣∣
(

1

n

n∑
i=1

∣∣∣∣∂R∂τ (Xi; τ0)

∣∣∣∣
) 1

n

n∑
j=1

∣∣∣V̂j − Vj∣∣∣
 |γ̂K − γK |

= n1/2ζ1(K)Op

(
n−δ

)(
Op

(
K3n−δ

)
+Op

(
K1−aD

))
= Op

(
K6n1/2−2δ

)
+Op

(
K4−aDn1/2−δ

)
and for (53) by the triangle inequality, Assumption 3 and 4, and Lemma 13∣∣∣∣∣∣ 1

2n
√
n

n∑
i=1

n∑
j=1

∂R

∂τ
(Xi; τ0)(γ̂K − γK)′

∂2QK
∂v2

(Xi, V j)
(
V̂j − Vj

)2∣∣∣∣∣∣ ≤
1

2

√
n sup
w∈W

∣∣∣∣∂2QK∂v2
(w)

∣∣∣∣
(

1

n

n∑
i=1

∣∣∣∣∂R∂τ (Xi; τ0)

∣∣∣∣
) 1

n

n∑
j=1

(
V̂j − Vj

)2 |γ̂K − γK |
= Op

(
n1/2

)
Op
(
K5
)
Op

(
n−2δ

)(
Op

(
K3n−δ

)
+Op

(
K1−aD

))
= Op

(
K8n1/2−3δ

)
+Op

(
K6−aDn1/2−2δ

)
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and for (54) by the triangle inequality, Assumption 3, 4 and 6∣∣∣∣∣∣ 1

2n
√
n

n∑
i=1

n∑
j=1

∂R

∂τ
(Xi; τ0)

(
γ′K

∂2QK
∂v2

(Xi, V j)−
∂2µ

∂v2
(Xi, V j)

)(
V̂j − Vj

)2∣∣∣∣∣∣ ≤
1

2

√
n sup
w∈W

∣∣∣∣γ′K ∂2QK∂v2
(w)− ∂2µK

∂v2
(w)

∣∣∣∣
(

1

n

n∑
i=1

∣∣∣∣∂R∂τ (Xi; τ0)

∣∣∣∣
) 1

n

n∑
j=1

(
V̂j − Vj

)2
= Op

(
n1/2

)
Op(K

−aD)Op

(
n−2δ

)
= Op(K

−aDn1/2−2δ)

and for (55) by the triangle inequality, Assumption 3 and 4∣∣∣∣∣∣ 1

2n
√
n

n∑
i=1

n∑
j=1

∂R

∂τ
(Xi; τ0)

∂2µ

∂v2
(Xi, V j)

(
V̂j − Vj

)2∣∣∣∣∣∣ ≤
1

2

√
n sup
w∈W

∣∣∣∣∂2µ∂v2
(w)

∣∣∣∣
(

1

n

n∑
i=1

∣∣∣∣∂R∂τ (Xi; τ0)

∣∣∣∣
) 1

n

n∑
j=1

(
V̂j − Vj

)2 = Op(n
1/2−2δ)

Finally for (51) by Assumption 6

1

n
√
n

n∑
i=1

n∑
j=1

∂R

∂τ
(Xi; τ0)γ

′
K

∂QK
∂v

(Xi, Vj)
(
V̂j − Vj

)
=

1

n
√
n

n∑
i=1

n∑
j=1

∂R

∂τ
(Xi; τ0)

∂µ

∂v
(Xi, Vj)

(
V̂j − Vj

)
− 1

n
√
n

n∑
i=1

n∑
j=1

∂R

∂τ
(Xi; τ0)

(
∂µ

∂v
(Xi, Vj)− γ′K

∂QK
∂v

(Xi, Vj)

)(
V̂j − Vj

)
with by Assumption 3, 4 and 6∣∣∣∣∣∣ 1

n
√
n

n∑
i=1

n∑
j=1

∂R

∂τ
(Xi; τ0)

(
γ′K

∂QK
∂v

(Xi, Vj)−
∂µ

∂v
(Xi, Vj)

)(
V̂j − Vj

)∣∣∣∣∣∣
≤
√
n sup

w

∣∣∣∣γ′K ∂QK∂v (w)− ∂µ

∂v
(w)

∣∣∣∣
∣∣∣∣∣ 1n

n∑
i=1

∂R

∂τ
(Xi; τ0)

∣∣∣∣∣
∣∣∣∣∣∣ 1n

n∑
j=1

(
V̂j − Vj

)∣∣∣∣∣∣
= Op

(
K−aDn1/2−δ

)
Combining the results we have for (49)

1

n
√
n

n∑
i=1

n∑
j=1

∂R

∂τ
(Xi; τ0)γ̂

′
K(QK(Xi, V̂j)−QK(Xi, Vj)) =
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1

n
√
n

n∑
i=1

n∑
j=1

∂R

∂τ
(Xi; τ0)

∂µ

∂v
(Xi, Vj)

(
V̂j − Vj

)
+

Op

(
K6n1/2−2δ

)
+Op

(
K4−aDn1/2−δ

)
+Op

(
K8n1/2−3δ

)
+Op

(
K6−aDn1/2−2δ

)
+Op

(
K−aDn1/2−2δ

)
+Op(n

1/2−2δ) +Op

(
K−aDn1/2−δ

)
Because K3n−δ → 0, we have

Op

(
K8n1/2−3δ

)
= K2n−δOp

(
K6n1/2−2δ

)
= op

(
K6n1/2−2δ

)
Op

(
K6−aDn1/2−2δ

)
= K2n−δOp

(
K4−aDn1/2−δ

)
= op

(
K4−aDn1/2−δ

)
We also have

Op

(
K−aDn1/2−2δ

)
= K−4n−δOp

(
K4−aDn1/2−δ

)
= op

(
K4−aDn1/2−δ

)
Op

(
K−aDn1/2−δ

)
= K−4Op

(
K4−aDn1/2−δ

)
= op

(
K4−aDn1/2−δ

)
Therefore, we obtain

1

n
√
n

n∑
i=1

n∑
j=1

∂R

∂τ
(Xi; τ0)γ̂

′
K(QK(Xi, V̂j)−QK(Xi, Vj))

=
1

n
√
n

n∑
i=1

n∑
j=1

∂R

∂τ
(Xi; τ0)

∂µ

∂v
(Xi, Vj)

(
V̂j − Vj

)
+Op

(
K6n1/2−2δ

)
+Op

(
K4−aDn1/2−δ

)
+Op(n

1/2−2δ)

Lemma 15 If Assumptions 3, 4, 5, 6, and 7 hold and K3n−δ → 0, then (49) is equal to

1√
n

n∑
j=1

EX
[
∂R

∂τ
(X; τ0)

∂µ

∂v
(X,Vj)

](
V̂j − Vj

)
+Op

(
K6n1/2−2δ

)
+Op

(
K4−aDn1/2−δ

)
+Op(n

1/2−2δ)

Proof. Consider

1√
n

n∑
j=1

(
1

n

n∑
i=1

(
∂R

∂τ
(Xi; τ0)

∂µ

∂v
(Xi, Vj)− EX

[
∂R

∂τ
(X; τ0)

∂µ

∂v
(X,Vj)

]))(
V̂j − Vj

)
(56)

By Cauchy-Schwartz∣∣∣∣∣∣
 1√

n

n∑
j=1

(
1

n

n∑
i=1

(
∂R

∂τ
(Xi; τ0)

∂µ

∂v
(Xi, Vj)− EX

[
∂R

∂τ
(X; τ0)

∂µ

∂v
(X,Vj)

]))(
V̂j − Vj

)∣∣∣∣∣∣
2

≤
n∑
j=1

(
1

n

n∑
i=1

(
∂R

∂τ
(Xi; τ0)

∂µ

∂v
(Xi, Vj)− EX

[
∂R

∂τ
(X; τ0)

∂µ

∂v
(X,Vj)

]))2

· 1

n

n∑
j=1

(
V̂j − Vj

)2
(57)
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Because by Assumption 4 and 6

E

 n∑
j=1

(
1

n

n∑
i=1

(
∂R

∂τ
(Xi; τ0)

∂µ

∂v
(Xi, Vj)− EX

[
∂R

∂τ
(X; τ0)

∂µ

∂v
(X,Vj)

]))2


= E
[
VarX

(
∂R

∂τ
(X; τ0)

∂µ

∂v
(X,Vj)

∣∣∣∣Vj)]
≤ E

[
EX

[(
∂R

∂τ
(X; τ0)

∂µ

∂v
(X,Vj)

)2
∣∣∣∣∣Vj
]]

≤ sup
w∈W

(
∂µ

∂v
(w)

)2

EX
[
N1(X)2

]
<∞

we have by the Markov inequality that

n∑
j=1

(
1

n

n∑
i=1

(
∂R

∂τ
(Xi; τ0)

∂µ

∂v
(Xi, Vj)− EX

[
∂R

∂τ
(X; τ0)

∂µ

∂v
(X,Vj)

]))2

= Op(1)

so that (57) by Assumption 3 is Op(n
−2δ) and therefore∣∣∣∣∣∣ 1√

n

n∑
j=1

(
1

n

n∑
i=1

(
∂R

∂τ
(Xi; τ0)

∂µ

∂v
(Xi, Vj)− EX

[
∂R

∂τ
(X; τ0)

∂µ

∂v
(X,Vj)

]))(
V̂j − Vj

)∣∣∣∣∣∣ = Op

(
n−δ

)
Because

Op

(
n−δ

)
= n−1/2+δOp

(
n1/2−2δ

)
= op

(
n1/2−2δ

)
we get the desired conclusion.

