Skip to main content

Joint Econometrics and Statistics Workshop

Identifiability and Consistent Estimation for Gaussian Chain Graph Model

Haoran Zhang (Southern University of Science and Technology)

Friday 31 May 2024 14:00 - 15:00

Many of our seminars and public events this year will continue as in person or as hybrid (online and in person) events. Please check our website listings and Twitter feed @STICERD_LSE for updates.

Unless otherwise specified, in-person seminars are open to the public. Please ensure you have informed the event contact as early as possible.

Those unable to join the seminars in-person are welcome to participate via zoom if the event is hybrid.


About this event

The chain graph model admits both undirected and directed edges in one graph, where symmetric conditional dependencies are encoded via undirected edges and asymmetric causal relations are encoded via directed edges. Though frequently encountered in practice, the chain graph model has been largely under investigated in the literature, possibly due to the lack of identifiability conditions between undirected and directed edges. In this paper, we first establish a set of novel identifiability conditions for the Gaussian chain graph model, exploiting a low rank plus sparse decomposition of the precision matrix. Further, an efficient learning algorithm is built upon the identifiability conditions to fully recover the chain graph structure. Theoretical analysis on the proposed method is conducted, assuring its asymptotic consistency in recovering the exact chain graph structure. The advantage of the proposed method is also supported by numerical experiments on both simulated examples and a real application on the Standard & Poor 500 index data.

Econometrics and Statistics seminars are held on Fridays in term time at 12:00-13:00, ONLINE, unless specified otherwise.

Seminar organisers: Dr Tatiana Komarova and Dr Yunxiao Chen.

For further information please contact Lubala Chibwe: l.chibwe@lse.ac.uk.

Please use this link to subscribe or unsubscribe to the Econometrics and Statistics seminars mailing list (stats).