Skip to main content

STICERD Econometrics Seminar Series

Genuinely Robust Inference for Clustered Data

Yulong Wang (Syracuse)

Thursday 13 March 2025 14:00 - 15:30

Many of our seminars and public events this year will continue as in person or as hybrid (online and in person) events. Please check our website listings and Twitter feed @STICERD_LSE for updates.

Unless otherwise specified, in-person seminars are open to the public. Please ensure you have informed the event contact as early as possible.

Those unable to join the seminars in-person are welcome to participate via zoom if the event is hybrid.


About this event

Conventional methods for cluster-robust inference are inconsistent when clusters of unignorably large size are present. We formalize this issue by deriving a necessary and sufficient condition for consistency, a condition frequently violated in empirical studies. Specifically, 77% of empirical research articles published in American Economic Review and Econometrica during 2020–2021 do not satisfy this condition. To address this limitation, we propose two alternative approaches: (i) score subsampling and (ii) size-adjusted reweighting. Both methods ensure uniform size control across broad classes of data-generating processes where conventional methods fail. The first approach (i) has the advantage of ensuring robustness while retaining the original estimator. The second approach (ii) modifies the estimator but is readily implementable by practitioners using statistical software such as Stata and remains uniformly valid even when the cluster size distribution follows Zipf’s law. Extensive simulation studies support our findings, demonstrating the reliability and effectiveness of the proposed approaches.

STICERD Econometrics seminars are held on Thursdays in term time at 14.00-15.30, in SAL 3.05, unless specified otherwise.

Seminar organisers: Dr Yike Wang, Professor Tai Otsu, and Dr Vassilis Hajivassiliou.

For further information please contact Sadia Ali: s.ali43@lse.ac.uk.

Please use this link to subscribe or unsubscribe to STICERD Econometrics mailing list (emetrics).