For (50) we find after substitution from Lemma 13

1

n
√
n

n∑
i=1

n∑
j=1

∂R

∂τ
(Xi; τ0)QK(Xi, Vj)

′(γ̂K − γ̃K)

= −
√
n

1

n2

n∑
i=1

n∑
j=1

∂R

∂τ
(Xi; τ0)QK(Xi, Vj)

′ · 1

n

n∑
j=1

QK (Wj)
∂µ

∂v
(Wj)

(
V̂j − Vj

)
(58)

+
√
n

1

n2

n∑
i=1

n∑
j=1

∂R

∂τ
(Xi; τ0)QK(Xi, Vj)

′ · 1

n

n∑
j=1

∂QK
∂v

(Wj)Uj

(
V̂j − Vj

)
(59)

+Op

(
K7n1/2−2δ

)
+Op

(
K6n1/2+1/m−2δ

)
+Op

(
K2−aDn1/2

)
Lemma 16 If Assumptions 3, 4, 5, 6, 7 hold and K3n−δ → 0, then (58) is equal to

− 1√
n

n∑
j=1

f(Xj)f(Vj)

f(Xj , Vj)

∂R

∂τ
(Xj ; τ0)

∂µ

∂v
(Wj)

(
V̂j − Vj

)
+Op

(
K7/2n−δ

)
+Op

(
K2−aDn1/2−δ

)
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Proof. We write (58) as

−
√
n

1

n2

n∑
i=1

n∑
j=1

∂R

∂τ
(Xi; τ0)QK(Xi, Vj)

′ · 1

n

n∑
j=1

QK (Wj)
∂µ

∂v
(Wj)

(
V̂j − Vj

)
=

−
√
n

(
1

n

n∑
i=1

f(Xi)f(Vi)

f(Xi, Vi)

∂R

∂τ
(Xi; τ0)QK(Xi, Vi)

′

) 1

n

n∑
j=1

QK(Wj)
∂µ

∂v
(Wj)

(
V̂j − Vj

)+

−
√
n

 1

n2

n∑
i=1

n∑
j=1

∂R

∂τ
(Xi; τ0)QK(Xi, Vj)

′ − 1

n

n∑
i=1

f(Xi)f(Vi)

f(Xi, Vi)

∂R

∂τ
(Xi; τ0)QK(Xi, Vi)

′

 ·
 1

n

n∑
j=1

QK (Wj)
∂µ

∂v
(Wj)

(
V̂j − Vj

)
Now the second term on the right-hand side is bounded by

√
n

∣∣∣∣∣∣ 1

n2

n∑
i=1

n∑
j=1

∂R

∂τ
(Xi; τ0)QK(Xi, Vj)−

1

n

n∑
i=1

f(Xi)f(Vi)

f(Xi, Vi)

∂R

∂τ
(Xi; τ0)QK(Xi, Vi)

∣∣∣∣∣∣ ·∣∣∣∣∣∣ 1n
n∑
j=1

QK (Wj)
∂µ

∂v
(Wj)

(
V̂j − Vj

)∣∣∣∣∣∣ ≤ (60)

√
n

∣∣∣∣∣∣ 1

n2

n∑
i=1

n∑
j=1

∂R

∂τ
(Xi; τ0)QK(Xi, Vj)− EX

[
∂R

∂τ
(X; τ0)EV [QK(X,V )]

]∣∣∣∣∣∣
+

∣∣∣∣∣ 1n
n∑
i=1

f(Xi)f(Vi)

f(Xi, Vi)

∂R

∂τ
(Xi; τ0)QK(Xi, Vi)− E

[
f(X)f(V )

f(X,V )

∂R

∂τ
(X; τ0)QK(X,V )

]∣∣∣∣∣
)
·

∣∣∣∣∣∣ 1n
n∑
j=1

QK (Wj)
∂µ

∂v
(Wj)

(
V̂j − Vj

)∣∣∣∣∣∣
where we have used that

EX
[
∂R

∂τ
(X; τ0)EV [QK(X,V )]

]
= E

[
f(X)f(V )

f(X,V )

∂R

∂τ
(X; τ0)QK(X,V )

]
For the double sum in the first term of the upper bound define

d(x, v) =
∂R

∂τ
(x; τ0)QK(x, v)− EX

[
∂R

∂τ
(X; τ0)EV [QK(X,V )]

]
and note that if i 6= j

E[d(Xi, Vj)] = 0

Consider

E

∣∣∣∣∣∣ 1

n2

n∑
i=1

n∑
j=1

d(Xi, Vj)

∣∣∣∣∣∣
2 =

1

n4

n∑
i=1

n∑
j=1

n∑
k=1

n∑
l=1

E[d(Xi, Vj)
′d(Xk, Vl)] (61)
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To bound this expectation we partition the values taken by the indices i, j, k, l in subsets where

none, one, two, three or all four are equal. If the indices are such that i 6= j 6= k 6= l (there are

n(n − 1)(n − 2)(n − 3) such terms), then E[d(Xi, Vj)d(Xk, Vl)] = 0. If i = k, j 6= i, k 6= l, j 6= l (with

n(n− 1)(n− 2) terms) and j = l, i 6= j, k 6= l, i 6= k (also n(n− 1)(n− 2) terms) then by Assumption 4

E[d(Xi, Vj)
′d(Xi, Vl)] = EX

[(
∂R

∂τ
(X; τ0)

)2

EV [QK(X,V )]′ EV [QK(X,V )]

]
−

(
EX
[
∂R

∂τ
(X; τ0)EV [QK(X,V )]

])′(
EX
[
∂R

∂τ
(X; τ0)EV [QK(X,V )]

])
≤

EX

[(
∂R

∂τ
(X; τ0)

)2

EV [|QK(X,V )|]′ EV [|QK(X,V )|]

]
≤
(

sup
w∈W

|QK(w)|
)2

E
[
N1(X)2

]
= ζ0(K)2 = O(K2)

and

EV
[
EX
[
∂R

∂τ
(X; τ0)QK(X,V )

]′
EX
[
∂R

∂τ
(X; τ0)QK(X,V )

]]
−(

EX
[
∂R

∂τ
(X; τ0)EV [QK(X,V )]

])′(
EX
[
∂R

∂τ
(X; τ0)EV [QK(X,V )]

])
≤

EV
[
EX
[∣∣∣∣∂R∂τ (X; τ0)

∣∣∣∣ |QK(X,V )|
]′
EX
[∣∣∣∣∂R∂τ (X; τ0)

∣∣∣∣ |QK(X,V )|
]]

≤
(

sup
w∈W

|QK(w)|
)2

(E [N1(X)])2 = ζ0(K)2 = O(K2)

respectively. The contribution of these terms to the expected value (61) is therefore O(K2/n). If

i = k, j = l, j 6= i, l 6= k (with n(n− 1) terms), then

E[d(Xi, Vj)
′d(Xi, Vj)] = EX

[(
∂R

∂τ
(X; τ0)

)2

EV
[
QK(X,V )′QK(X,V )

]]
−

(
EX
[
∂R

∂τ
(X; τ0)EV [QK(X,V )]

])′(
EX
[
∂R

∂τ
(X; τ0)EV [QK(X,V )]

])
≤

EX

[(
∂R

∂τ
(X; τ0)

)2

EV
[
QK(X,V )′QK(X,V )

]]
≤
(

sup
w∈W

|QK(w)|
)2

E
[
N1(X)2

]
= ζ0(K)2 = O(K2)

so that the contribution of these terms to the expected value (61) is O(K2/n2). If j = i, k = i, l 6= i

(with n(n− 1) terms), then

E[d(Xi, Vi)
′d(Xi, Vl)] =

EX,V
[(

∂R

∂τ
(X; τ0)QK(X,V )− EX

[
∂R

∂τ
(X; τ0)EV [QK(X,V )]

])′
·(

∂R

∂τ
(X; τ0)EV [QK(X,V )]− EX

[
∂R

∂τ
(X; τ0)EV [QK(X,V )]

)]]
=

EX,V

[(
∂R

∂τ
(X; τ0)

)2

QK(X,V )′EV [QK(X,V )]

]
−EX,V

[
∂R

∂τ
(X; τ0)QK(X,V )

]′
EX
[
∂R

∂τ
(X; τ0)EV [QK(X,V )]

]
=
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EX,V
[(

∂R

∂τ
(X; τ0)QK(X,V )− EX,V

[
∂R

∂τ
(X; τ0)QK(X,V )

])′
·(

∂R

∂τ
(X; τ0)EV [QK(X,V )]− EX

[
∂R

∂τ
(X; τ0)EV [QK(X,V )]

)]]
By Cauchy-Schwartz the absolute value of the final expression is bounded by√√√√EX,V

[∣∣∣∣∂R∂τ (X; τ0)QK(X,V )− EX,V
[
∂R

∂τ
(X; τ0)QK(X,V )

]∣∣∣∣2
]
·

√√√√EX

[∣∣∣∣∣∂R∂τ (X; τ0)EV [QK(X,V )]− EX
[
∂R

∂τ
(X; τ0)EV [QK(X,V )]

∣∣∣∣2
]]
≤

√√√√EX,V

[∣∣∣∣∂R∂τ (X; τ0)QK(X,V )

∣∣∣∣2
]√√√√EX

[∣∣∣∣∂R∂τ (X; τ0)EV [QK(X,V )]

∣∣∣∣2
]
≤
(

sup
w∈W

|QK(w)|
)2

E
[
N1(X)2

]
where we use Assumption 4. We conclude that

E[d(Xi, Vi)
′d(Xi, Vl)] = O(K2)

and the same argument shows that for j = i, k 6= i, l = i (with n(n−1) terms) E[d(Xi, Vi)
′d(Xk, Vi)] =

O(K2), that for j 6= i, k = i, l = i (with n(n− 1) terms) E[d(Xi, Vj)
′d(Xi, Vi)] = O(K2), and that for

i 6= j, k = j, l = j (with n(n − 1) terms) E[d(Xi, Vj)
′d(Xj , Vj)] = O(K2). The contribution of these

terms to the expectation in (61) is therefore O(K2/n2). Finally if i = j = k = l

E[d(Xi, Vi)
′d(Xi, Vi)] = EX,V

[(
∂R

∂τ
(X; τ0)QK(X,V )− EX

[
∂R

∂τ
(X; τ0)EV [QK(X,V )]

])′
·

(
∂R

∂τ
(X; τ0)QK(X,V )− EX

[
∂R

∂τ
(X; τ0)EV [QK(X,V )]

])]
≤

E[d(Xi, Vi)
′d(Xi, Vi)] = EX,V

[(
∂R

∂τ
(X; τ0)QK(X,V )− EX,V

[
∂R

∂τ
(X; τ0)QK(X,V )

])′
·(

∂R

∂τ
(X; τ0)QK(X,V )− EX,V

[
∂R

∂τ
(X; τ0)QK(X,V )

])]
and by Cauchy-Schwartz and Assumption 4 we find that the bound is O(K2) so that the contribution

to the expected value is O(K2/n3).

We conclude that the expectation in (61) is O(K2/n). Together with∣∣∣∣∣∣ 1n
n∑
j=1

QK (Wj)
∂µ

∂v
(Wj)

(
V̂j − Vj

)∣∣∣∣∣∣ ≤ sup
w∈W

|QK(w)| sup
w∈W

∣∣∣∣∂µ∂v (w)

∣∣∣∣
√√√√ 1

n

n∑
j=1

(
V̂j − Vj

)2
= Op(Kn

−δ)

(62)
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by Assumption 3 and 6 this implies that the upper bound on (60) is

√
n

∣∣∣∣∣∣ 1

n2

n∑
i=1

n∑
j=1

∂R

∂τ
(Xi; τ0)QK(Xi, Vj)− EX

[
∂R

∂τ
(X; τ0)EV [QK(X,V )]

]∣∣∣∣∣∣ ·∣∣∣∣∣∣ 1n
n∑
j=1

QK (Wj)
∂µ

∂v
(Wj)

(
V̂j − Vj

)∣∣∣∣∣∣ = Op

(
K2n−δ

)
Also by Assumption 4 and Assumption 5 that ensures that f(x, v) is bounded from 0

√
n

∣∣∣∣∣ 1n
n∑
i=1

f(Xi)f(Vi)

f(Xi, Vi)

∂R

∂τ
(Xi; τ0)QK(Xi, Vi)− E

[
f(X)f(V )

f(X,V )

∂R

∂τ
(X; τ0)QK(X,V )

]∣∣∣∣∣ ·∣∣∣∣∣∣ 1n
n∑
j=1

QK (Wj)
∂µ

∂v
(Wj)

(
V̂j − Vj

)∣∣∣∣∣∣ = Op

(
K2n−δ

)
because

E

[
f(X)2f(V )2

f(X,V )2

(
∂R

∂τ
(X; τ0

)2

|QK(X,V )|2
]

= O(K2) (63)

Combining the results we conclude that (60) is Op
(
K2n−δ

)
. Therefore (58) is equal to

−
√
n

(
1

n

n∑
i=1

f(Xi)f(Vi)

f(Xi, Vi)

∂R

∂τ
(Xi; τ0)QK(Xi, Vi)

′

) 1

n

n∑
j=1

QK (Wj)
∂µ

∂v
(Wj)

(
V̂j − Vj

)+Op

(
K2n−δ

)
Now

−
√
n

(
1

n

n∑
i=1

f(Xi)f(Vi)

f(Xi, Vi)

∂R

∂τ
(Xi; τ0)QK(Xi, Vi)

′

) 1

n

n∑
j=1

QK (Wj)
∂µ

∂v
(Wj)

(
V̂j − Vj

) =

−
√
n

(
1

n

n∑
i=1

f(Xi)f(Vi)

f(Xi, Vi)

∂R

∂τ
(Xi; τ0)QK(Xi, Vi)

′

)
Ω̃−1K

 1

n

n∑
j=1

QK (Wj)
∂µ

∂v
(Wj)

(
V̂j − Vj

)+

−
√
n

(
1

n

n∑
i=1

f(Xi)f(Vi)

f(Xi, Vi)

∂R

∂τ
(Xi; τ0)QK(Xi, Vi)

′Ω̃−1K

)(
Ω̃K − IK

) 1

n

n∑
j=1

QK (Wj)
∂µ

∂v
(Wj)

(
V̂j − Vj

) =

−
√
n

(
1

n

n∑
i=1

f(Xi)f(Vi)

f(Xi, Vi)

∂R

∂τ
(Xi; τ0)QK(Xi, Vi)

′

)
Ω̃−1K

 1

n

n∑
j=1

QK (Wj)
∂µ

∂v
(Wj)

(
V̂j − Vj

)+Op

(
K7/2n−δ

)
because to bound the third displayed equation we increase the bound on the first factor as in the

proof of Lemma 13 to remove Ω̃−1K and use the bound on the second moment in (63), use the bound

of Lemma 10 in the second factor and also the bound in (62) for the third factor to obtain

√
n

∣∣∣∣∣Ω̃−1K 1

n

n∑
i=1

QK(Xi, Vi)
f(Xi)f(Vi)

f(Xi, Vi)

∂R

∂τ
(Xi; τ0)

∣∣∣∣∣ ∣∣∣Ω̃K − IK
∣∣∣
∣∣∣∣∣∣ 1n

n∑
j=1

QK (Wj)
∂µ

∂v
(Wj)

(
V̂j − Vj

)∣∣∣∣∣∣ ≤
60



2
√
n

∣∣∣∣∣ 1n
n∑
i=1

QK(Xi, Vi)
f(Xi)f(Vi)

f(Xi, Vi)

∂R

∂τ
(Xi; τ0)

∣∣∣∣∣ ∣∣∣Ω̃K − IK
∣∣∣
∣∣∣∣∣∣ 1n

n∑
j=1

QK (Wj)
∂µ

∂v
(Wj)

(
V̂j − Vj

)∣∣∣∣∣∣ = Op

(
K7/2n−δ

)
Now note that

δ̃K = Ω̃−1K

(
1

n

n∑
i=1

f(Xi)f(Vi)

f(Xi, Vi)

∂R

∂τ
(Xi; τ0)QK(Xi, Vi)

)

is the regression estimator of
f(X)f(V )

f(X,V )
∂R
∂τ (X; τ0) on QK(X,V ). Therefore

−
√
n

(
1

n

n∑
i=1

f(Xi)f(Vi)

f(Xi, Vi)

∂R

∂τ
(Xi; τ0)QK(Xi, Vi)

′

)
Ω̃−1K

 1

n

n∑
j=1

QK (Wj)
∂µ

∂v
(Wj)

(
V̂j − Vj

) =

−
√
n

δ̃′K 1

n

n∑
j=1

QK (Wj)
∂µ

∂v
(Wj)

(
V̂j − Vj

) = −
√
n

δ′K 1

n

n∑
j=1

QK (Wj)
∂µ

∂v
(Wj)

(
V̂j − Vj

)−
√
n

(δ̃K − δK)′
1

n

n∑
j=1

QK (Wj)
∂µ

∂v
(Wj)

(
V̂j − Vj

) = − 1√
n

n∑
j=1

δ′KQK (Wj)
∂µ

∂v
(Wj)

(
V̂j − Vj

)
+

Op

(
K3/2n−δ

)
+Op

(
K2−aDn1/2−δ

)
because∣∣∣∣∣∣√n(δ̃K − δK)′

 1

n

n∑
j=1

QK (Wj)
∂µ

∂v
(Wj)

(
V̂j − Vj

)∣∣∣∣∣∣ =
√
n
(
Op(K

1/2n−1/2) +Op(K
1−aD)

)
Op(Kn

−δ)

by Assumption 3 and 6 and Lemma 13. Finally we obtain

−

 1√
n

n∑
j=1

δ′KQK (Wj)
∂µ

∂v
(Wj)

(
V̂j − Vj

) =

− 1√
n

n∑
j=1

f(Xj)f(Vj)

f(Xj , Vj)

∂R

∂τ
(Xj ; τ0)

∂µ

∂v
(Wj)

(
V̂j − Vj

)
+

√
n

 1

n

n∑
j=1

(
f(Xj)f(Vj)

f(Xj , Vj)

∂R

∂τ
(Xj ; τ0)− δ′KQK(Wj)

)
∂µ

∂v
(Wj)

(
V̂j − Vj

)
where the final term is Op

(
K−aDn1/2−δ

)
by Assumption 3 and 6. Combining all remainders we find

that (58) is equal to

− 1

n

n∑
j=1

δ′KQK (Wj)
∂µ

∂v
(Wj)

(
V̂j − Vj

)
+Op

(
K2n−δ

)
+Op

(
K7/2n−δ

)
+Op

(
K3/2n−δ

)
+Op

(
K2−aDn1/2−δ

)
+

Op

(
K−aDn1/2−δ

)
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Therefore the final result is that keeping the largest remainders (58) is equal to

− 1

n

n∑
j=1

f(Xj)f(Vj)

f(Xj , Vj)

∂R

∂τ
(Xj ; τ0)

∂µ

∂v
(Wj)

(
V̂j − Vj

)
+Op

(
K7/2n−δ

)
+Op

(
K2−aDn1/2−δ

)

Lemma 17 If Assumptions 3, 4, 5, 6, 7 hold and K3n−δ → 0, then (59) is equal to

1√
n

n∑
j=1

∂

∂v

(
f(Xj)f(Vj)

f(Xj , Vj)

∂R

∂τ
(Xj ; τ0)

)
Uj

(
V̂j − Vj

)
+Op

(
K11/2n−δ

)
+Op

(
K4−aDn1/2−δ

)
Proof. For (59)

√
n

1

n2

n∑
i=1

n∑
j=1

∂R

∂τ
(Xi; τ0)QK(Xi, Vj)

′ · 1

n

n∑
j=1

∂QK
∂v

(Wj)Uj

(
V̂j − Vj

)
=

√
n

(
1

n

n∑
i=1

f(Xi)f(Vi)

f(Xi, Vi)

∂R

∂τ
(Xi; τ0)QK(Xi, Vi)

′

) 1

n

n∑
j=1

∂QK
∂v

(Wj)Uj

(
V̂j − Vj

)
+
√
n

 1

n2

n∑
i=1

n∑
j=1

∂R

∂τ
(Xi; τ0)QK(Xi, Vj)

′ − 1

n

n∑
i=1

f(Xi)f(Vi)

f(Xi, Vi)

∂R

∂τ
(Xi; τ0)QK(Xi, Vi)

′

 ·
 1

n

n∑
j=1

∂QK
∂v

(Wj)Uj

(
V̂j − Vj

)
Now the third displayed expression is bounded by

√
n

∣∣∣∣∣∣ 1

n2

n∑
i=1

n∑
j=1

∂R

∂τ
(Xi; τ0)QK(Xi, Vj)−

1

n

n∑
i=1

f(Xi)f(Vi)

f(Xi, Vi)

∂R

∂τ
(Xi; τ0)QK(Xi, Vi)

∣∣∣∣∣∣ ·∣∣∣∣∣∣ 1n
n∑
j=1

∂QK
∂v

(Wj)Uj

(
V̂j − Vj

)∣∣∣∣∣∣ ≤ (64)

√
n

∣∣∣∣∣∣ 1

n2

n∑
i=1

n∑
j=1

∂R

∂τ
(Xi; τ0)QK(Xi, Vj)− EX

[
∂R

∂τ
(X; τ0)EV [QK(X,V )]

]∣∣∣∣∣∣
+

∣∣∣∣∣ 1n
n∑
i=1

f(Xi)f(Vi)

f(Xi, Vi)

∂R

∂τ
(Xi; τ0)QK(Xi, Vi)− E

[
f(X)f(V )

f(X,V )

∂R

∂τ
(X; τ0)QK(X,V )

]∣∣∣∣∣
)
·

∣∣∣∣∣∣ 1n
n∑
j=1

∂QK
∂v

(Wj)Uj

(
V̂j − Vj

)∣∣∣∣∣∣
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This is equal to the bound in (60) except that the second factor in the upper bound is now∣∣∣∣∣∣ 1n
n∑
j=1

∂QK
∂v

(Wj)Uj

(
V̂j − Vj

)∣∣∣∣∣∣ ≤
√√√√ 1

n

n∑
j=1

∣∣∣∣∂QK∂v (Wj)

∣∣∣∣2 U2
j

√√√√ 1

n

n∑
j=1

(
V̂j − Vj

)2
= Op

(
ζ1(K)n−δ

)
= Op

(
K3n−δ

)

by Cauchy-Schwartz and Assumptions 3 and 7. We conclude that (64) is Op
(
K4n−δ

)
, so that (59) is

equal to

√
n

(
1

n

n∑
i=1

f(Xi)f(Vi)

f(Xi, Vi)

∂R

∂τ
(Xi; τ0)QK(Xi, Vi)

′

) 1

n

n∑
j=1

∂QK
∂v

(Wj)Uj

(
V̂j − Vj

)+Op

(
K4n−δ

)
Now consider

√
n

(
1

n

n∑
i=1

f(Xi)f(Vi)

f(Xi, Vi)

∂R

∂τ
(Xi; τ0)QK(Xi, Vi)

′

) 1

n

n∑
j=1

∂QK
∂v

(Wj)Uj

(
V̂j − Vj

) =

√
n

(
1

n

n∑
i=1

f(Xi)f(Vi)

f(Xi, Vi)

∂R

∂τ
(Xi; τ0)QK(Xi, Vi)

′

)
Ω̃−1K

 1

n

n∑
j=1

∂QK
∂v

(Wj)Uj

(
V̂j − Vj

)+

√
n

(
1

n

n∑
i=1

f(Xi)f(Vi)

f(Xi, Vi)

∂R

∂τ
(Xi; τ0)QK(Xi, Vi)

′Ω̃−1K

)
(Ω̃K − IK)

 1

n

n∑
j=1

∂QK
∂v

(Wj)Uj

(
V̂j − Vj

) =

√
n

(
1

n

n∑
i=1

f(Xi)f(Vi)

f(Xi, Vi)

∂R

∂τ
(Xi; τ0)QK(Xi, Vi)

′

)
Ω̃−1K

 1

n

n∑
j=1

∂QK
∂v

(Wj)Uj

(
V̂j − Vj

)+Op

(
K11/2n−δ

)
where the bound on the third displayed expression is obtained as in the previous lemma with the only

difference that the third factor in the expression is now Op
(
K3n−δ

)
instead of Op

(
Kn−δ

)
. Denote by

δ̃K the same unfeasible regression estimator as in the previous lemma. Then

√
n

(
1

n

n∑
i=1

f(Xi)f(Vi)

f(Xi, Vi)

∂R

∂τ
(Xi; τ0)QK(Xi, Vi)

′

)
Ω̃−1K

 1

n

n∑
j=1

∂QK
∂v

(Wj)Uj

(
V̂j − Vj

) =

√
n

 1

n

n∑
j=1

δ̃′K
∂QK
∂v

(Wj)Uj

(
V̂j − Vj

) =
√
n

 1

n

n∑
j=1

δ′K
∂QK
∂v

(Wj)Uj

(
V̂j − Vj

)+

√
n

(δ̃K − δK)′
1

n

n∑
j=1

∂QK
∂v

(Wj)Uj

(
V̂j − Vj

) =

√
n

 1

n

n∑
j=1

δ′K
∂QK
∂v

(Wj)Uj

(
V̂j − Vj

)+Op

(
K7/2n−δ

)
+Op

(
K4−aDn1/2−δ

)
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using the same argument as in the previous lemma with the noted change that implies that the bound

in the previous lemma is multiplied by K2. Finally

√
n

 1

n

n∑
j=1

δ′K
∂QK
∂v

(Wj)Uj

(
V̂j − Vj

) =

√
n

 1

n

n∑
j=1

∂

∂v

(
f(Xj)f(Vj)

f(Xj , Vj)

∂R

∂τ
(Xj ; τ0)

)
Uj

(
V̂j − Vj

)+

√
n

 1

n

n∑
j=1

(
∂

∂v

(
f(Xj)f(Vj)

f(Xj , Vj)

∂R

∂τ
(Xj ; τ0)

)
− δ′K

∂QK
∂v

(Wj)

)
Uj

(
V̂j − Vj

)
where the final term is bounded by∣∣∣∣∣∣√n

 1

n

n∑
j=1

(
∂

∂v

(
f(Xj)f(Vj)

f(Xj , Vj)

∂R

∂τ
(Xj ; τ0)

)
− δ′K

∂QK
∂v

(Wj)

)
Uj

(
V̂j − Vj

)∣∣∣∣∣∣ ≤
√
n sup
w∈W

∣∣∣∣ ∂∂v
(
f(x)f(v)

f(x, v)

∂R

∂τ
(x; τ0)

)
− δ′K

∂QK
∂v

(w)

∣∣∣∣
√√√√ 1

n

n∑
j=1

U2
j

√√√√ 1

n

n∑
j=1

(
V̂j − Vj

)2
= Op

(
K−aDn1/2−δ

)
Therefore the final result is that (59) is equal to (if we keep the remainders of the largest order) 1√

n

n∑
j=1

∂

∂v

(
f(Xj)f(Vj)

f(Xj , Vj)

∂R

∂τ
(Xj ; τ0)

)
Uj

(
V̂j − Vj

)
+Op

(
K11/2n−δ

)
+Op

(
K4−aDn1/2−δ

)

Combining this with the result on (50) we have

Lemma 18 If Assumptions 3, 4, 5, 6, 7 hold and K3n−δ → 0 , then by Lemmas 15,16, 17 and

equations (58) and (59)

1

n
√
n

n∑
i=1

n∑
j=1

(
µ̂K(Xi, V̂j)− µ̃K(Xi, Vj)

) ∂R
∂τ

(Xi; τ) =

1√
n

n∑
j=1

 EX
[
∂R
∂τ (X; τ0)

∂µ
∂v (X,Vj)

]
− f(Xj)f(Vj)

f(Xj ,Vj)
∂R
∂τ (Xj ; τ0)

∂µ
∂v (Wj)

+ ∂
∂v

(
f(Xj)f(Vj)
f(Xj ,Vj)

∂R
∂τ (Xj ; τ0)

)
Uj

(V̂j − Vj)
+Op

(
K11/2n−δ

)
+Op

(
K7n1/2−2δ

)
+Op(K

6n1/2+1/m−2δ) +Op

(
K2−aDn1/2

)
If δ ≤ 1/2 then the remainder is Op

(
K7n1/2−2δ

)
+Op(K

6n1/2+1/m−2δ) +Op
(
K2−aDn1/2

)
.
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J.4 Expressing (45) as a sample average

We rewrite (45) as

1

n
√
n

n∑
i=1

n∑
j=1

(µ̃K(Xi, Vj)− µ(Xi, Vj))
∂R

∂τ
(Xi; τ0) =

1

n
√
n

n∑
i=1

n∑
j=1

(
QK(Xi, Vj)

′γK − µ(Xi, Vj)
) ∂R
∂τ

(Xi; τ0)+ (65)

1

n
√
n

n∑
i=1

n∑
j=1

(
QK(Xi, Vj)−QK(Xi, Vi)

f(Xi)f(Vi)

f(Xi, Vi)

)′
(γ̃K − γK)

∂R

∂τ
(Xi; τ0)+ (66)

1√
n

n∑
i=1

f(Xi)f(Vi)

f(Xi, Vi)
(Yi − µ(Xi, Vi))

∂R

∂τ
(Xi; τ0)+ (67)

1√
n

n∑
i=1

f(Xi)f(Vi)

f(Xi, Vi)
(µ(Xi, Vi)−QK(Xi, Vi)

′γK)
∂R

∂τ
(Xi; τ0)− (68)

1√
n

n∑
i=1

f(Xi)f(Vi)

f(Xi, Vi)
(Yi −QK(Xi, Vi)

′γ̃K)
∂R

∂τ
(Xi; τ0) (69)

with (67) the main term. The remainder (65) is bounded by∣∣∣∣∣∣ 1

n
√
n

n∑
i=1

n∑
j=1

(
QK(Xi, Vj)

′γK − µ(Xi, Vj)
) ∂R
∂τ

(Xi; τ0)

∣∣∣∣∣∣
≤
√
n sup
w∈W

∣∣QK(w)′γK − µ(w)
∣∣ 1

n

n∑
i=1

N1(Xi) = Op

(
n1/2K−aD

)
The remainder (66) is by Assumptions 4 and 6 bounded by∣∣∣∣∣∣ 1

n
√
n

n∑
i=1

n∑
j=1

∂R

∂τ
(Xi; τ0)

(
QK(Xi, Vj)−QK(Xi, Vi)

f(Xi)f(Vi)

f(Xi, Vi)

)∣∣∣∣∣∣ |γ̃K − γK |
= Op(K)

(
Op(K

1/2n−1/2) +Op(K
1−aD)

)
= Op

(
K3/2n−1/2

)
+Op

(
K2−aD

)
using the bound Op(K) on the first factor derived in Lemma 16 (see equation (60)) and we use the

bound on the second factor in Lemma 13. By Assumptions 4 and 6, (68) is bounded by∣∣∣∣∣ 1√
n

n∑
i=1

f(Xi)f(Vi)

f(Xi, Vi)
(µ(Xi, Vi)−QK(Xi, Vi)

′γK)
∂R

∂τ
(Xi; τ0)

∣∣∣∣∣ ≤
√
n sup
w∈W

|µ(w)−QK(w)′γK |
1

n

n∑
i=1

N1(Xi) = Op(n
1/2K−aD)

65



To bound (69) we note that the residual Yi−QK(Xi, Vi)
′γ̃K is uncorrelated with QK(Xi, Vi). Therefore

(69) is equal to (where δK is chosen as in Assumption 6)

1√
n

n∑
i=1

(Yi −QK(Xi, Vi)
′γ̃K)

(
f(Xi)f(Vi)

f(Xi, Vi)

∂R

∂τ
(Xi; τ0)−QK(Xi, Vi)

′δK

)
=

1√
n

n∑
i=1

(Ui − (µ̃K(Wi)− µK(Wi))

(
f(Xi)f(Vi)

f(Xi, Vi)

∂R

∂τ
(Xi; τ0)−QK(Xi, Vi)

′δK

)
By Assumption 6 and 7 and Lemma 13 the final expression is bounded by

√
n sup
w∈W

∣∣∣∣f(x)f(v)

f(x, v)

∂R

∂τ
(x; τ0)−QK(w)′δK

∣∣∣∣
(

1

n

n∑
i=1

|Ui|+
1

n

n∑
i=1

|µ̃K(Wi)− µ(Wi)|

)
=
√
nOp

(
K−aD

) (
Op(1) +Op(K

3/2n−1/2) +Op(K
2−aD)

)
= Op

(
K−aDn1/2

)
+Op

(
K3/2−aD

)
+Op

(
K2−2aDn1/2

)
Lemma 19 If Assumptions 4, 5, 6 and 7 hold, then

1

n
√
n

n∑
i=1

n∑
j=1

(µ̃K(Xi, Vj)− µ(Xi, Vj))
∂R

∂τ
(Xi; τ0) =

1√
n

n∑
i=1

f(Xi)f(Vi)

f(Xi, Vi)
(Yi − µ(Xi, Vi))

∂R

∂τ
(Xi; τ0)+

Op

(
K−aDn1/2

)
+Op

(
K3/2n−1/2

)
+Op

(
K2−aD

)
+Op

(
K2−2aDn1/2

)
J.5 Expressing (46) as a sample average

Upon substitution of R(Xi; τ0) for L(Xi) we obtain for (46)

1

n
√
n

n∑
i=1

n∑
j=1

µ(Xi, Vj)
∂R

∂τ
(Xi; τ0)−

1√
n

n∑
i=1

R(Xi; τ0)
∂R

∂τ
(Xi; τ0)

Because

E
[
R(X; τ0)

∂R

∂τ
(X; τ0)

]
= EV

[
EX
[
µ(X,V )

∂R

∂τ
(X; τ0)

]]
we can express (46) as 1

n
√
n

n∑
i=1

n∑
j=1

µ(Xi, Vj)
∂R

∂τ
(Xi; τ0)− EV

[
EX
[
µ(X,V )

∂R

∂τ
(X; τ0)

]]−
(

1√
n

n∑
i=1

R(Xi; τ0)
∂R

∂τ
(Xi; τ0)− E

[
R(X; τ0)

∂R

∂τ
(X; τ0)

])
The first term is a two-sample generalized U statistic with projection

1√
n

n∑
i=1

R(Xi; τ0)
∂R

∂τ
(Xi; τ0)− E

[
R(X; τ0)

∂R

∂τ
(X; τ0)

]
+

1√
n

n∑
j=1

EX
[
µ(X,Vj)

∂R

∂τ
(X; τ0)

]
− EV

[
EX
[
µ(X,V )

∂R

∂τ
(X; τ0)

]]
+ op(1)

where we use EV [µ(x, V )] = R(x; τ0) so that
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Lemma 20 Under Assumptions 4 and 6

1

n
√
n

n∑
i=1

n∑
j=1

µ(Xi, Vj)
∂R

∂τ
(Xi; τ0)−

1

n

n∑
i=1

L(Xi)
∂R

∂τ
(Xi; τ0) =

1√
n

n∑
j=1

EX
[
µ(X,Vj)

∂R

∂τ
(X; τ0)

]
− EV

[
EX
[
µ(X,V )

∂R

∂τ
(X; τ0)

]]
+ op(1)

J.6 The asymptotic distribution

The results in Lemmas 18, 19, and 20 give

Theorem 9 (Asymptotically linear representation) If aD > 2, 1
4 < δ < 1

2 , and we choose

K = nb such that
1

2(aD − 2)
< b <

2

7
δ − 1

14

where δ and aD satisfy
1

aD − 2
<

4

7
δ − 1

7

If assumptions 3, 4, 5, 6 and 7 hold, then

√
n(τ̂ − τ0) =

(
E
[
∂R

∂τ
(X; τ0)

∂R

∂τ ′
(X; τ0)

])−1
· 1√

n

n∑
j=1

 EX
[
∂R
∂τ (X; τ0)

∂µ
∂v (X,Vj)

]
− f(Xj)f(Vj)

f(Xj ,Vj)
∂R
∂τ (Xj ; τ0)

∂µ
∂v (Wj)

+ ∂
∂v

(
f(Xj)f(Vj)
f(Xj ,Vj)

∂R
∂τ (Xj ; τ0)

)
Uj

(V̂j − Vj)
1√
n

n∑
i=1

f(Xi)f(Vi)

f(Xi, Vi)
(Yi − µ(Xi, Vi))

∂R

∂τ
(Xi; τ0)+

1√
n

n∑
j=1

(
EX
[
µ(X,Vj)

∂R

∂τ
(X; τ0)

]
− EV

[
EX
[
µ(X,V )

∂R

∂τ
(X; τ0)

]])+ op (1)

Proof. The relevant remainder terms are

Op

(
K11/2n−δ

)
+Op

(
K7n1/2−2δ

)
+Op(K

6n1/2+1/m−2δ) +Op

(
K2−aDn1/2

)
+Op

(
K3/2n−1/2

)
First aD > 2 is required to make the third remainder vanish. Second, the relevant range for δ is

between 1
4 + 1

2m and 1
2 . The lower bound derives from the third remainder and is larger by 1/m

than the well-known rate restriction in Newey (1994). For K = nb we have the inequalities b < 2
11δ,

b < min
{
2
7δ −

1
14 ,

1
3δ −

1
12 −

1
6m

}
and b < 1

3 with only the second inequality relevant on the relevant

range of δ. Finally we have b > 1
2(aD−2) . Also the upper bound on b ensures that K3n−δ → 0. To

ensure that the lower bound on b is not larger than the upper bound we require that

1

aD − 2
<

4

7
δ − 1

7
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K Asymptotics for the control variable Vj

K.1 The asymptotic distribution of 1√
n

∑n
i=1 Sj

(
Ṽj − Vj

)
Theorem 9 shows that the asymptotic distribution of τ̂ is a constant matrix times 1√

n

∑n
i=1 Sj

(
V̂j − Vj

)
with

Sj = EX
[
∂R

∂τ
(X; τ0)

∂µ

∂v
(X,Vj)

]
− f(Xj)f(Vj)

f(Xj , Vj)

∂R

∂τ
(Xj ; τ0)

∂µ

∂v
(Xj , Vj)

+
∂

∂v

(
f(Xj)f(Vj)

f(Xj , Vj)

∂R

∂τ
(Xj ; τ0)

)
Uj

We will derive an asymptotically linear representation of the distribution of 1√
n

∑n
i=1 Sj

(
Ṽj − Vj

)
where

Ṽj = pL (Zj)
′ Ψ̃−1L

(
1

n

n∑
i=1

pL (Zi) 1 (Xi ≤ Xj)

)

Ψ̃L =
1

n

n∑
j=1

pL (Zj) pL (Zj)
′

under the implicit assumption that

1√
n

n∑
i=1

Sj

(
V̂j − Vj

)
=

1√
n

n∑
i=1

Sj

(
Ṽj − Vj

)
+ op (1) . (70)

where V̂j is a transformation of the series estimator Ṽj that is in the [0, 1] interval. For simplicity of

notation, we will assume that S is a scalar although the derivation below can be easily modified to

the case that S is a vector.

Define

α̃L (x) = Ψ̃−1L

(
1

n

n∑
i=1

pL (Zi) 1 (Xi ≤ x)

)
then

Ṽj = pL (Zj)
′ α̃L (Xj)

is the series estimator of F (Xj |Zj) with the L vector of basis function PL(Z). We make a support

assumption as in Assumption 5, i.e.

Assumption 10 The support of the distribution of Z is a rectangle.

Under this assumption we have as before

ζd (L) = max
|λ|≤d

sup
z

∥∥∥∥∂dpL∂zd
(z)

∥∥∥∥ = O
(
L2d+1

)
.
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As before we assume the bound on ζd (L) and do not mention Assumption 10 again. Without loss of

generality, we assume E
[
pL (Zj) pL (Zj)

′] = IL as we did before. The implication is that∥∥∥Ψ̃L − IL
∥∥∥ = Op

(
ζ0 (L)L1/2n−1/2

)
= Op

(
L3/2n−1/2

)
by Lemma 10. As we did in Assumption 6 we bound the approximation error. Following Imbens and

Newey (2002, Assumption 5.1), we assume that

Assumption 11 There exists a vector αL (x) and constants CD, bD > 0 such that

sup
x,z

∣∣F (x| z)− pL (z)′ αL (x)
∣∣ ≤ CDL−bD (71)

In addition there exist vectors βL(x), β∗L(z1) such that

sup
x,z

∣∣χ (x, z)− pL (z)′ ζL (x)
∣∣ ≤ O (L−bD)

sup
z̃,z

∣∣χ∗ (z̃, z)− pL (z)′ ζ∗L (z̃)
∣∣ ≤ O (L−bD)

with χ and χ∗ defined below.

As in the proof of Lemma 13 we have

α̃L (x)− αL (x) = Ψ̃−1L

(
1

n

n∑
i=1

pL (Zi)
(
1 (Xi ≤ x)− pL (Zi)

′ αL (x)
))

where we omit the indicator 1̃n of the event that Ψ̃L is positive definite under the assumption that

L3/2n−1/2 → 0. In the rest of this proof we assume that this limit holds, so that we can assume that

Ψ̃L is positive definite.

We now write

1√
n

n∑
j=1

Sj

(
Ṽj − Vj

)
=

1√
n

n∑
j=1

SjpL (Zj)
′ Ψ̃−1L

(
1

n

n∑
i=1

pL (Zi) (1 (Xi ≤ Xj)− F (Xj |Zi))

)
(72)

+
1√
n

n∑
j=1

SjpL (Zj)
′ Ψ̃−1L

(
1

n

n∑
i=1

pL (Zi)
(
F (Xj |Zi)− pL (Zi)

′ αL (Xj)
))

(73)

+
1√
n

n∑
j=1

Sj
(
pL (Zj)

′ αL (Xj)− F (Xj |Zj)
)
. (74)

The first term (72) is the main term and we bound the other terms. First the second term (73) is

bounded by, using that if L3/2n−1/2 → 0 then 4IL − (Ψ̃−1L )2 is positive definite,

1√
n

n∑
j=1

∣∣∣pL (Zj)
′ Ψ̃−1L pL (Zj)

∣∣∣( 1

n

n∑
i=1

|pL (Zi)|
∣∣(F (Xj |Zi)− pL (Zi)

′ αL (Xj)
∣∣)) |Sj |

≤ 2ζ0(L)2O(L−bD) · 1√
n

n∑
j=1

|Sj |

= Op

(
n1/2L2−bD

)
.
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by Assumption 11 and because Assumptions 4 and 6 ensure that E(|S|2) <∞. The last term (74) is

O
(
n1/2L−bD

)
.

by Assumption 11 and because E(|S|2) <∞. Next, we consider the main term in (72)

1√
n

n∑
i=1

pL (Zi)
′ Ψ̃−1

 1

n

n∑
j=1

pL (Zj) (1 (Xi ≤ Xj)− F (Xj |Zi))Sj


=

1√
n

n∑
i=1

pL (Zi)
′ Ψ̃−1

 1

n

n∑
j=1

pL (Zj)

(
1 (Xi ≤ Xj)Sj − χ (Xi, Zj)

−F (Xj |Zi)Sj + χ∗ (Zi, Zj)

) (75)

+
1√
n

n∑
i=1

pL (Zi)
′ Ψ̃−1

 1

n

n∑
j=1

pL (Zj) (χ (Xi, Zj)− χ∗ (Zi, Zj))

 , (76)

where we define

χ (xi, zj) = E [1 (xi ≤ X)S|Z = zj ]

χ∗ (zi, zj) = E [F (X| zi)S|Z = zj ]

In the first line the order of summation is interchanged. Therefore in (75)

Ψ̃−1L

 1

n

n∑
j=1

pL (Zj) 1 (Xi ≤ Xj)Sj


is the coefficient estimator in the nonparametric regression of 1 (Xi ≤ Xj)Sj on Zj with regression

function EX,S [1 (Xi ≤ X)S|Zj ] = χ(Xi, Zj). In the same way

Ψ̃−1

 1

n

n∑
j=1

pL (Zj)F (Xj |Zi)Sj


is the coefficient estimator in the nonparametric regression of F (Xj |Zi)Sj on Zj with regression

function E [F (X|Zi)S|Zj ] = χ∗(Zi, Zj). The terms in parentheses in (75)

1

n

n∑
j=1

pL (Zj) (1 (Xi ≤ Xj)Sj − χ (Xi, Zj))

and
1

n

n∑
j=1

pL (Zj) (F (Xj |Zi)Sj − χ∗ (Zi, Zj))

are therefore covariances of the regressors PL(Zj) and errors. We have for (75)

1√
n

n∑
i=1

PL(Zi)
′Ψ̃−1L

 1

n

n∑
j=1

pL (Zj) (1 (Xi ≤ Xj)Sj − χ(Xi, Zj)− F (Xj |Zi)Sj + χ∗(Zi, Zj))

 =
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1

n
√
n

n∑
i=1

n∑
j=1

PL(Zi)
′Ψ̃−1L pL (Zj) (1 (Xi ≤ Xj)Sj − χ(Xi, Zj)− F (Xj |Zi)Sj + χ∗(Zi, Zj)) =

1

n
√
n

n∑
i=1

PL(Zi)
′Ψ̃−1L pL (Zi) (1 (Xi ≤ Xi)Si − χ(Xi, Zi)− F (Xi|Zi)Si + χ∗(Zi, Zi)) + (77)

1

n
√
n

n∑
i=1

n∑
j=1,j 6=i

PL(Zi)
′Ψ̃−1L pL (Zj) (1 (Xi ≤ Xj)Sj − χ(Xi, Zj)− F (Xj |Zi)Sj + χ∗(Zi, Zj)) (78)

For (77)∣∣∣∣∣ 1

n
√
n

n∑
i=1

PL(Zi)
′Ψ̃−1L pL (Zi) (1 (Xi ≤ Xi)Si − χ(Xi, Zi)− F (Xi|Zi)Si + χ∗(Zi, Zi))

∣∣∣∣∣ ≤
4 sup
z∈Z
|PL(z)|2n−1/2 1

n

n∑
i=1

(2E(|Si|) + 2E(|S||Zi)) = ζ0(L)2n−1/2Op(1) = Op(L
2n−1/2)

For the double sum in (78) we condition on Z1, . . . , Zn so that we can consider PL(Zi)
′Ψ̃−1L pL (Zj)

as constants. Define h(Wi,Wj) = PL(Zi)
′Ψ̃−1L pL (Zj) (1 (Xi ≤ Xj)Sj − χ(Xi, Zj)) − F (Xj |Zi)Sj +

χ∗(Zi, Zj). Then

1

n
√
n

n∑
i=1

n∑
j=1,j 6=i

PL(Zi)
′Ψ̃−1L pL (Zj) (1 (Xi ≤ Xj)Sj − χ(Xi, Zj)− F (Xj |Zi)Sj + χ∗(Zi, Zj)) =

1

n
√
n

n∑
i=1

n∑
j=1,j 6=i

h(Wi,Wj) =
n− 1

2
√
n

1(
n
2

)∑
i<j

(h(Wi,Wj) + h(Wj ,Wi))

Define

Un =
1(
n
2

)∑
i<j

(h(Wi,Wj) + h(Wj ,Wi))

We will find a bound on V[Un|Z1, . . . , Zn]. The statistic Un is a U-statistic with kernel h(Wi,Wj) =

h(Wi,Wj)+h(Wj ,Wi). However the conditioning implies that h(Wi,Wj)|Z1, . . . , Zn are not identically

distributed. However we will show that the argument that gives the Hoeffding (1948) formula for the

variance of a U-statistic still applies (conditionally). As a first step we compute some expectations

EWi,Wj [1(Xi ≤ Xj)Sj |Z1, . . . , Zn] =EXj ,Sj [F (Xj |Zi)Sj |Zi, Zj ] = χ∗(Zi, Zj) (79)

EWi,Wj [χ(Xi, Zj)|Z1, . . . , Zn] =EXi [EX,S [1(Xi ≤ X)S|Z = Zj ]|Z1, . . . , Zn] = χ∗(Zi, Zj) (80)

EWi,Wj [F (Xj |Zi)Sj |Z1, . . . , Zn] =EXj ,Sj [F (Xj |Zi)Sj |Zj ] = χ∗(Zi, Zj) (81)

EWi,Wj [χ
∗(Zi, Zj)|Z1, . . . , Zn] =χ∗(Zi, Zj) (82)

(83)
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and in the same way

EWi,Wj [1(Xj ≤ Xi)Si|Z1, . . . , Zn] =χ∗(Zj , Zi) (84)

EWi,Wj [χ(Xj , Zi)|Z1, . . . , Zn] =χ∗(Zj , Zi) (85)

EWi,Wj [F (Xi|Zj)Si|Z1, . . . , Zn] =χ∗(Zj , Zi) (86)

EWi,Wj [χ
∗(Zj , Zi)|Z1, . . . , Zn] =χ∗(Zj , Zi) (87)

(88)

where in (80) we interchange the order of the expectations which is allowed by the Fubini Theorem.

This implies first that

E[h(Wi,Wj)|Z1, . . . , Zn] = 0

so that

V(Un) = E
[
E[U2

n|Z1, . . . , Zn]
]

Now

U2
n =

 1(
n
2

)∑
i<j

h(Wi,Wj)

2

=
1(
n
2

)2 ∑
i<j

∑
k<l

h(Wi,Wj)h(Wk,Wl)

Consider E[h(Wi,Wj)h(Wk,Wl)|Z1, . . . , Zn]. If the indices i, j, k, l are all different then

E[h(Wi,Wj)h(Wk,Wl)|Z1, . . . , Zn] = 0

If i = k and j 6= l then

E[h(Wi,Wj)h(Wi,Wl)|Z1, . . . , Zn] = E[h1(Wi, Z1, . . . , Zn)2|Z1, . . . , Zn]

with

h1(wi, Z1, . . . Zn) ≡ E[h(wi,Wj)|Z1, . . . , Zn] = PL(Zi)
′Ψ̃−1L pL (Zj) ·

[E[1(xi ≤ Xj)Sj |Z1, . . . , Zn]− E[1(xi ≤ X)S|Z = Zj ]

−E[F (Xj |Zi)Sj |Z1, . . . , Zn] + E[F (X|Zi)S|Zi, Z = Zj ]

+E[1(Xj ≤ xi)si|Z1, . . . , Zn]− E [E[1(Xj ≤ X)S|Z = Zi]|Z1, . . . , Zn]

−E[F (xi|Zj)si|Zi] + E[F (X|Zj)S|Z = Zi]]

The second and third line of the above equation are obviously equal to 0. The fourth and fifth lines

are also 0 because

E[1(Xj ≤ xi)si|Z1, . . . , Zn] = E[F (xi|Zj)si|Zi]

and

E[F (X|Zj)S|Zi] = E [E[1(Xj ≤ X)S|Zi]|Z1, . . . , Zn]
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Because h1(wi, Z1, . . . , Zn) ≡ 0 for all wi, Z1, . . . , Zn, we conclude that

E[h(Wi,Wj)h(Wi,Wl)|Z1, . . . , Zn] = 0 (89)

Next if If i = l and j 6= k we have

E[h(Wi,Wj)h(Wk,Wi)|Z1, . . . Zn] = E[h(Wi,Wj)h(Wi,Wk)|Z1, . . . Zn] = 0

by symmetry of h and the expectation in (89). In the same way symmetry implies that for i 6= k and

i 6= l

E[h(Wi,Wj)h(Wk,Wj)|Z1, . . . Zn] = E[h(Wi,Wj)h(Wj ,Wl)|Z1, . . . Zn] = 0

respectively. The conclusion is that because only
(
n
2

)
terms in the conditional expectation of U2

n given

Z1, . . . , Zn are nonzero we have

E
[
E[U2

n|Z1, . . . , Zn]
]

=
1(
n
2

)E [E[h(Wi,Wj)
2|Z1, . . . Zn]

]
Now

h(Wi,Wj)
2 =

(
PL(Zi)

′Ψ̃−1L pL (Zj)
)2
·

[1 (Xi ≤ Xj)Sj − χ(Xi, Zj)− F (Xj |Zi)Sj + χ∗(Zi, Zj)+

1 (Xj ≤ Xi)Si − χ(Xj , Zi)− F (Xi|Zj)Si + χ∗(Zi, Zj)]
2

≤ 4ζ0(L)4M

because by Cauchy-Schwartz(
PL(Zi)

′Ψ̃−1L pL (Zj)
)2
≤ pL (Zi)

′ Ψ̃−1L pL (Zi) pL (Zj)
′ Ψ̃−1L pL (Zj) ≤ 4ζ0(L)4M

if L3/2n−1/2 → 0 andM is the sum of the terms between square brackets and E(M) = E[E[M |Z1, . . . , Zn]] <

∞ by Assumptions 4 and 6. Therefore we obtain the bound V(Un) = O(L4/n2) so that (78) is

Op(n
−1/2L2).

The final step is to derive an asymptotically linear representation of (76). We have by Assumption
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11

1√
n

n∑
i=1

pL (Zi)
′ Ψ̃−1

 1

n

n∑
j=1

pL (Zj)χ (Xi, Zj)


=

1√
n

n∑
i=1

pL (Zi)
′ Ψ̃−1

 1

n

n∑
j=1

pL (Zj)
(
χ (Xi, Zj)− pL (Zj)

′ βL (Xi)
)

+
1√
n

n∑
i=1

pL (Zi)
′ Ψ̃−1

 1

n

n∑
j=1

pL (Zj) pL (Zj)
′

βL (Xi)

= Op

(
L2−bDn1/2

)
+

1√
n

n∑
i=1

pL (Zi)
′ βL (Xi)

= Op

(
L2−bDn1/2

)
+

1√
n

n∑
i=1

χ (Xi, Zi)

− 1√
n

n∑
i=1

(
χ (Xi, Zi)− pL (Zi)

′ βL (Xi)
)

=
1√
n

n∑
i=1

χ (Xi, Zi) +Op

(
L2−bDn1/2

)
+Op

(
L−bDn1/2

)
so that

1√
n

n∑
i=1

pL (Zi)
′ Ψ̃−1

 1

n

n∑
j=1

pL (Zj)χ (Xi, Zj)

 =
1√
n

n∑
i=1

χ (Xi, Zi) +Op

(
L2−bDn1/2

)
Likewise, we obtain

1√
n

n∑
i=1

pL (Zi)
′ Ψ̃−1

 1

n

n∑
j=1

pL (Zj)χ
∗ (Zi, Zj)

 =
1√
n

n∑
i=1

χ∗ (Zi, Zi) +Op

(
L2−bDn1/2

)
Combining the bounds on (73), (74), (76) with the asymptotically linear representation of (76) we

obtain, only keeping the largest remainders (L3/2n−1/2 → 0) the following lemma

Lemma 21 If Assumptions 4, 6, 10 and 11 hold and L3/2n−1/2 → 0 then

1√
n

n∑
j=1

Sj

(
Ṽj − Vj

)
=

1√
n

n∑
i=1

(χ (Xi, Zi)− χ∗ (Zi, Zi))

+Op

(
L2n−1/2

)
+Op

(
n1/2L2−bD

)
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K.2 Rate of convergence of 1
n

∑n
j=1(Ṽj − Vj)

2

We have

Ṽj − Vj = pL (Zj)
′ Ψ̃−1L

(
1

n

n∑
i=1

pL (Zi) 1 (Xi ≤ Xj)

)
− F (Xj |Zj) = pL (Zj)

′ α̃L(Xj)− F (Xj |Zj)

= PL(Zj)
′(α̃L(Xj)− αL(Xj))− (F (Xj |Zj)− PL(Zj)

′αL(Xj))

= PL(Zj)
′Ψ̃−1L

(
1

n

n∑
i=1

PL(Zi)[1(Xi ≤ Xj)− PL(Zi)
′αL(Xj)]

)
− (F (Xj |Zj)− PL(Zj)

′αL(Xj))

= PL(Zj)
′Ψ̃−1L

(
1

n

n∑
i=1

PL(Zi)[1(Xi ≤ Xj)− F (Xj |Zi)]

)
− (F (Xj |Zj)− PL(Zj)

′αL(Xj))+

PL(Zj)
′Ψ̃−1L

(
1

n

n∑
i=1

PL(Zi)[F (Xj |Zi)− PL(Zi)
′αL(Xj)]

)

Let Ṽ and V be the n vectors with components Ṽj and Vj respectively and let PL be the n × L

matrix with rows PL(Zj)
′. Further let ej be the n vector of errors 1(Xi ≤ Xj) − F (Xj |Zi), u1L

be the n vector of approximation residuals F (Xj |Zj) − PL(Zj)
′αL(Xj) and u2Lj be the n vector of

approximation residuals F (Xj |Zi)− PL(Zi)
′αL(Xj). Then

Ṽj − Vj = PL(Zj)
′(P ′LPL)−1P ′Lej − u1L,j + PL(Zj)

′(P ′LPL)−1P ′Lu2Lj (90)

so that

1

n

n∑
j=1

(Ṽj − Vj)2 =
1

n

n∑
j=1

PL(Zj)
′(P ′LPL)−1P ′Leje

′
jPL(P ′LPL)−1PL(Zj) (91)

+
1

n

n∑
j=1

u21L,j +
1

n

n∑
j=1

(
PL(Zj)

′(P ′LPL)−1P ′Lu2Lj
)2

(92)

− 2

n

n∑
j=1

PL(Zj)
′(P ′LPL)−1P ′Leju1L,j (93)

+
2

n

n∑
j=1

PL(Zj)
′(P ′LPL)−1P ′Leju

′
2LjPL(P ′LPL)−1PL(Zj) (94)

− 2

n

n∑
j=1

PL(Zj)
′(P ′LPL)−1P ′Lu2Lju1L,j (95)

We have for (91)

E

 1

n

n∑
j=1

PL(Zj)
′(P ′LPL)−1P ′Leje

′
jPL(P ′LPL)−1PL(Zj)

∣∣∣∣∣∣Z1, . . . , Zn

 =

1

n

n∑
j=1

PL(Zj)
′(P ′LPL)−1P ′LE

(
eje
′
j |Z1, . . . , Zn

)
PL(P ′LPL)−1PL(Zj)
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with for i 6= i′ and i, i′ 6= j

E[eijei′j |Z1, . . . , Zn] = EXj
[
EXi,Xi′ [(1(Xi ≤ Xj)− F (Xj |Zi))(1(Xi′ ≤ Xj)− F (Xj |Zi′))|Xj , Z1, . . . , Zn]

]
= 0

and for i 6= j

E[e2ij |Z1, . . . , Zn] = EXj
[
EXi [(1(Xi ≤ Xj)− F (Xj |Zi))2|Xj , Z1, . . . , Zn]

]
=

E[(1− F (Xj |Zi))F (Xj |Zi)|Z1, . . . , Zn] ≤ 1

and because

E[e2jj |Z1, . . . , Zn] = EXj [(1− F (Xj |Zj))2|Z1, . . . , Zn] ≤ 1

the inequality also holds if i = j. Therefore

sup
Z1,...,Zn

E

 1

n

n∑
j=1

PL(Zj)
′(P ′LPL)−1P ′Leje

′
jPL(P ′LPL)−1PL(Zj)

∣∣∣∣∣∣Z1, . . . , Zn

 ≤
sup

Z1,...,Zn

1

n

n∑
j=1

PL(Zj)
′(P ′LPL)−1PL(Zj) = sup

Z1,...,Zn

tr
(
P ′L(P ′LPL)−1PL

)
n

=
L

n

so that by the Markov inequality (91) has bound

1

n

n∑
j=1

PL(Zj)
′(P ′LPL)−1P ′Leje

′
jPL(P ′LPL)−1PL(Zj) = Op(Ln

−1) (96)

For (92) by Assumption 11

1

n

n∑
j=1

u21L,j = Op

(
L−2bD

)
and by Assumption 11

1

n

n∑
j=1

(
pL(Zj)

′(P ′LPL)−1P ′Lu2Lj
)2 ≤ 1

n

n∑
j=1

∣∣pL(Zj)
′(P ′LPL)−1P ′L

∣∣2 |u2Lj |2
≤ nO(L−2bD) · 1

n

n∑
j=1

∣∣pL(Zj)
′(P ′LPL)−1P ′L

∣∣2
= O(L−2bD)

n∑
j=1

pL(Zj)
′(P ′LPL)−1P ′LPL(P ′LPL)−1pL(Zj)

= O(L−2bD)

n∑
j=1

pL(Zj)
′(P ′LPL)−1pL(Zj)

= O(L−2bD) tr
(
PL(P ′LPL)−1P ′L

)
= Op(L

1−2bD)
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For (93)∣∣∣∣∣∣ 1n
n∑
j=1

pL(Zj)
′(P ′LPL)−1P ′Leju1L,j

∣∣∣∣∣∣ ≤ 1

n

n∑
j=1

∣∣pL(Zj)
′(P ′LPL)−1P ′Leju1L,j

∣∣
≤
√
n ·O(L−bD) · 1

n

n∑
j=1

∣∣pL(Zj)
′(P ′LPL)−1P ′L

∣∣
≤
√
n ·O(L−bD) ·

√√√√ 1

n

n∑
j=1

∣∣pL(Zj)′(P ′LPL)−1P ′L
∣∣2

=
√
n ·O(L−bD) ·

√√√√ 1

n

n∑
j=1

pL(Zj)′(P ′LPL)−1pL(Zj)

=
√
n ·O(L−bD) ·

√
1

n
tr
(
PL(P ′LPL)−1P ′L

)
=
√
n ·O(L−bD) ·

√
L

n

= Op(L
1/2−bD)

For (94) ∣∣∣∣∣∣ 1n
n∑
j=1

pL(Zj)
′(P ′LPL)−1P ′Leju

′
2LjPL(P ′LPL)−1pL(Zj)

∣∣∣∣∣∣
≤ O(L−bD)

n∑
j=1

pL(Zj)
′(P ′LPL)−1P ′LPL(P ′LPL)−1pL(Zj)

= O(L−bD)
n∑
j=1

pL(Zj)
′(P ′LPL)−1pL(Zj)

= O(L−bD) tr
(
PL(P ′LPL)−1P ′L

)
= Op(L

1−bD)

Finally for (95)∣∣∣∣∣∣ 1n
n∑
j=1

pL(Zj)
′(P ′LPL)−1P ′Lu2Lju1L,j

∣∣∣∣∣∣ ≤ √nO(L−2bD) · 1

n

n∑
j=1

∣∣pL(Zj)
′(P ′LPL)−1P ′L

∣∣
≤
√
nO(L−2bD) ·

√√√√ 1

n

n∑
j=1

∣∣pL(Zj)′(P ′LPL)−1P ′L
∣∣2

=
√
nO(L−2bD) ·

√
1

n
tr
(
PL(P ′LPL)−1P ′L

)
= Op(L

1/2−2bD)

Combining these results we find keeping the remainders of the highest order
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Lemma 22 If Assumptions 10 and 11 hold then

1

n

n∑
j=1

(Ṽj − Vj)2 = Op(Ln
−1) +Op(L

1−bD)

so that if L = nκ

Op(Ln
−1) +Op(L

1−bD) = Op(n
−2δ)

with for 0 < κ < 1

δ = −1

2
max{κ− 1, κ(1− bD)}

so that according to these bounds the fastest rate of convergence is for bD > 1

δ =
bD − 1

2bD

where the rate is parametric if bD →∞ .

K.3 Use of smoothed control variables

The control variables Ṽj are not restricted to the [0, 1] interval. Therefore as in Imbens and Newey

(2002, p. 20) we will consider ’smoothed’ control variables V̂j that are always in the unit interval

V̂ =



1 if Ṽ > 1 + ξn

1− (1−Ṽ+ξn)
2

4ξn
if 1− ξn < Ṽ ≤ 1 + ξn

Ṽ if ξn ≤ Ṽ ≤ 1− ξn
(Ṽ+ξn)

2

4ξn
if −ξn ≤ Ṽ < ξn

0 if Ṽ < −ξn

In particular we consider (70), which is predicated on the assumption that

1√
n

n∑
i=1

Sj

(
Ṽj − V̂j

)
= op (1) , (97)

which we establish here.

The following two lemmas show that

1√
n

n∑
i=1

|Sj |
1

4ξn

(
Ṽj − ξn

)2
1
(
−ξn ≤ Ṽj ≤ ξn

)
= op (1) (98)

1√
n

n∑
i=1

|Sj |
∣∣∣Ṽj∣∣∣ 1(Ṽj ≤ −ξn) = op (1) (99)
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Because ∣∣∣∣∣∣ 1√
n

n∑
j=1

Sj

(
Ṽj − V̂j

)∣∣∣∣∣∣ ≤ 1√
n

n∑
j=1

|Sj |
∣∣∣Ṽj − 1

∣∣∣ 1(Ṽj ≥ 1 + ξn

)

+
1√
n

n∑
j=1

|Sj |
1

4ξn

(
1− Ṽj − ξn

)2
1
(

1− ξn ≤ Ṽj ≤ 1 + ξn

)
+

1√
n

n∑
j=1

|Sj |
1

4ξn

(
Ṽj − ξn

)2
1
(
−ξn ≤ Ṽj ≤ ξn

)
+

1√
n

n∑
j=1

|Sj |
∣∣∣Ṽj∣∣∣ 1(Ṽj ≤ −ξn) ,

it implies that (97) follows from (98) and (99), noting that for the first two term we replace Ṽj by

1− Ṽj in the lemmas that follow.

Lemma 23 Let ξn be such that that σ̂n = op (ξn), where σ̂n = sup1≤j≤n

∣∣∣Ṽj − Vj∣∣∣.Then (98) holds.

Proof. Because

1√
n

n∑
j=1

|Sj |
∣∣∣Ṽj∣∣∣ 1(Ṽj ≤ −ξn) ≤

√√√√ 1

n

n∑
j=1

S2
j Ṽ

2
j

 n∑
j=1

1
(
Ṽj ≤ −ξn

)
it suffices to show

n∑
j=1

1
(
Ṽj ≤ −ξn

)
= op (1) .

We have

n∑
j=1

1
(
Ṽj ≤ −ξn

)
=

n∑
j=1

1
(
Ṽj − Vj ≤ −ξn − Vj

)
≤

n∑
j=1

1
(
Ṽj − Vj ≤ −ξn

)
≤

n∑
j=1

1
(∣∣∣Ṽj − Vj∣∣∣ ≥ ξn)

≤ n · 1 (σ̂n ≥ ξn)

Therefore, for any given ε > 0

Pr

 n∑
j=1

1
(
Ṽj ≤ −ξn

)
≥ ε

 ≤ Pr [n · 1 (σ̂n ≥ ξn) ≥ ε]

= Pr [σ̂n ≥ ξn]
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It follows that if σ̂n = op (ξn)

Pr [σ̂n ≥ ξn]→ 0

and therefore
n∑
i=1

1
(
Ṽj ≤ −ξn

)
= op (1)

We will derive the rate of convergence of sup1≤j≤n

∣∣∣Ṽj − Vj∣∣∣ after the next lemma.

Lemma 24 Suppose that E
[
Spj

]
< ∞ for some p > 1. Suppose that ξn = n−a for some a > 0 such

that

a > max

(
q

2 (q + 1)
,
q − 1

2q + 1

)
where q satisfies 1

p + 1
q = 1. Let ξn be such that σ̂n = op (ξn). Then (99) holds.

Proof. Note that if −ξn ≤ Ṽj ≤ ξn (
Ṽj − ξn

)2
4ξn

≤ ξn

By the Hölder inequality

ξn
1√
n

n∑
j=1

|Sj | 1
(
−ξn ≤ Ṽj ≤ ξn

)
=
√
nξn

1

n

n∑
j=1

|Sj | 1
(
−ξn ≤ Ṽj ≤ ξn

)

≤
√
nξn

 1

n

n∑
j=1

Spj

 1
p (

1

n

n∑
i=1

1
(
−ξn ≤ Ṽj ≤ ξn

)q) 1
q

=

 1

n

n∑
j=1

Spj

 1
p
n q2−1ξqn n∑

j=1

1
(
−ξn ≤ Ṽj ≤ ξn

) 1
q

with 1
p + 1

q = 1. Because

n∑
j=1

1
(
−ξn ≤ Ṽj ≤ ξn

)
=

n∑
j=1

1
(
−ξn ≤ Ṽj − Vj + Vj ≤ ξn

)
=

n∑
j=1

1
(
−ξn −

(
Ṽj − Vj

)
≤ Vj ≤ ξn −

(
Ṽj − Vj

))
≤

n∑
j=1

1 (−ξn − σ̂n ≤ Vj ≤ ξn + σ̂n)

=
n∑
j=1

1 (0 ≤ Vj ≤ ξn + σ̂n)
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Consider for some C > 1
n∑
j=1

1(σ̂n ≤ (C − 1)ξn)1
(
−ξn ≤ Ṽj ≤ ξn

)
≤

n∑
j=1

1 (0 ≤ Vj ≤ Cξn)

Therefore

1(σ̂n ≤ (C − 1)ξn)n
q
2
−1ξqn

n∑
j=1

1
(
−ξn ≤ Ṽj ≤ ξn

)
≤ n

q
2
−1ξqn

n∑
j=1

1 (0 ≤ Vj ≤ Cξn)

but the right-hand side has mean equal to

n
q
2
−1ξqn · n · Cξn = O

(
n
q
2 ξq+1
n

)
= O

(
n
q
2
−aq−a

)
= o (1)

and variance

nq−2ξ2qn · n · Cξn (1− Cξn) = O
(
nq−1ξ2q+1

n

)
= O

(
nq−1−2aq−a

)
= o (1)

so by Chebyshev, we have, because we can omit the indicator on the left-hand side, that

ξn
1√
n

n∑
j=1

|Sj | 1
(
−ξn ≤ Ṽj ≤ ξn

)
= op (1)

The above requirement can be rewritten

(q + 1) a >
q

2

(2q + 1) a > q − 1

or

a > max

(
q

2 (q + 1)
,
q − 1

2q + 1

)

Remark 2 To derive a bound on sup1≤j≤n

∣∣∣Ṽj − Vj∣∣∣ we note that

sup
1≤j≤n

∣∣∣Ṽj − Vj∣∣∣ = sup
1≤j≤n

∣∣PL(Zj)
′α̃L(Xj)− F (Xj |Zj)

∣∣ ≤ sup
x,z
|PL(z)′α̃L(x)− F(x|z)|

Because the same proof as for the uniform bound in Theorem 1 of Newey (1997) holds we find that

σ̂n = Op(L
3/2n−1/2) +Op(L

1−bD). Note that as p→∞, we have q → 1, and as such

max

(
q

2 (q + 1)
,
q − 1

2q + 1

)
→ 1

4

Therefore, if Sj has moments of arbitrarily large order, then we can take

ξn = n−( 1
4
+ε)

for some small ε > 0. Therefore if L = nκ we require that

max

{
3

2
κ− 1

2
, κ(1− bD)

}
< −

(
1

4
+ ε

)
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